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Uncertainty abounds in issues related to climate science and climate changes, the impacts of
those changes, and the efficacy of strategies that might be used to mitigate or adapt to
change. There are, however, a few things about which we can be quite certain. There are
also a number of things about which many people are certain, but should not be.

1 Certain and uncertain climate science

Despite the continued efforts of skeptics motivated by a desire for attention or short-term
economic interests (Oreskes and Conway 2010), we can be certain about a number of basic
facts: human activities have resulted in dramatic increases in the atmospheric concentration
of carbon dioxide and a number of other greenhouse gasses; those increased concentrations
are changing the climate and will continue to do so; one of those changes will be average
warming on a planetary scale. Another unambiguous consequence of rising atmospheric
concentrations of carbon dioxide will be the continued acidification of the world’s oceans,
which are already 30% more acidic today than they were in pre-industrial times.

While we still do not understand all the details of the physics, we can also be
certain that factors such as clouds and water vapor, aerosol loadings, the extent of ice
cover, and the strength of ocean circulation all play a key role in shaping the climate of today
and of the future.

In its periodic reviews, the IPCC routinely discusses and provides consensus judgments
about the nature and extent of scientific uncertainty about these and other factors. Thanks
largely to the work of Moss and Schneider (2000) these discussions are no longer couched
only in terms of general uncertainty words such as “likely” or “unlikely.” Indeed, the
climate science community has made more progress in understanding the importance of
linking such words to quantitative statements about probability ranges than has any other
community I know that is engaged in performing scientific assessments.
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The reason that it is important to provide such quantification is that there is clear
empirical evidence that the same uncertainty word can mean different things to
different people and can also mean different things to the same person in different contexts
(Wallsten et al. 1986). Hence, if one only uses words, with no linked probabilities,
assessments can become almost meaningless.

The health effects community has lagged further behind most others in understanding
that when using uncertainty words it is important to be quantitative, this despite clear
indications of the problem (Fig. 1). For example, there has been great reluctance to describe
health damage functions in terms of subjective probability distributions (Morgan 1998).
Linking probability words to numbers is important, but Budescu et al. (2009) have shown
that even when people are constantly reminded of this linkage, different people may still
draw very different inferences from the same word.

Fig. 1 Results obtained byMorgan
(1998) when members of the
Executive Committee of the EPA
Science Advisory Board were
asked to assign numerical proba-
bilities to words that have been
proposed for use with the new EPA
cancer guidelines (USEPA 1996).
Note that, even in this relatively
small and expert group, the
minimum probability associated
with the word “likely” spans four
orders of magnitude, the maximum
probability associated with the
word “not likely” spans more than
five orders of magnitude, and there
is an overlap of the probabilities the
different experts associated with the
two words. Caption from Morgan
et al. (2009)
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While the IPCC has yet to make use of them, there are methods that allow an even more
precise characterization of uncertainties. “Expert elicitation” involves a set of techniques
first developed in the decision analytic community (Spetzler and Staël von Holstein 1975;
Morgan and Henrion 1990). Subsequently, the methods used to perform elicitation have
been informed by the work of a number of experimental psychologists (Kahneman et al. 1982)
who have demonstrated that, without being aware of it, people use a variety of cognitive
heuristics when making judgments about uncertainty. While these heuristics work well in
many settings, they can also give rise to a variety of biases when making judgments
under uncertainty.

There is clear experimental evidence that both experts and laypeople are systematically
over confident when making judgments about, or in the presence of, uncertainty (Fig. 2).
Lest one conclude that the phenomenon of overconfidence is limited just to laypeople, the
gray boxes in Fig. 3 indicate the recommended value of the speed of light from 1930
through the 1980s. Note that for a period of roughly two decades the range given for the
recommended value (which should have included a consideration of all possible systematic
as well as measurement error) did not even include the present best value. For a more recent
example of the same problem, see the ongoing debate over the value of G, the gravitational
constant (Davis 2010).

Expert elicitation cannot eliminate the problem of biases caused by the operation of
cognitive heuristics, nor can it eliminate overconfidence. But unlike more informal methods
such as group discussion (in which the same cognitive heuristics and tendency to

Fig. 2 We can define overconfidence in terms of a “surprise index” that reports how frequently a true value lies
outside of the 98% confidence interval of an assessed probability (left). The histogram at the right summarizes
data from 21 different studies in which, using a variety of methods, people were asked to produce probability
distributions on the value of well known quantities (such as the distance between two locations), so that their
distributions can be subsequently checked against true values. The number of respondents in these studies
average was just over 700. The results clearly demonstrate that people are systematically
overconfident (i.e., produce subjective probability distributions that are too narrow) when they make
such judgments. Data are from Morgan and Henrion (1990) who, in compiling it, drew in part on
Lichtenstein et al. (1982). Portion of figure and caption from Morgan et al. (2009)
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overconfidence operate) what it can do is work systematically to try to identify and minimize
such problems.

Since the early 1990s my colleagues and I have conducted four detailed expert
elicitations in which we have obtained judgments from leading climate and ecosystem
scientists about uncertainty in the value of a variety of key climate variables and impacts
(Morgan and Keith 1995 and Morgan et al. 2006; Zickfeld et al. 2007 and 2010).

One hopes that research will lead to a reduction of uncertainty and at least some decision
analysts appear to assume that this will always be the case. However, our respondents were all
experienced scientists who understand that often research identifies unforeseen complexities,
and thus, at least for a while, can increase rather than decrease uncertainty. Thus, for example, in
Morgan and Keith (1995) we asked respondents to assess the probability that their uncertainty
about the value of climate sensitivity would grow by 25% or more after a 15-year
program of research at 1-billion $/year. The responses we obtained ranged from 0.08
to 0.30 (average value of 0.19). We have found similar results in our more recent
elicitations. While such results are not surprising to experienced scientists, they do come as a
surprise to some analysts and decision makers who view research as always reducing uncertainty.

Quantitative expert elicitation can be a very useful tool to identify and display the divergence
of opinion within a field. It can do so with much greater clarity than qualitative statements of the
sort produced by IPCC writing teams. For example, Fig. 4 from Zickfeld et al. (2007) shows
that at the time of the elicitation a clear split in opinion existed among ocean scientists about
whether there was any significant probability that plausible levels of warming might start the
AMOC on a course leading to collapse. At about that same time, the IPCC fourth assessment
concluded, “Europe, particularly its north-western parts, owes its relatively mild climate

Fig. 3 Time series of reported experimental values for the speed of light over the period from the mid-1800’s
to the present (black points). Recommended values are shown in gray. These values should include a
subjective consideration of all relevant factors. Note, however, that for a period of approximately 25 years
during the early part of the last century, the uncertainty being reported for the recommended values did not
include the current best estimate. Similar results were obtained for recommended values of other basic
physical quantities such as Planck’s constant, the charge and mass of the electron, and Avogadro’s number.
For details, see Henrion and Fischhoff (1986) from which this figure has been redrawn. Caption from
Morgan et al. (2009)
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partly to the northward heat transport by the Atlantic MOC… Most models suggest increased
greenhouse gas concentrations will lead to a weakening of the MOC…which will act to
reduce the warming in Europe. However, in the light of present understanding, it is very
unlikely to reverse the warming to cooling.” Since the IPCC’s predictive statement is
about the temperature of Europe, not the strength of the AMOC, it is not a direct
contradiction of the results in Fig. 4, but the two clearly convey quite different
impressions. Similarly, an assessment conducted on aerosol forcing (Morgan et al. 2006)
suggests a much greater diversity of opinion about possible uncertainty among experts in
that field than is suggested by the summary plot in the IPCC fourth assessment, Fig. 5.

2 Climate impacts and abatement

The same methods of expert elicitation that we have applied to climate science can also be
applied to assess uncertainty about the impacts of climate change and the likely efficacy and
cost-effectiveness of technologies and strategies to reduce future emissions.

Figure 6 shows results obtained in an assessment conducted in 1999 of the impact of a
2xCO2 climate change on above ground and below ground biomass in boreal and in
tropical forests (Morgan et al. 2001). In the years since that assessment was conducted,
considerable progress has been made in modeling ecosystem response to climate change.
However, the fact that at the time we conducted this assessment a set of leading ecosystem
experts were not in agreement about the sign, let alone the magnitude, of the impacts,
suggests that one should be cautious about reaching consensus too rapidly based upon the
results from one or another leading ecosystem model since such models may not include a
variety of the processes and uncertainties (pests, fire, etc.) that our respondents included
qualitatively in their thinking when they participated in the elicitation.

In the context of technology for emissions abatement, there are a growing number of
efforts to use expert elicitation. Figure 7 shows a result that we obtained from 18 experts

Fig. 4 Assessment by 12 experts that the Atlantic Meridional Overturning Circulation will have irreversibly
begun a collapse (defined as >90% decease in strength) as a function of average global temperature by the
year 2100. The results clearly display a divergence of opinion within the expert community, with four experts
assessing the probability of collapse to be quite high and the balance judging the probability of collapse to be
small or even zero. Figure from Zickfeld et al. (2007)
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who assessed the likely future cost and performance of 26 current and emerging solar PV
technologies (Curtright et al. 2008). These results allowed us to conclude:

Given…the low probabilities that many experts assess of meeting a price of
$0.30/Wp by 2050, and the wide dispersion in their assessments of efficiencies

Fig. 5 Comparison of probability distributions (displayed as box plots) elicited from 24 experts assessing the
total radiative forcing from aerosols (left) as compared with estimate of the value of such forcing as assessed in
the IPCC fourth assessment (right). Note the significant diversity of opinion displayed across the set of 24
experts, and the fact that the range of value that some of these experts considered plausible extends outside the
range suggested by the IPCC summary plot. Figure from Morgan et al. (2006) and from IPCC (2007)

Fig. 6 Box plots summarizing elicited expert subjective probability distributions of (a) standing biomass and
(b) soil carbon in minimally disturbed northern forests at least 500 years after a specified 2xCO2 climate
change. When not otherwise noted, results are for North America. Horizontal lines display the full range of
the distributions. Vertical tick marks indicate the 90% confidence intervals. Boxes denote the 50% confidence
intervals. Solid points indicate means, open circles indicate medians. The shaded triangles indicate the
estimated range of response for a doubling of CO2 alone, without any accompanying climate change. Note
that the set of experts do not even agree about the sign of the impact. The figure and much of the caption are
from Morgan et al. (2001) which also reported a similar plot for tropical forests that reports smaller impacts
but an even more striking disagreement about their sign
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and prices, we conclude that PV may have difficulty becoming economically
competitive with other large-scale, low-carbon bulk electricity options in the
next 40 years. At the same time, it seems likely that PV will continue to expand
into a variety of smaller scale markets. Of course, past efforts to make technical and
energy-related predictions have often missed the mark (Smil 2003; Stern 1982).
Unanticipated technical developments could similarly overturn the judgments herein,
but before R&D reduces uncertainties, massively subsidized deployment of existing
technology is arguably not the best way to increase the odds of such an outcome.
(Curtright et al. 2008)

Fig. 7 Probability of achieving module prices of (top) $1.20/Wp or less and (bottom) $0.30/Wp or less by
2030. The results shown here are for all 26 current and emerging PV technologies and for all 18 experts,
regardless of expertise level in a given technology. The circle diameter represents the number of experts who
responded with the given probability for the given PV technology; the smallest circle corresponds to one
expert, the largest corresponds to eight in both graphs. Figure and caption are from Curtright et al. (2008)
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Today groups at the Kennedy School at Harvard, at the Fondazione Eni Enrico Mattei in
Italy, at the University of Massachusetts in Amherst, Massachusetts and at Lumina Systems
in California are engaged in studies using expert elicitation to assess the potential of, and
research needs for, a wide range of future low energy technology.

3 Integrated and other assessment

My colleagues and I were among the first to call for the development of integrated
assessment models to study climate change and its impacts, and to explore the implications
of a variety of abatement strategies (Rubin et al. 1991–92; Lave et al. 1992; Dowlatabadi
and Morgan 1993; Morgan and Dowlatabadi 1996). Between 1991 and 2001, Hadi
Dowlatabadi led a team at Carnegie Mellon that built the Integrated Climate Assessment
Model called ICAM. This model was constructed in the Analytica® software environment
(Lumina 2011). From the outset, because we believed that describing and analyzing
uncertainty should be the central focus of climate assessment, ICAM operated as a
stochastic simulation that produced all of its outputs in the form of full probability
distributions as a function of time and for different regions of the world.

We believed that some of the largest sources of uncertainty did not arise from uncertain
coefficient values (although all the key coefficients were treated probabilistically).
For this reason we populated the sub-parts of ICAM that dealt with climate,
impacts and policy with a range of plausible alternative model functional forms
(similar to what others term structural, systematic or epistemic uncertainty). We not only
included alternative functional relations among key variables, we also included alternative
normative assumptions about things that we knew would be important, such as time preference
(Schelling 1995; Frederick et al. 2002; Heal 2009). We did this by adding a variety of logical
“switches,” in both the natural science and social science and behavioral parts of the model
that allow the user to run the model with different combinations of structural and normative
assumptions.

Several insights became quickly apparent (Morgan and Dowlatabadi 1996). For
example, we found that across a wide range of assumptions no single climate policy was
optimal for all parts of the world. Our most important finding was that, depending upon
how we set the switches in ICAM, we could obtain a very wide range of results. It became
obvious to us that the idea of framing integrated assessment in terms of a search for an
“optimal” global climate policy, as opposed to looking for widely robust strategies, simply
makes no sense. Unfortunately, for the past 15 years much of the integrated assessment
community has gone merrily on seeking globally “optimal” policies.

4 Scenarios and their limitations

Besides integrated assessment modeling, scenario analysis has been widely adopted as a
strategy for use in assessing the impacts of climate change. It is generally argued that
scenarios are not intended to represent predictions about the future but rather serve as a tool
to help people imagine a range of alternative futures. Sometimes scenarios are effective in
achieving this objective. However, David Keith and I have argued (Morgan and Keith 2008)
that too often rather than expanding peoples’ judgment about the range of uncertainty about the
future, scenario-based analysis leads to systematic overconfidence and to an underestimation of
the range of possible future outcomes. This is because, through the operation of the cognitive
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heuristic of “availability,” the more detail that one adds to the story line of a scenario, the more
probable it will appear to most people, and the greater the difficulty they likely will have in
imagining other, equally or more likely, ways in which the same outcome could be
reached. (For more on the role of cognitive heuristics, the ubiquity of overconfidence,
and their implications in the context of climate change, see Morgan et al. 2009.)

Recent years have seen raging arguments about whether one should attach probabilities
to scenarios. In this connection, Keith and I have noted:

Schneider (2001) and others have argued that without probabilities scenarios are of
little value to climate scientists and impact assessors who are trying to understand
how the climate is likely to evolve over the coming centuries…If we think of a
scenario as describing a series of points over time through a multi-dimensional space
of future possible socioeconomic conditions, then the developers of most of these
scenarios are correct (but for the wrong reasons) that no probability should be
assigned to scenarios. Viewed this way, scenarios cannot be assigned probabilities
since, in any probability distribution over a continuous variable, the probability that
attaches to any specific point value is zero. However, statements about the probability
of scenarios can be made if the scenarios are specified using ranges of values for the
socio-economic variables of interest. The probability that global energy use in 2100 is
precisely 1,000 EJ/year must be zero; but it is perfectly sensible to assert under some
set of assumptions, that in 2,100 there is a 20% chance that the value of global energy
use will fall between 800 and 1,200 EJ/year. (Morgan and Keith 2008)

The climate community made progress when it moved from the previous highly detailed
SRES scenarios (Nakicenovic and Swart 2000) to instead develop the much simpler
representative concentration pathways (Moss et al. 2010). However, there is now a move by
many in the assessment community to construct detailed socio-economic story lines for
each of these. In this process, not enough attention is being paid to first thinking carefully
about why this is being done, or about what assessors or decision makers will do with all
the detail that is being added.

Two alternative strategies, which in my view have received way too little attention, are
simple parametric or “what if” analysis, and backwards analysis. In backwards analysis,
rather than run forward in the causal direction from emissions, to climate change to impacts,
one starts with outcomes of particular concern and then work backwards to identify a small
number of things that, if they happen, would be most problematic. Several of us tried very
hard to promote such a strategy in the first US National Assessment (2000). However, as
we noted in a subsequent evaluation of that experience:

There was a strong inclination in most groups to approach the problem of assessment
in a front-to-back manner (emissions → climate → impacts), rather than, for example,
identifying key thresholds or nonlinearities in natural and social systems of concern
and working backward to let those drive the work of the climate scientists and the
choices of climates to be examined. At the Washington workshop on learning from
the Assessment, the breakout group that considered this issue noted that there is “a
big difference between driving an assessment from possible climate futures all the
way to impacts as opposed to starting with people trying to manage messes in the
world…” While such a threshold or parametric analysis may make sense to experienced
policy analysts, it is clear from the National Assessment experience that such an approach
is not readily comprehended by most nonexperts and does not come naturally to many
natural and social scientists who are used to working forward through a causal chain.
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Thus, we conclude that an important element of preassessment guidance papers, and a
training program, should be a tutorial in such methods, illustrated with concrete examples
drawn from previous applications. (Morgan et al. 2005)

5 Uncertainty about the correct functional relationships among key variables

Uncertainty about the functional form that correctly characterizes the relationship among
key variables in a model of physical, biological or social processes arises again and again in
the context of climate change and its impacts. As explained above, in ICAM, we
incorporated a range of alternative functional relationships in our models and explored the
implication of switching between them. An alternative strategy is to model each plausible
functional relationship, and then weigh each in proportion to the probability that one attaches to
each being a correct description of reality. I am not aware of this approach having been adopted
in the context of climate change. However, Evans and colleagues have applied such a strategy in
the context of assessing carcinogenic potency (Evans et al. 1994a and 1994b) and
Budnitz and colleagues have adopted a similar strategy in the context of assessing seismic
risk (Budnitz et al. 1995 and 1998).

These strategies basically convert uncertainty about model functional form into uncertainty
about a model parameter – namely the Bayesian or subjective probability that various
alternative functional relationships correctly represent physical reality. Clearly, if the result is to
serve as input to a non-liner model, it is better to keep the alternatives separate before running
them through themodel, reserving the possibility of combining until after making the non-linear
transformation. However, in many cases, it may be best not to combine even then, but rather to
use the range of results to gain improved insight for decision making.

Such strategies become less and less feasible as uncertainty grows. For example, while
the physics of the ocean–atmosphere system will likely remain quite stable for centuries, it
is far less clear that the functional relationships that describe socio-economic relationships
will remain stable for similar periods. Some years ago, when I posed the problem of how
best to model in such circumstances to a leading Bayesian philosopher, his response was
that I should construct an ensemble of all the possible alternative models that might apply
and then construct a probability distribution across that full ensemble of models. While this
advice may be philosophically reasonable, it also carries the impractical implication that the
less one knows, the more complex one’s model should become. As an alternative, Casman,
Dowlatabadi and I have suggested that as uncertainty grows one should progressively move
from detailed models, to order-of-magnitude models, and ultimately on to simple bounding
analysis (Casman et al. 1999).

6 Selecting the right tools and the need to develop new ones

While doing a good job of characterizing and analyzing uncertainty (Morgan and Henrion 1990),
and of communicating uncertainty (Morgan et al. 2002), is very important, perhaps even more
important is selecting the right tools to do climate-related assessment. Most of the conventional
tools of policy analysis implicitly assume that:

1. There is a single (public-sector) decision maker who faces a single problem (in the context
of a single polity);

2. Values are known (or knowable), static, and exogenously determined;
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3. The decision maker should select a policy by maximizing expected utility;
4. The impacts involved are of manageable size and can be valued at the margin;
5. Time preference is accurately described by conventional exponential discounting

of future costs and benefits;
6. The system under study can reasonably be treated as linear;
7. Uncertainty is modest and manageable.

As a number of us first articulated some years ago (Morgan et al. 1999), a useful way to
think about the issue is illustrated in Fig. 8. Virtually all the classic conventional tools of
policy analysis assume that one is addressing problems that lie near the origin in this space.
However, many climate assessment issues lie far from the origin in this space. The
implication of this is that before adopting and using classic tools for policy analysis to
address such problems, one should think carefully about whether the assumptions upon
which those tools are based remain valid.

Despite years of modeling that seeks an optimal global climate policy, it should be
obvious to all that what is optimal for the Inuit of Northern Canada, the Quechua and
Aymara-speaking peoples of the Andes, or the Anglo population of Australia will not be the
same. How those, or dozens of other communities, will value goods, services and
ecosystems 50 to 100 years from now is also deeply uncertain, and likely to depend in
critical ways on cultural and path-dependent processes. For someone like me, who grew up
in central New Hampshire, and would like my great-grandchildren to be able to enjoy a
forest made up of white pine, birch, beach and sugar maple, the sort of change implied by
Fig. 9, is anything but “marginal.”

Fig. 8 Most classic tools for policy analysis have been developed to address problems that lie near the origin
in this space. Many problems involving climate change lie far out from the origin, with the result that
before adopting and using classic tools for policy analysis to address those problems, one should
think carefully about whether the assumptions upon which they are based remain valid. Figure
redrawn from Morgan et al. (1999)
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In recent years, time preference has become a critical focus of debate in the assessment
community. Many, but certainly not all, in the economic community have argued that this
issue should be addressed using conventional exponential discounting and market rates. For
example, in a slightly different context Viscusi (1995) writes:

Chief among the results is that the estimated implicit rate of discount that workers use
in valuing death risks does not differ in a statistically significant manner from the
prevailing rates of return in financial markets during the time periods under study.
Thus, there is no evidence to indicate that we should use a different rate of discount
when weighting the long-term health benefits of policies that affect life extension as
compared with other benefit and cost components that these policies may have. An
appropriate real rate of return based on market interest rates is a reasonable starting
point for this procedure. (Viscusi 1995)

There is a considerable literature in behavioral social science that addresses issues of
time preference. In an unsuccessful attempt to inject some alterative thinking into the
climate assessment community, our NSF-supported Climate Decision Making Center
supported a review of that literature by Frederick et al. (2002). Figure 10 displays the range
of results they found in reviewing published experimental studies. I sent copies of the
resulting refereed paper to many involved in the fourth IPCC assessment, although as best I
can tell it had no impact.

Fig. 9 Estimate from the North
East Climate Impact Assessment
of how the climate of New
Hampshire may change over the
course of the coming century.
Clearly, the changes implied by
such a shift in climate are
anything but “marginal.” Figure
from Frumhoff et al. (2007)
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In my view, the debate should not be over what coefficient to use in exponential
discounting. Rather, we should be focused on the much more fundamental question of what
strategies and functional forms we should be adopting with respect to valuing a variety of
future changes that will profoundly impact future societies and ecosystems. Heal (2009) has
taken an important next step in advancing discourse on this topic.

7 A few conclusions

The climate community has been a leader in dealing with uncertainty about coefficient
values, and as Morgan et al. (2009) makes clear, has also made contributions to dealing
with model uncertainty. More work is needed on both these fronts.

However, today, the even bigger challenge is for the assessment and decision making
communities to assume a similar leadership role in developing and demonstrating new,
more appropriate analytical methods and tools. Until that happens, conclusions reached
about how to value the impacts of climate change, and how best to address climate
mitigation, adaptation, and other responses, will be burdened by deep, if unstated,
uncertainty.

In that connection:

1. Good methods are available to deal with uncertainty about the value of key
coefficients. However, these methods have not yet seen adequate use in climate
assessments, such as those conducted by the IPCC. It would not be difficult to do this.
For example, once they have read the relevant literature, but before they begin
discussions to reach a group consensus, each member of an authoring team could be
asked to engage in an expert elicitation about the value of a few key coefficients. The
range of results could then serve as an input to inform the process of developing a
group consensus judgment.

2. In contrast to methods to explore uncertainty about the value of key coefficients,
methods to address uncertainty about the functional form that most accurately describes
the relationship among key variables are still in their infancy and are clearly not ready
for use in contexts such as IPCC assessments. There is an urgent need for research to
further develop and demonstrate such methods.

3. Those of us who perform impact and policy analysis need to think much more carefully
before we simply pick up conventional tools such as benefit-costs analysis and exponential
discounting and apply them to climate problems. More generally, we need to devote much
greater attention to research that develops and demonstrates new, more appropriate
methods to address problems that lie outside the “conventional zone” in Fig. 10.

Fig. 10 Published values of
experimentally determined
discount factor by year of publi-
cation. Figure redrawn from
Frederick et al. (2002)
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4. Just as the USGCRP did a good thing in promoting a more systematic consideration of
uncertainty by commissioning CCSP 5.2 on “Best practice approaches for character-
izing, communicating, and incorporating scientific uncertainty in decision making”
(Morgan et al. 2009), in a few years, once the research community has made more
progress, similar best practice reviews of issues such as time preference and other
issues that arise when performing analysis of problems that lie outside the
“conventional zone” in Fig. 10, should be commissioned.
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