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Abstract: This study researched the individual and combined impacts of future LULC and climate
changes on water balance in the upper reaches of the Beiluo River basin on the Loess Plateau of
China, using the scenarios of RCP4.5 and 8.5 of the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC). The climate data indicated that both precipitation and temperature
increased at seasonal and annual scales from 2020 to 2050 under RCP4.5 and 8.5 scenarios. The future
land use changes were predicted through the CA-Markov model. The land use predictions of 2025,
2035, and 2045 indicated rising forest areas with decreased agricultural land and grassland. In this
study, three scenarios including only LULC change, only climate change, and combined climate and
LULC change were established. The SWAT model was calibrated, validated, and used to simulate the
water balance under the three scenarios. The results showed that increased rainfall and temperature
may lead to increased runoff, water yield, and ET in spring, summer, and autumn and to decreased
runoff, water yield, and ET in winter from 2020 to 2050. However, LULC change, compared with
climate change, may have a smaller impact on the water balance. On an annual scale, runoff and
water yield may gradually decrease, but ET may increase. The combined effects of both LULC and
climate changes on water balance in the future were similar to the variation trend of climate changes
alone at both annual and seasonal scales. The results obtained in this study provide further insight
into the availability of future streamflow and can aid in water resource management planning in the
study area.
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1. Introduction

Many hydrological processes, such as precipitation, evapotranspiration, and runoff, are
significantly affected by climatic conditions. Such influences are further multiplied by climate change,
which is now a scientific fact instead of a hypothesis. Moreover, these influences are affected by land
use changes, leading to a variety of complexities in forecasting and in analyzing critical water-related
parameters such as baseflow and flooding frequency [1,2]. Climate and land use are two important
factors causing combined effects on the hydrological cycles and associated water resource systems in
specific watersheds. To achieve sustainable water resource management at the watershed scale, it is of
importance to predict and analyze future tendencies in water resources through advanced tools over
the long term. Therefore, the generation and analysis of the synergic effects of human activities and
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climate change on water balance and water resource systems are desired, which thus calls for effective
modeling tools.

Many previous studies have discussed the impacts of climate and land use changes on
hydrological processes in many watersheds [3–7]. Generally, three methods were widely used:
analogue methods, statistical analysis, and hydrological modeling [4]. In many studies on small
catchments, analogue methods have been used to evaluate hydrological responses under varying
external changes. However, investigations employing this approach are disadvantageously costly
when monitoring and collecting hydrological variables. In addition, the majority of studies involved a
single medium- and/or large-scale catchment [8]. At the same time, empirically statistical methods are
normally used to evaluate hydrological responses due to their simplicity and effectiveness [4]. These
methods require a long-term series of observational data and a lack of physical mechanisms [4]. Hence,
hydrological models, which have comprehensive physical mechanisms, have been advanced as they
may provide a mature framework to comprehensively analyze the relationships among climate, land
use, and water resources [9]. Numerous packages such as the soil and water assessment tool (SWAT),
the water erosion prediction project (WEPP), and variable infiltration capacity (VIC) have been widely
used to support the evaluation of climatic and land use changes on hydrological processes. Among
them, SWAT has been most widely used to analyze their relationships [9–12].

The upper reaches of the Beiluo River basin are located within the Loess Plateau of China. Since
the 1970s, two national ecological restoration projects, namely, the integrated soil conservation and the
“Grain for Green” projects, have been put into place to control severe soil erosion in that watershed.
Zhang et al. (2017) [13] used the Mann–Kendall test approach to analyze the variation trend of runoff
from 1957 to 2009 and found that, against a background of precipitation with no significant changes,
the streamflow had significant negative trends. Liu et al. (2015) [14] quantitatively assessed the
contribution of climate and human activities through the adoption of empirical statistical methods.
Chen et al. (2016) [15] posited that vegetation coverage obviously increased after the “Grain for Green”
projects, and, at the same time, the mean annual sediment load modulus significantly decreased by
90%. Yan et al. (2017) [16] used SWAT to evaluate hydrological responses to climate variations and
land cover changes and noticed that the main driving forces for changing runoff were the land cover
changes from 1996 to 2012. Previous studies have mostly focused on the effects of climate or land use
changes on hydrological processes [17,18].

However, few studies have synthetically coupled different models to investigate the potential of
climate and land use changes on hydrological processes in this watershed. Taking into account current
and future water resource supply and management issues, it is necessary to assess the impacts of
potential land use and climate changes in the watershed. The scenarios presented in the Special Report
on Emissions Scenarios (SRES) of the Fourth Assessment Report (ARCC) of the Intergovernmental
Panel on Climate Change (IPCC) have been widely used to analyze the impacts of climate change on
water resources [19–22]. The fifth Assessment Report (AR5) of the IPCC has newly developed scenarios
and representative concentration pathways (RCPs). They are already being widely used to evaluate
the impacts of potential policy responses to climate change [23,24]. In addition, impacts of land use
changes can be reflected through the employment of RCPs. Study of streamflow variation of the upper
reaches of Beiluo River basin and hydrological responses to potential climate variability and land use
change is important for the sustainable utilization of water resources and local ecological preservation.

Therefore, the main aim of this study is to synthetically couple different models to investigate the
impacts of potential climate and land use changes on hydrological processes in this watershed. Four
tasks are completed: (a) a CA-Markov model is advanced for facilitating an effective assessment of
potential impacts of land use changes, (b) SWAT is applied, calibrated, and validated to simulate river
runoff, (c) three scenarios including the impacts of climate and land use changes and the combined
impacts of climate and land use changes are established and analyzed, and (d) SWAT is used to
simulate three scenarios to evaluate the future impacts of climate and land use changes on water
balance. Potential innovations associated with this research are that (a) synthetically developed models
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including CA-Markov, SWAT, and CLIGEN were coupled to deal with complexities of synergies of
climate change and land use patterns, (b) a more accurate Regional Climate Model (RegCM4.0) was
selected to analyze future climate trends, and (c) multiple scenarios were established to deeply research
the impacts of the complexity between climate and land use changes on hydrological processes in
the future.

2. Overview of the Study Area

The Beiluo River basin (107◦33′33” E to 110◦10′30” E, and 34◦39′55” N to 37◦18′22” N) is the basin
of one of the second-level tributaries of the Yellow River (Figure 1). The upper reach of the Beiluo
River covers an area of 3408 km2, which is 12.7% of the total area of the basin, and is controlled by
the Wuqi hydrological station. The mainstream length of the catchment is approximately 275 km.
This watershed is a typical hilly gully region of the Loess Plateau. The catchment is in a semi-arid
climatic area. The mean precipitation is 418 mm (over 1963–2009), and approximately 71.8% of
precipitation in the basin is mainly concentrated during the flood period from May to September [25].
Soil is easily eroded because of the loessial soil that is a primary soil type in the catchment. To control
soil erosion, several eco-restoration projects have been implemented since the 1960s. The proportion
of farmland returned to grassland or woodland in Wuqi county is recognized as the largest in China.
By 2004, 95 silt dams had been built, accounting for 21.6% of the total area of Wuqi county. Vegetation
was dominated by grasses and shrubs after the employment of many soil and water conservation
measures. The mean annual sediment yield measured at the Wuqi hydrological station was reduced
from more than 10,000 t/km2·a before 1980 to 4400 t/km2·a after 1999 in the basin [26].
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Figure 1. Locations of the upper reaches of the Beiluo River basin (c) and the Loess Plateau (b) in China (a).

Landsat images from 1995 and 2010 (Landsat Thematic Mapper 5 or TM5) from the USGS
(http://glovis.usgs.gov) were used for the analysis of land use change. In addition, LULC data from
2000 were obtained from the http://loess.data.cn website, and predictions of land use in 2025, 2035,
and 2045 were derived based on the CA-Markov model. SWAT databases include land use, climate,
soil, topography, and gauge data. All the data sources are presented in Table 1. Future climate data
including precipitation and maximum and minimum temperatures were calculated using a regional
climate model (RegCM4.0) coupled with the global climate system of BCC_CSM1.1. The results are
available at the website http://www.ncc-cma.net/cn/. Climate data over 2020 to 2050 produced by
RegCM4.0 using RCP4.5 and 8.5 were selected in this study. These monthly climate data, which have a
resolution of 0.5◦ × 0.5◦, were downscaled at a daily scale through the CLIGEN model.

http://glovis.usgs.gov
http://loess.data.cn
http://www.ncc-cma.net/cn/
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Table 1. Database of this study area.

No Database Parameters Year Source

1 Climatic data

Rainfall, temperature,
humidity, solar radiation,

and sunshine hour
1969–2012 China Meteorological

Administration

Future rainfall and
temperature 2020–2050

2 Land use Land use from satellite data 1995, 2010 Geospatial Data Cloud

3 DEM ASTER GDEM NA Geospatial Data Cloud

4 Soil data Soil map and properties NA Chinese Soil Database

5 Gauge data Water discharge data 1980–2012 Yellow River Conservancy
Commission

3. Methodology

The overall analytical framework (Figure 2) included land use change modeling, climate change
scenario development, and hydrological modeling within the watershed scale. Future land use patterns
were simulated using a CA-Markov model, which is the combination of the Cellular Automata/Markov
Chain/Multi-Criteria/Multi-Objective Land Allocation land cover prediction methods. Long-term
spatial-temporal series were employed to advantage prediction. Climate change scenarios were generated
through the adoption of a Regional Climate Model (RegCM4.0) for the study area. In this research, three
different scenarios including only climate change, only land use change, and combined climate and land
use change were established to predict the individual and combined potential impacts on hydrological
processes. According to the three scenarios, SWAT was used at the watershed scale. The simulated results
under the three scenarios were compared with the reference period values (2002–2012).
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3.1. Land Use Change Modeling

Future land use changes in the catchment were predicted using the CA-Markov model through
the employment of IDRISI software. The Markov model has been used to predict land use in the Loess
Plateau [16]. It was considered suitable for predicting the land use system trend based on the transition
probability matrix. Based on the Bayes formula, the prediction can be calculated as follows [27]:

S(t+1) = Pij × S(t) (1)

where S(t) and S(t+1) are the system statuses at times t and t + 1, respectively; Pij is the transition
probability matrix in a state, the equation for which is [27]

Pij =


P11 P12 . . . P1n

P21 P22 . . . P2n

. . . . . . . . . . . .
Pn1 Pn2 . . . Pnn

 (2)

where 0 ≤ Pij < 1 and ∑N
j=1 Pij = 1, (i, j = 1, 2, . . . , n).

Historically, CA modeling, which is highly capable of spatial simulations, was widely used in
research to simulate the evolutionary process. CA models can also accurately predict land use because
they consider comprehensive factors that include soil conditions, climatic conditions, topography, policy,
economy, technology, and other human factors. The equation of the CA model can be expressed as [27]

S(t,t+1) = f
[
S(t), N

]
(3)

where S is the set of limited and discrete cellular states, N is the Cellular field, t and t + 1 indicate the
different times, and f is the transformation rule of cellular states in local space. In this study, there were
five land use types: cultivated land, forest, grassland, urban, and water. Future land uses in 2025, 2035,
and 2045 were predicted according to the trend in the variations of land use changes between 1995 and
2010 based on the proposed CA-Markov model.

3.2. Climate Change Scenarios

The observed climate datasets over 44 years (1969–2012) were used as the baseline climate
scenario. The regional climate model system RCPs described in Giorgi (2012) were used to simulate
the future climate of monthly precipitation and temperature at a resolution of 0.5◦ × 0.5◦ from 2020 to
2050, including scenarios RCP4.5 and RCP8.5. The model is a sigma vertical coordinate model with
dynamics based on the hydrostatic version [28]. A more detailed description of the RCPs can be found
in Giorgi et al. (2012). Climate Generator (CLIGEN), which was developed based on the EPIC and
SWRRB models, was used to downscale the monthly data to daily time step data. In the model, the
distribution of precipitation was described by a Markov chain, which calculates the probability of a
wet day following a dry day and a wet day following a wet day. Therefore, the standard deviation,
skewed coefficient of daily rainfall, and the average of the highest monthly maximum 0.5 h rainfall
intensities will be calculated. A more detailed description of the newly revised algorithm can be found
in previous documentation [29].

3.3. Hydrologic Modeling

According to the published reports, SWAT is a continuous time distributed hydrological model at
a daily time step. It is considered to be a versatile tool for watershed assessments. It can simulate many
processes within the basin, including rainfall-runoff and plant growth processes. This model comprises
many components, including hydrology, climate, soils, land management, plant growth, pesticides,
and nutrients. It is also widely used, with high efficiency for simulating and assessing hydrological
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processes under changing environments [30]. The model partitions a watershed into sub-watersheds
and contains input information that includes climate, HRUs, soil types and their properties, land use
type, ponds/wetlands, groundwater, and the main channel draining the sub-basin. In each HRU, the
homogeneous flow can be simulated, and the outflow of each unit can be calculated. The ultimate
result of the entire watershed can then be derived from the core outlet. In the SWAT model, the most
important equation is the soil–water balance, which can be represented as

SWt = SWt−1 +
t

∑
i=1

(Ri −Qi − ETi − Pi −QRi) (4)

in which SW is the soil water content; i is the time of day for the simulation period; R, Q, ET, P, and QR
are daily precipitation, runoff, evapotranspiration, percolation, and return flow, respectively.

Nash–Sutcliffe efficiency (ENS) and the linear regression parameter were used to evaluate the
performance of the SWAT model. The variation range of ENS was from negative infinity to 1. Generally,
when the model was considered to be perfect, satisfactory, and unsatisfactory, the corresponding
values of ENS were greater than 0.75, 0.36–0.75, and smaller than 0.36, respectively [31].

ENS = 1− ∑n
i=1(Oi − Si)

2

∑n
i=1
(
Oi −O

)2 (5)

in which Si and Oi are the simulated and observed runoff values, respectively, and n is the number
of runoff values. At the same time, R2, which ranges from 0 to 1, reflects the relationship between
simulated and observed values [32].

Finally, we also estimated the effects of human activities on catchment runoff combined with the
three land use scenarios. Simulation results were compared with the reference simulation outputs via
the following equation:

%Change =

(
Ysim − Ybase

Ybase

)
× 100. (6)

3.4. Sensitivity Analysis

The response of runoff to changes in climatic factors and how to evaluate the sensitivity have been
key issues for many scholars [33]. In recent years, the climate elasticity coefficient has been widely used
to estimate the sensitivity of runoff to climate change, and it has been a valuable factor when estimating
the sensitivity of runoff to climate change [34]. This means that the increase or decrease of climatic
factors to a certain extent results in an increase or decrease in runoff. The runoff elasticity coefficient is
calculated as the ratio of the rate of runoff change to the rate of change of climatic factors. To evaluate
the sensitivity of runoff to land use change in this research, the elasticity coefficient was combined with
SWAT model simulation results to analyze the sensitivity of runoff to different land use types. Based on
the elasticity coefficient, the sensitivities of runoff to climate and different land use types are calculated as

ε = (∆Q/Q)/(∆X/X) (7)

where ε is the runoff elasticity coefficient; ∆Q is the change in runoff; Q is the runoff without climate
change; ∆X is the change in climate; X is the climate without change.

xyij =

∣∣∣∣∣∣ (xi1 − xi2)/xi2(
yi1j − yi2j

)
/yi2j

∣∣∣∣∣∣ =
∣∣∣∣∣ ∆xi/xi2

∆yij/yi2j

∣∣∣∣∣ (8)

where xyij is the sensitivity coefficient of the ith runoff depth to the jth land use type affecting its
change; xi1 and xi2 are the annual runoff depths for different land use scenarios in the catchment; yi1j

and yi2j are the jth land use types affecting annual runoff depth in the different scenarios.
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4. Results and Discussion

4.1. Calibration and Validation

It is important to calibrate and validate the model to simulate runoff. In this study, SWAT-CUP
was used to analyze the sensitivities of the parameters. The research found that the CN2, ESCO,
SOL_AWC, SOL_K, and ALPHA_BF parameters were more sensitive to runoff than other parameters.
Subsequently, these values were adjusted using manual calibration in SWAT2012 to calibrate the model.
The final values of these parameters are shown in Table 2.

Table 2. The final values of sensitive parameters.

No Name Description Range Initial Value Adjusted/Last Value

1 CN2 Initial SCS CN II value 35–98 Default/initial +3

2 ESCO Soil evaporation
compensation factor 0–1 0.95 0.8

3 SOL_AWC Available water capacity 0–1 Initial +0.03

4 SOL_K soil saturated water
conductivity 0–1 Initial +0.05

5 ALPHA_BF Baseflow alpha factor (days) 0–1 0.1293 0.0837

After the sensitive parameter analysis, the model was calibrated for the observed values in 1986–1990
and validated for 1991–1995. The Nash–Sutcliffe efficiency (ENS) and the regression coefficient (R2) were
used to evaluate the fitness of SWAT between the simulated and observed values. The variation range
of ENS was from negative infinity to 1. Model performance increased with higher R2. Table 3 shows
that the model was acceptable for the calibrated and validated periods. The observed and simulated
average annual runoff depths during the calibration period were 26.2 and 21.7 mm, respectively. For the
1991–1995 validation period, the observed and simulated average annual runoff depths were 38.3 and
36.5 mm, respectively. Figures 3 and 4 suggested that there was good agreement between the observed
and simulated results at both monthly and yearly scales, while the results also indicated that the model
underestimated runoff. Although the model-simulated runoff at the monthly scale was not as good as
that at the annual scale, its performance was still acceptable according to the criteria given by Moriasi et al.
(2007). Overall, the calibrated model was reliable and acceptable for the simulation of runoff for further
analysis during the changed period of hydrological processes.
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Table 3. Model performance for the simulation of runoff yields.

Period
Monthly Year

ENS R2 ENS R2

Calibration (1986–1990) 0.43 0.71 0.66 0.76
Validation (1991–1995) 0.47 0.82 0.72 0.89

In this research, three scenarios including only LULC change, only climate change, and combined
climate and LULC change were established to predict the individual and combined impacts on water
balance. Water balance in the catchment from 2020–2050 was simulated in correspondence with
each scenario within the three periods including the 2020s, 2030s, and 2040s. The simulated water
balance for the future period under each scenario was compared with the baseline value (2002–2012).
To analyze the impact of climate change on the water balance, Scenario 1 was simulated, and land use
was assumed to be same as in 2010. To analyze the impact of LULC changes on the water balance,
Scenario 2 was simulated with the LULC in 2025, 2035, and 2045. The future climate was assumed
to be consistent with that in the baseline period. Scenario 3 was constructed to analyze the effects of
climate and LULC changes on future water balance.

4.2. CA-Markov Chain-Based Land Use Change Prediction

The land use classification of 1995 and 2010 TM images was interpreted through the adoption
of the maximum likelihood classification (MLC). In this study area, land uses were divided into
five sectors: agriculture, grassland, forest, urban, and water. As shown in Table 4 and Figure 5,
agricultural land and grassland occupied the highest percentage of the total area in 1995: 46.8 and
49.9%, respectively. In 2000, the dominant land use types were still agriculture and grassland, although
the agricultural area decreased by 4.1%. Until 2010, the land use structure underwent fundamental
changes. Grassland and forest were the dominant land use types in the catchment, the percentages of
which were 63.4 and 20.9%, respectively. These percentage changes to land use area indicated that the
vegetation coverage gradually increased under the “Grain to Green” program on the Loess Plateau of
China. Yan et al. (2016) [25] employed Landsat TM image data and found that the average vegetation
coverage increased from 19.2 to 38.8% from 1995 to 2014, consistent with the presentation in Table 4.

The future land use changes in 2025, 2035, and 2045 were predicted through the CA-Markov
model within the IDRISI software. In this study area, the transfer area matrix and transfer probability
matrix were identified according to the land use data from 1995 to 2010. Suitability images of different
land use types were established by the multi-criteria evaluation (MCE). The matrix introduces the
possibility of reverting from one class to every other class [35]. The CA-model predicted that, in the
2010–2025 changes shown in Table 5 and Figure 5, agricultural land and grassland will convert mostly
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to forest in the watershed, with additional areas of 116.8 and 177.5 km2, respectively, which might be
possible due to a continuous soil and water conservation project in the future. Settlement and water
areas will also increase by 29.7 and 18.7 km2, respectively. In the 2025 to 2035 changes, agricultural
land was continuously predicted to slightly convert to forest in the watershed, with an additional area
of 23.66 km2, and grassland to increase by 12.63 km2, compared to 2025. The settlement and water
areas were more stable than the other land use types.

The smallest changes were observed in the 2035–2045 transitional period. There was a
transformation pattern similar to that of the 2025–2035 changes. Agricultural land was slightly
converted to forest and grassland, with an additional area of 50.54 km2. Changes to grassland and
forest were very low, slightly increasing by 26.2 and 24.1 km2, respectively. In this period, water and
settlement areas remained stable. Hence, under this change trend, increasing forests may lead to
increasing demands on soil water for vegetation restoration on the semi-arid loess plateau [36,37].

Table 4. Land use area statistics of 1995, 2000, and 2010.

Land Use
1995 2000 2010

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Agriculture 1594.75 46.79 1454.88 42.69 497.25 14.59
Grassland 1701.92 49.94 1847.14 54.20 2161.6 63.43

Forest 95.32 2.8 100.2 2.94 714.12 20.95
Water 12.14 0.36 3.07 0.09 17.76 0.52

Settlement 3.87 0.11 2.83 0.08 17.26 0.51

Table 5. Land use area statistics of 2025, 2035, and 2045.

Land Use
2025 2035 2045

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Agriculture 380.37 11.16 356.71 10.47 306.17 8.98
Grassland 1984.13 58.22 1996.76 58.59 2022.99 59.36

Forest 960.07 28.17 971.06 28.49 995.20 29.20
Water 36.43 1.07 36.47 1.07 36.62 1.07

Settlement 47.00 1.38 47.00 1.38 47.01 1.38
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4.3. Investigating Future Climate Change through the CLIGEN Model

Historical and future changes in annual precipitation and temperature derived for RCP4.5
and RCP8.5 are presented in Figure 6. The results showed that, for both RCP4.5 and RCP8.5,
the precipitation from 2020 to 2050 in the study area annually and in different seasons was higher
than the historical values. As shown in Figure 6, at an annual scale, the precipitation in RCP4.5 and
RCP8.5 increased by 57.4 and 52.1 mm compared with the baseline period. The precipitation in all
seasons under RCP8.5 was higher than under RCP4.5, except in summer. Similarly, the maximum
and minimum temperatures were higher than for the baseline period in both the RCP4.5 and RCP8.5
scenarios, and the maximum and minimum temperatures in RCP8.5 were 0.31 and 0.33 ◦C higher,
respectively, than those in RCP4.5. The increased temperatures were larger in winter than in other
seasons in the future, and the maximum temperatures increased by 1.5 and 1.6 ◦C for RCP4.5 and
RCP8.5, respectively. Similarly, the minimum temperatures increased by 1.36 and 1.64 ◦C in the two
scenarios. The estimations indicate an overall warming of the study area, with higher temperatures for
both the RCP4.5 and RCP8.5 scenarios. However, these future climate changes might be due to the
risks of drought or water quantity in the basin.
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4.4. Sensitivity Analysis of Runoff to Climate and Land Use Change

To evaluate the sensitivity of runoff to climate, six climate scenarios were established that included
5, 10 and 20% increases in precipitation and 0.5, 1, and 2 ◦C increases in maximum and minimum
temperatures. These climate scenarios were then incorporated into the SWAT model with the same
land use map in 2010. The results (Table 6) showed that runoff was most sensitive to rainfall changes,
followed by the maximum and minimum temperatures. The research also found that the greater the
increase in rainfall, the greater the sensitivity of runoff to rainfall. However, the temperature sensitivity
remained stable.

Table 6. Climate elasticity coefficient for different scenarios.

Scenarios +5% +10% +20% Scenarios +0.5 ◦C +1 ◦C +2 ◦C

Precipitation 3.30 4.40 5.93 Maximum temperature 0.24 0.26 0.25

— — — — Minimum temperature 0.15 0.16 0.16

Five potential land use scenarios were developed to analyze the sensitivity of runoff to different
land use types: (1) forest and pasture were converted to agriculture, and the rest remained unchanged;
(2) agriculture and forest were converted to pasture, and the rest remained unchanged; (3) agriculture
and pasture were converted to forest, and the rest remained unchanged; (4) settlement was converted
to pasture, and the rest remained unchanged; and (5) water was converted to pasture, and the rest
remained unchanged. The thus derived land use scenarios were incorporated into the SWAT model
for determination of new HRUs for each sub-basin, and a series of parameters remained stable. Next,
simulation results combined with the formula for calculating the elasticity coefficient were used
to calculate the runoff response coefficient. The research (Table 7) found that there were different
runoff response coefficients for different underlying surface coverage types. The runoff sensitivity
coefficients in decreasing order were for settlement, water, agricultural land, grassland, and forest,
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the corresponding values of which were 3.36, 2.23, 0.86, 0.39, and 0.34. Settlement had the highest
degree of sensitivity to runoff, but the sensitivity of runoff to forest was the lowest. In general, runoff
was more sensitive to rainfall than to land use change in this watershed. Therefore, the increase in
rainfall more easily causes flooding and soil erosion in the basin.

Table 7. Runoff response coefficient under the extreme land use scenario.

Land Use Type Agriculture Forest Grassland Water Settlement

Runoff response coefficient 0.86 0.35 0.40 2.21 3.36

4.5. Water Balance Analysis

There were three conditions to be considered in this analysis: (a) the individual impact of land
use changes on water balance, (b) the individual impact of climate change on water balance, and (c)
the combined impacts of both on water balance.

4.5.1. Impacts of Land Use Changes

The dominant land use types of the watershed were agriculture, grassland, and forest. Therefore,
to evaluate the impacts of land use change on water balance, the calibrated SWAT model was simulated
in three future land use scenarios in 2025, 2035, and 2045 under the assumption that the weather did
not change. The results are given in Table 8, and show that runoff may decline in the future under the
change in land use, decreasing by 3.02, 3.76, and 4.57% for land use in 2025, 2035, and 2045, respectively,
when compared with land use in 2010. Similarly, water yield also gradually decreased in the simulation
by 13.9, 17.06, and 20.3% for 2025, 2035, and 2045, respectively. Oppositely, evapotranspiration
gradually increased by 7.80, 8.22, and 8.48% in comparison with that in 2010. This can be attributed to
a trend in agriculture transformation to grassland and forest in the future.

Table 8. Water balance due to future land use change.

Year
P Runoff ET Water Yield

mm mm % mm % mm %

2010 460.09 13.57 – 408.49 – 37.04 –
2025 460.09 13.16 −3.02 440.35 7.80 31.89 −13.90
2035 460.09 13.06 −3.76 442.06 8.22 30.72 −17.06
2045 460.09 12.95 −4.57 443.12 8.48 29.52 −20.30

Crops with shallow-root systems have less water storage capacity than forests and grasses, and
under the future land use change in the watershed, the runoff and water yield would ultimately
decrease. Table 6 also shows the relative changes in the annual water balance for the future land uses
in 2025, 2035, and 2045. In addition, it has been widely researched that increased vegetation coverage
is usually associated with decreased flow [38].

4.5.2. Impacts of Climate Change

To understand hydrological processes, including precipitation, runoff, ET (evapotranspiration),
and water yield in the watershed, the calibrated SWAT model was simulated using the RCP4.5 and
RCP8.5 future precipitation and temperature data scenarios, respectively. The simulated water balances
for future periods under scenarios RCP4.5 and RCP8.5 were compared to the corresponding values in
the baseline period (2002–2012). Table 7 shows the seasonal and annual changes under the climate
scenarios for the 2020–2050 period. Runoff and water yield increased by 29.0–83.9% and by 11.4–37.7%,
respectively, in both scenarios on an annual scale (Figure 7). Similarly, ET also gradually increased by
4.3–14.6% from 2020 to 2050. The reason may be that rising temperature leads to an increase in ET.
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and evapotranspiration (ET): (a) 2020s, (b) 2030s, and (c) 2040s.

On a seasonal scale, water balance including runoff, water yield, and ET gradually increased in
spring, summer, and autumn and decreased in winter (Figure 8 and Table 9). The results indicate that
there were some differences between the scenarios; briefly, runoff and water yield were simulated
for the future period of 2020 to 2050 and were found to decrease in winter but increase in spring,
summer, and autumn. In particular, runoff increased by 73.4–136.5% under RCP4.5 in summer and by
32.7–117.1% under RCP8.5. In winter, runoff gradually decreased by 93.4–98.0% and by 92.1–96.7% for
RCP4.5 and RCP8.5, respectively. Seasonal changes indicated that the runoff and water yield increased
under both RCP4.5 and RCP8.5 in spring and summer. Runoff and water yield gradually decreased in
the future, although the precipitation increased at the same time. Those results indicated that water
balance in this study area was impacted not only by precipitation but was also sensitive to the change
in temperature.
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Table 9. Seasonal and annual changes in water balance during the baseline period (2002–2012) and
future period (2020–2050) for RCP4.5 and RCP8.5 scenarios.

Variables Periods Spring Summer Autumn Winter Annual

Runoff

Baseline period 2002–2012 0.83 6.85 2.46 1.52 11.65

RCP4.5
2020–2029 3.07 13.19 1.41 0.10 17.76
2030–2039 2.36 11.88 6.22 0.03 20.49
2040–2050 1.30 16.20 1.91 0.04 19.46

RCP8.5
2020–2029 2.18 12.08 7.05 0.12 21.42
2030–2039 2.28 14.87 2.82 0.07 20.04
2040–2050 2.53 9.09 3.37 0.05 15.03

Water yield

Baseline period 2002–2012 3.18 19.07 10.62 1.77 34.64

RCP4.5
2020–2029 6.21 27.90 7.89 0.33 42.33
2030–2039 5.99 27.57 13.66 0.49 47.71
2040–2050 4.94 30.97 7.42 0.29 43.62

RCP8.5
2020–2029 6.47 25.78 13.86 0.42 46.52
2030–2039 5.71 28.57 9.76 0.42 44.45
2040–2050 6.51 21.86 9.85 0.38 38.59

ET

Baseline period 2002–2012 81.19 201.50 103.76 19.31 405.76

RCP4.5
2020–2029 81.81 230.26 102.80 16.14 431.01
2030–2039 99.94 248.82 98.01 18.12 464.89
2040–2050 98.18 227.58 86.34 15.79 427.88

RCP8.5
2020–2029 92.35 228.67 105.32 17.15 443.49
2030–2039 89.95 227.56 112.32 17.49 447.31
2040–2050 95.71 213.77 96.41 17.50 423.40

Figure 7 also shows the relative changes in the annual water balance in the 2020s, 2030s, and 2040s
as box-and-whisker plots. In the 2020s, 2030s, and 2040s, the ranges of relative changes in runoff were
larger than the annual water yield and ET. In addition, the sensitivity of water balance to climate change
differed in different seasons. In addition, the runoff and water yield were more susceptible to the climate
change in spring and winter seasons than in summer and autumn seasons. Although the runoff and
water yield in dry seasons accounted for a small portion of the annual value, it was related to the low
flow in the watershed. The amount of low flow also influences the ecosystem health and spring flood.
Because of the dwindling vegetation coverage in spring, the probability of occurrence of soil and water
erosion would be relatively large if the precipitation were to increase in the future. Hence, it is crucial to
understand the influence of climate change in low flow and drought situations in spring [39].

4.5.3. Combined Impacts of Climate and LULC Changes

The combined impacts of future land use changes and climate variability on water balance in
the study area were simulated with the calibrated SWAT model, the results of which are presented in
Figures 9 and 10. The variation in the relative changes of runoff was larger than for both water yield
and ET in all the scenarios. In comparison with the baseline period, the runoff gradually increased in
the future in general, although it dropped a little during a certain period of time. Water yield and ET
also gradually increased compared with those in the baseline period.

As shown in Figure 10, runoff increased in spring, summer, and autumn and decreased in winter
from 2020 to 2050. The relative changes, which ranged from 387.1 to 502.5%, were larger in spring than
those in other seasons. The reason may be that runoff change was more susceptible in spring than in
other seasons. ET increased in summer and winter but decreased in spring, except for the LULC2045
& RCP8.5 scenario. In autumn, ET decreased in the RCP4.5 scenario but increased under RCP8.5.
This factor might be that the average precipitation under RCP4.5 was lower than under RCP8.5 from
2020 to 2050. Similarly, water yield increased in spring and summer and declined in autumn in the
RCP4.5 scenario. The ranges of relative change were 95.4–281.2% in spring and 26.2–191.2% in summer.
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In winter, water yield decreased, and the range of variations was from −23.8 to −254.9%. We also
found that the ranges of relative changes in runoff were larger than for water yield and ET.

Generally, the variation trend from the simulation of land use and climate changes was similar to
the results for the simulation of climate change taken alone. The reason might be that, according to the
combined effects of future land use change and climate variability, the decrease in runoff magnitude
caused by future land use change might be offset by climate change, and the relative changes in
runoff for the future climate variability were larger than for the future land use change. Runoff was
more sensitive to climate variability than to land use change, and the relative changes for the future
scenarios of climate and land use changes were obviously consistent with the scenario of future climate
change alone. It was useful to understand the changes in water balance affected by the separate and
coupled impacts of potential climate and land use changes for water management and sustainable
water resource policy. The change in distributed runoff in different seasons and extreme weather
events inevitably aroused the flooding and droughts for the forthcoming period in the watershed.
More flexible and adaptable soil and water conservation measures should be established to confront
the probable impacts. In general, these findings could contribute to effective local government risk
management policies according to the potential for floods and droughts in the watershed.
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Runoff was more sensitive to climate variability than to land use change, and the relative changes for 
the future scenarios of climate and land use changes were obviously consistent with the scenario of 
future climate change alone. It was useful to understand the changes in water balance affected by the 
separate and coupled impacts of potential climate and land use changes for water management and 
sustainable water resource policy. The change in distributed runoff in different seasons and extreme 
weather events inevitably aroused the flooding and droughts for the forthcoming period in the 
watershed. More flexible and adaptable soil and water conservation measures should be established 
to confront the probable impacts. In general, these findings could contribute to effective local 
government risk management policies according to the potential for floods and droughts in the 
watershed. 
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5. Conclusions

This study investigated the individual and combined impacts of future LULC and climate changes
on water balance in the upper reaches of the Beiluo River basin on the Loess Plateau of China. Three
scenarios were established and estimated by the SWAT model. In addition, the future water balance
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was compared with those of the baseline period. Agriculture areas decreased by 32.2% from 1995 to
2010, while increases in forest and grassland areas of 13.49 and 18.15%, respectively, were indicated
from 1995 to 2010. Predictions of LULC were simulated by the CA-Markov model. The land use
predictions of 2025, 2035, and 2045 indicated rising forest areas with decreased agricultural land and
grassland. Although grassland increased from 2025 to 2045, grassland areas decreased compared
with LULC in 2010. Water and settlement areas increased by 0.55 and 0.87% from 2010 to 2025,
respectively, and their areas remained stable from 2025 to 2045. Climate data simulated by a regional
climate model (RegCM4.0) under RCP4.5 and RCP8.5 were obtained for the future climate analysis.
The SWAT model was calibrated and validated by calculating the historical runoff over the period
1986–1995. The agreement between observed and simulated monthly runoff values indicated that,
after the parameters were optimized, the calibrated model could be used to simulate the responses of
water balance to climate and LULC changes in this study area.

The past and future impacts of the scenarios were simulated under the seasonal and annual
scales of water balance. Future runoff, water yield, and ET increased at an annual scale under both
scenarios. Increased rainfall and temperature in the future lead to increased runoff, water yield, and ET
in spring, summer, and autumn and decreased runoff, water yield, and ET in winter from 2020 to
2050. LULC change had a smaller impact on the water balance than did climate change. On an annual
scale, runoff and water yield gradually decreased in the future, but ET increased. The combined
effects of both LULC and climate changes on water balance in the future were similar to the variation
trend of climate changes alone at both annual and seasonal scales. Researching the effects of the
individual and combined LULC and climate changes on water balance is important for rational water
resource planning and management. The study area is located in the semi-arid Loess Plateau in China,
and increasing forest areas may increase the demands of soil water requirements. The seasonal change
in water balance in this study area is likely to be more severe in the future. Runoff increases in summer
might lead to increasing extreme weather events and flood frequency.

Future water resource plans should adopt a long-term perspective, adapt to insights, and consider
these impacts. In addition, governments should work together and develop sustainable land use plans
to maintain a balance with ecological water requirements. The results of this research can be helpful
for effective planning aimed at flood and drought management and prevention.
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