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A B S T R A C T

The El Niño Southern Oscillation (ENSO) affects weather around the globe, particularly in regions where de-
veloping countries typically lie. These countries are known to be most vulnerable to weather anomalies, and
ENSO thereby has the potential to influence their economic growth. In this study, we investigate the effect of
ENSO on economic growth in 69 developing countries, using annual data from 1961 to 2015. We find regime-
dependent nonlinearity in the growth response to ENSO shocks. An El Niño event, equivalent to a 1 °C deviation
in sea surface temperatures in the Niño3.4 region of the equatorial Pacific, results in one-to-two percent annual
growth reduction during the El Niño regime, but the effect is absent during the La Niña regime. In addition, we
find that the effect of El Niño is twice-as-large in the tropics relative to temperate areas, and particularly pro-
nounced in Africa and Asia-Pacific. The findings of this study have two important implications. From the
modeling standpoint, we find that the growth impacts of ENSO shocks are nonlinear, and vary across regions and
climatic zones. From the policy-making standpoint, our findings suggest opportunities for short-term adjust-
ments to climate shock management and international aid programs, depending on the existing state and the
intermediate-term patterns of the ENSO cycle.

1. Introduction

Throughout the course of human history, climate has played an
important role in the development of nations and the demise of civili-
zations (Acemoglu et al., 2001; Haug et al., 2003; Tsonis et al., 2010).
The relationship between weather and socio-economic variables is in-
trinsic (Raddatz, 2007; Noy, 2009; Burke et al., 2015a), and is parti-
cularly evident in countries that are located closer to the equator. This
is, in part, due to more frequent weather extremes in this geographic
region (Masters and McMillan, 2001; Sachs, 2001; Hsiang, 2010; Dell
et al., 2012, 2014), but also because these countries tend to be more
dependent on sectors that are climate-sensitive (e.g., agriculture or
tourism), and in general are poor “shock absorbers” (Loayza et al.,
2007; Noy, 2009).

Incidentally, a climate phenomenon known as the El Niño Southern
Oscillation (ENSO) influences weather patterns in the tropics, more so
than in the temperate regions. ENSO is the greatest source of inter-
annual climate variability, owing to its strong presence in the Pacific
and transmissions across the world (Zebiak et al., 2015). These trans-
missions—also referred to as teleconnections—relate the climatic

conditions in the Pacific with weather anomalies at large distances (see
Appendix Fig. A1 for illustration of ENSO–induced global weather
anomalies). The two extreme phases of this climate phenomenon are
known as El Niño (the warm phase) and La Niña (the cool phase), which
re-occur irregularly every three-to-seven years to form the ENSO cycle.
El Niño events are characterized by weakening trade winds, which ty-
pically cause droughts in Southeast Asia and Oceania and wetter-than-
usual conditions over the western tier of the Americas. The trade winds
intensify during La Niña events, resulting in weather conditions that are
opposite to those experienced during El Niño events. ENSO tele-
connections, moreover, extend beyond the Pacific region, and influence
weather in parts of Africa, Asia, and the eastern tier of the Americas.

There are multiple channels through which ENSO may affect eco-
nomic growth, and reasons to believe the impact is more significant in
the developing world. ENSO causes anomalous temperatures and pre-
cipitation, which can manifest into extended episodes of droughts or
floods around the globe (Dilley and Heyman, 1995; Iizumi et al., 2014;
Hsiang and Meng, 2015). To the extent that weather is the most im-
portant factor in agricultural production (Lobell and Field, 2007; Lobell
et al., 2011), the obvious link in the ENSO-growth relationship is

http://dx.doi.org/10.1016/j.gloenvcha.2017.05.007
Received 15 January 2017; Received in revised form 17 May 2017; Accepted 30 May 2017

⁎ Corresponding author.
E-mail address: david.ubilava@sydney.edu.au (D. Ubilava).

Global Environmental Change 45 (2017) 151–164

Available online 26 June 2017
0959-3780/ Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09593780
http://www.elsevier.com/locate/gloenvcha
http://dx.doi.org/10.1016/j.gloenvcha.2017.05.007
http://dx.doi.org/10.1016/j.gloenvcha.2017.05.007
mailto:david.ubilava@sydney.edu.au
https://doi.org/10.1016/j.gloenvcha.2017.05.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gloenvcha.2017.05.007&domain=pdf


agriculture, which remains to be a nontrivial component of economies
in the developing world. In addition, and related to the aforementioned,
ENSO influences real prices of some key primary commodity groups
(Brunner, 2002; Ubilava and Holt, 2013; Cashin et al., 2017; Ubilava,
2017), and thus can impact the terms of trade of developing countries.
Both commodity price inflation and terms of trade are important factors
in economic growth (Barro, 1996). Furthermore, a combination of the
food shortage and price spikes can increase an incidence of protests and
riots in developing countries that rely on imports (Bellemare, 2015;
Hendrix and Haggard, 2015), while commodity price downturns may
facilitate civil conflicts in the commodity-exporting regions (Brückner
and Ciccone, 2010). Civil conflicts and political instability, which may
be attributed to ENSO shocks (Hsiang et al., 2011), can also slow down
economic growth (Barro, 1991). To summarize, agricultural production
is not be the only link through which ENSO can impact economic
growth. The corollary is that economic growth in a region can be linked
to ENSO shocks, even if they do not directly influence weather patterns
in this region. While there can be multiple direct and indirect channels
that may relate ENSO events to economic growth, the overarching goal
of this study is to examine the overall impact of this climate phenom-
enon on growth in developing countries.

To date, several studies have attempted to unveil causal linkages
between ENSO and economic growth. Brunner (2002) examined the
effect of the ENSO anomalies on international commodity prices and
economic indicators of the G7 countries, finding up to one-half of a
percentage point positive impact on aggregated GDP growth in re-
sponse to an El Niño shock. Berry and Okulicz-Kozaryn (2008) studied
U.S. inflation and GDP growth responses to ENSO fluctuations, finding
no evidence of causality; thus prompting the conclusion that the ENSO
signals are either lost in the intricacies of the large economy or are
simply absent. Laosuthi and Selover (2007), in accordance with port-
folio theory, hypothesized that less diversified or geographically
smaller countries would be more likely to exhibit a greater response to
ENSO-induced climatic shocks. They found little evidence of ENSO
being a significant driver of business cycles during 1950–2000 in a
majority of considered countries—notable exceptions include South
Africa, Australia and, to some extent, India and Malaysia. Most re-
cently, Cashin et al. (2017) examined the impact of El Niño events on
macroeconomic variables of 21 individual countries/regions between
1979 and 2013. In accord with the aforementioned studies, they found
that directly affected countries, such as Australia, Chile, Indonesia,
India, Japan, New Zealand and South Africa, experience a brief slow-
down in economic activity in response to El Niño shocks, while several
other developed economies, such as the United States and European
region, manifest a growth-enhancing response.

While the previous studies have made notable contributions to the
climate-growth literature, particularly in relation to the ENSO cycle,
more work needs to be done to further unveil existing linkages between
this climate phenomenon and growth in the developing world. The
present study contributes to the existing body of research in several
directions. First of all, we analyze the ENSO effect in 69 developing
countries in Africa, Asia and the Pacific, and Central and South
America—a vast majority of which have yet to be studied in this con-
text. Second, we allow for heterogeneous effect of ENSO across regions.
That is, the economic importance and statistical significance of the
ENSO effect can vary across regions, and this study allows for such
variation. Finally, in this study we emphasize the potentially asym-
metric nature of positive and negative ENSO shocks. We argue that El
Niño and La Niña events of equivalent scale need not cause a growth
response of opposite sign and similar magnitude. For example, the
downside impact of a dry event is likely to be larger than the upside
impact of a wet event. In fact, wet events themselves can be damaging
to growth because of the increased likelihood of flooding and storm
activity. The modeling framework of this study allows for such non-
linearity in the ENSO-growth relationship.

Using an (unbalanced) panel of annual data spanning the

1961–2015 period, this study finds that ENSO events have hetero-
geneous and nonlinear impacts on per capita GDP growth rates (this is
what we refer to as economic growth in this study) in developing
countries. We find evidence of heterogeneity in the impact of ENSO
shocks across climatic zones as well as continents. The effect of ENSO
events is approximately twice-as-large in the tropics compared to the
temperate climatic zones. ENSO events detract from the economic
growth of developing countries in Africa and Asia-Pacific (including
large economies of China and India). In Africa, back-to-back El Niño
events appear to be particularly damaging. Similarly, back-to-back La
Niña events can significantly detract from growth in Asia-Pacific. By
explicitly focusing on developing countries, this study adds con-
siderably to the body of literature that has focused on large economies
of developed countries (Brunner, 2002; Berry and Okulicz-Kozaryn,
2008), or a relatively small group of developing countries (Laosuthi and
Selover, 2007; Cashin et al., 2017). The findings of this study are im-
portant for, at least, two reasons. First, from the modeling standpoint,
the effect of ENSO shocks are found to vary in magnitude and direction
across different regions of the world. Second, in terms of policy im-
plications, there may be an opportunity for short-term adjustments to
international aid programs, depending on the existing state and the
expected intermediate-term pattern of the ENSO cycle.

2. The model

To begin, consider a simple econometric representation that relates
economic growth to the state of ENSO. Let yit be the growth rate of
country i in period t; and let xt = (xt, xt−1)′ be a vector of current and
lagged levels of the sea surface temperature (SST) anomaly—a proxy
continuous variable depicting the state of ENSO.1 The relationship can
be represented by:

= ′ + ′ + +θ x δ dy α ε ,t i iit it it (1)

where i = 1, …, N, and t= 1, …, T; θ is a set of parameters depicting
the contemporaneous and lagged effect of ENSO; dit is a country-specific
vector of deterministic trend or lagged dependent variables, and δi is
the associated parameter vector; αi combines country-specific un-
observed effects that, moreover, may be correlated with xt or dit. For
example, observations in the data may not be missing at random, rather
selected countries may be present in the sample during different ENSO
phases (Hsiang et al., 2011); also, trends and dynamics in growth rates
may be dependent on time-invariant characteristics of a country. Fi-
nally, εit is an error term.

We use both contemporaneous and lagged ENSO realizations as
explanatory variables to follow the rationale—suggested by Hsiang and
Meng (2015)—that an ENSO event can extend beyond a calendar year,
and may also be temporally displaced (see, also, Hsiang, 2016). This
modeling setup, moreover, assumes that the SST anomaly is weakly
exogenous in the sense that ENSO can contemporaneously impact
growth, but the converse is not true. This assumption—which also
serves as an identification condition—is hardly controversial, and is
consistent with previous studies (e.g., Brunner, 2002; Hsiang and Meng,
2015). The foregoing discussion also implies that inclusion of a lagged
independent variable in the model is motivated by theoretical and
statistical reasons, and is not done for the purposes of identification (for
further analysis, and caveats associated with the use of lagged in-
dependent variables due to endogeneity, refer to Bellemare et al.,
2017).

Note that Eq. (1) does not control for any time-varying economic
variables. While a number of factors influence the growth rate in a

1 We apply levels of the SST anomaly—rather than their log-transformed variant-
s—primarily to facilitate the interpretation of the associated parameters, which depict the
effect of a 1 °C change in SST on the growth rate. Moreover, given that SST anomalies are
measured as deviations from the long-run mean, they can take negative values, and the
log-transformation is not directly applicable. See the Data section for further details.
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given economy—inflation, exchange rates, or political instability, to
name a few—care is needed when deciding whether or not to include
those in the regression (see, e.g., Hsiang et al., 2013; Burke et al.,
2015b; Acharya et al., 2016). A case in point is the so called “bad
control”—a variable that itself is an outcome of the experiment at hand
(Angrist and Pischke, 2008). In the context of the current exercise, an
ENSO shock represents a “natural experiment” that impacts economic
growth through multiple channels. These can involve country-specific
factors as described above, as well as common factors, such as inter-
national commodity prices, global business cycles, etc. Controlling for
variables of this nature runs the risk of introducing bias, because they
are endogenous and therefore may be affected by confounding variables
(see, also, Acharya et al., 2016). Moreover, we could possibly estimate a
coefficient describing the ENSO effect that has been deteriorated and
has no practical interpretation, because some of explanatory power of
ENSO has been assigned to another variable. At the extreme, if we
happen to incorporate all the factors through which ENSO affects
economic growth, the coefficient describing the ENSO effect will be-
come indistinguishable from zero, prompting to draw a false conclusion
about the relationship between this climate phenomenon and economic
growth (see, also, Hsiang et al., 2013). On the other hand, if we fail to
control for factors that impact growth but are uncorrelated with ENSO,
while we would forfeit efficiency of parameter estimates, we would not
introduce omitted variable bias. As our ultimate goal is to estimate the
overall (direct and indirect) impact of ENSO shocks on economic
growth, there will be little benefit, and likely more harm, in controlling
for additional factors in the model.

The model, as specified in Eq. (1), assumes linearity and homo-
geneity in the ENSO effect. These assumptions imply that the economic
growth responses to positive and negative 1 °C deviations in SST (i.e.,
the El Niño-like and the La Niña-like events of equal magnitude) are
mirror images of each other; and that the effect is similar across all
countries in consideration. Neither of these need to be the case. Re-
sponses to ENSO shocks are in fact very likely to be asymmetric and
vary across countries. First, ENSO cycles tend to follow an asymmetric
pattern. In particular, El Niño events develop somewhat unexpectedly,
whereas La Niña events typically follow the previously realized El Niño
events (Hall et al., 2001; Ubilava and Helmers, 2013). The growth effect
of ENSO shocks—due to a number of intermediary channels—can
therefore be very different during El Niño and La Niña phases. Second,
the effect of ENSO events on weather in different parts of the world is
also nonlinear (Cai et al., 2010). That is, the El Niño and La Niña events
do not necessarily manifest into the opposite weather patterns (see,
also, Appendix Fig. A2). Finally, any weather anomaly may be dama-
ging. For example, both positive and negative SST anomalies can pos-
sibly result in reduced yields in major crop-producing regions (Legler
et al., 1999; Mason and Goddard, 2001; Iizumi et al., 2014; Anderson
et al., 2017).

To examine the asymmetric effect of ENSO, we interact the vector of
current and lagged SST anomalies, xt, with Heaviside indicators, I
(xt−1 < 0) and I(xt−1 ≥ 0), where I(·) takes on 1 if the condition inside
the parentheses is satisfied, and 0 otherwise. To reliably identify and
estimate the country-specific parameters associated with ENSO, we
would need a longer time series that captures a large enough number of
ENSO cycles (see, also, Chudik et al., 2017). Instead, we opt for a
middle ground, and examine region-specific heterogeneity of the ENSO
effect. The following augmented version of Eq. (1) then accounts for
potential nonlinearity and heterogeneity in the ENSO effect:

= ′ < + ′ ≥ + ′ + +− −β x γ x δ dy I x I x α ε( 0) ( 0) ,t t t t i iirt 1 1 it irt (2)

where r= 1, …, R denotes a region, such that R ≪ N. So, for a given
region r, the parameter vector β depicts the contemporaneous and
lagged effects of SST anomalies given a La Niña event in the previous
period, and the parameter vector γ depicts the contemporaneous and
lagged effect of SST anomalies given an El Niño event in the previous

period; the remaining variables and parameters are as described above.

3. Data

The measure of economic performance in this study is per capita
GDP growth rate. Using per capita data has the advantage of scaling
economic growth to better reflect the standard of living for citizens of
that country. While this measure alone is not enough to fully capture
the multidimensional nature of poverty and development, it is con-
sidered in many cases to be a powerful correlate with development
(Anand and Harris, 1994; Aturupane et al., 1994). We obtained the
economic series from World Development Indicators—the electronic
data portal of the World Bank. In addition to growth data, we also
obtained (i) agriculture value added (% of GDP), and (ii) employment
in agriculture (% of total employment). These variables are to serve as
proxies for individual country vulnerability to ENSO-induced weather
anomalies.

In selecting the countries, we sourced all those that the World Bank
classifies as low-income, lower-middle-income, or upper-middle-income
economies, and at no point were classified as high-income economies
between 1987 and 2015. In addition, these countries had at least 30
observations between 1981 and 2015, although the time-range of the
analysis spans from 1961 to 2015. Notably, these data can be in-
accurate, and are to be considered as a proxy, at best (or an educated
guess, at worst).2 Such measurement error in the dependent variable
can inflate standard errors and thus affect inference. To mitigate the
issue, we omitted countries with unusually large growth rate volatility
(i.e., those with the growth rate standard deviation exceeding 10%, or
with a growth rate greater than 35% in any given period). This left a
total of 69 countries for analysis. Table 1 presents some key statistics
describing the composition of growth rates and aforementioned vul-
nerability measures. Appendix Table A1 offers a more complete,
country-specific picture of these variables.

We use SST anomalies in the Niño3.4 region as the measure of
ENSO intensity. The index is sourced from the electronic database of the
Climate Prediction Center at the National Oceanic and Atmospheric
Administration. The SST anomaly represents the deviations in SST

Table 1
Descriptive statistics of selected variables.

Countries n Mean s.d. Min Max

Average growth rate
All 69 1.9 1.5 −1.5 6.9
Tropical/Humid 39 1.8 1.4 −1.5 4.9
Temperate/Arid 30 2.0 1.6 −0.7 6.9
Africa 38 1.4 1.4 −1.5 5.5
Americas 16 1.8 0.8 0.5 3.1
Asia-Pacific 15 3.4 1.4 1.6 6.9

Average agriculture value added (% of GDP)
All 69 24.8 13.1 5.5 52.8
Tropical/Humid 39 23.9 13.0 6.5 52.8
Temperate/Arid 30 26.0 13.2 5.5 50.7
Africa 38 28.3 13.4 5.5 52.8
Americas 16 13.6 5.1 6.5 23.4
Asia-Pacific 15 27.9 11.7 8.8 50.7

Average employment in agriculture (% of total employment)
All 55 38.5 21.0 5.1 83.6
Tropical/Humid 32 37.9 21.4 8.0 77.4
Temperate/Arid 23 39.5 20.9 5.1 83.6
Africa 25 41.7 22.8 5.1 83.6
Americas 16 21.9 10.6 8.0 44.0
Asia-Pacific 14 51.9 14.0 20.8 72.3

Note: n denotes the number of countries within each group; the rest are descriptive sta-
tistics in percentage terms.

2 We thank the anonymous referee for emphasizing this caveat.
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(measured in degree Celsius) in the equatorial Pacific in a given month
from its long-run average during the 1980–2010 base period. To obtain
the annualized measure of the SST anomaly, we averaged the monthly
SST anomalies between May of a given year and February of the fol-
lowing year to mitigate the effect of the so called “spring barrier” (e.g.
Sarachik and Cane, 2010; Hsiang et al., 2011). Fig. 1 illustrates the
annualized SST anomaly along with cross-sectionally averaged growth

rates. Notably, the time frame in consideration contains several extreme
ENSO episodes of the recent history, including the well-documented
1997 El Niño, and strong La Niña occurrences of late 1980s and 1990s
(Fig. 2).

Climatic zones, in this study, are identified based the
Köppen–Geiger climate classification (Peel et al., 2007). The country
aggregates of climatic zones were obtained from the online database of
the Center for International Earth Science Information Network
(CIESIN, 2012). In our analysis, the Tropical/Humid group includes
countries that are predominantly (50% or more of the total area) within
Af, Am, Aw, and Cfa zones of the aforementioned classification. The
Temperate/Arid group includes countries that are predominantly in Bw,
Bsh, Bsk, Cs, Cw, Cfb, Cfc zones. Fig. 3 illustrates the geographical
distribution of countries in these two aggregate climatic zones.

4. Estimation and findings

We begin by estimating the benchmark model, which is a basic
linear fixed effects model with homogeneous estimates of the con-
temporaneous and lagged ENSO effect on growth. Table 2 summarizes
the results from five candidate model specifications. These model var-
iants assume homogeneous effect of ENSO, but differ in the way
country-specific trends and short term dynamics are specified. Models 2
through 5 are equivalent to pooled mean group estimator of Pesaran
et al. (1999). Here and in subsequent tables, the parameter estimates
associated with ENSO events are comparable across these five specifi-
cations. We find that contemporaneous and lagged El Niño events on

Fig. 2. Dynamics of the average economic growth and the ENSO cycle. Note: SST
Anomaly is an average of monthly SST deviations over nine consecutive months in the
June–February range; Growth Rate is cross-sectionally averaged growth rates across all
countries in consideration.

Fig. 1. Obtaining the yearly measure of ENSO from monthly
SST anomaly.

Fig. 3. Climatic zones. Note: Tropical/
Humid countries (solid blue) are those with
50% or more of the total area within Af, Am,
Aw, and Cfa zones; and Temperate/Arid
countries (hatched orange) are those with
50% or more of the total area within Bw,
Bsh, Bsk, Cs, Cw, Cfb, Cfc zones of the
Köppen–Geiger climate classification. (For
interpretation of the references to color in
this figure legend, the reader is referred to
the web version of this article.)
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average negatively affect growth rates across the 69 countries
(equivalently, La Niña events have growth-enhancing impact on eco-
nomic growth).

4.1. Nonlinear and heterogeneous impact of ENSO

The foregoing benchmark model is restrictive in two dimensions, as
it assumes growth responds linearly to El Niño and La Niña events and
that the impact is similar across all countries. We first relax the as-
sumption of linearity. That is, we allow the slope estimates during the
El Niño regime—i.e., when the lagged SST anomaly is greater than
zero—to be different from those during the La Niña regime—i.e., when
the lagged SST anomaly is less than zero. Table 3 features such regime-
dependent nonlinear effect of contemporaneous and lagged SST
anomalies on growth.

Under this new specification, SST anomalies are found to have a
considerably large negative impact on economic growth during the El
Niño regime, but the effect is small and statistically insignificant during
the La Niña regime. This is an interesting finding, particularly from the
standpoint of policy-making, and builds importantly upon the current
body of literature (notably, in an extension of their study, Cashin et al.,
2017, find that asymmetries can be a characteristic feature of ENSO-
growth relationship in an array of countries). Indeed, a stronger effect is
unveiled by allowing for asymmetries in the ENSO-growth relationship.

The foregoing model specifications assume the same growth effect
of ENSO events across countries. At the other extreme, we can simply
estimate country-specific equations. To that end, model 1 is effectively
a distributed lag (DL) model with intercept, model 2 is a DL model with
intercept and trend, and models 3, 4 and 5 are autoregressive dis-
tributed lag (ARDL) models of order one, two and three, respectively.
Fig. 4 presents the distribution of growth effects associated with SST
anomalies (see Appendix Fig. A2 for geographical distribution of these
effects).

Several observations are notable. First, the effect is heterogeneous
across countries, but some regional clustering is apparent. Second, the
negative impact, particularly due to back-to-back El Niño or La Niña
events, prevail across countries. Finally, the mean group estimates of
the ENSO effects are comparable with those from the fixed effects
model in Table 3.

4.2. The ENSO impact across climatic zones and geographic regions

As a middle ground between the homogeneous effect at one extreme
and the country-specific effects at the other extreme, we proceed by
estimating the group-specific growth effects of SST anomalies. To begin,
we group countries into the Tropical/Humid and Temperate/Arid re-
gions, as described in Section 3. As previously, we estimate the re-
lationship between economic growth and ENSO in a fixed effects set-
ting. Table 4 summarizes the estimation results.

Two observations are particularly apparent in these results. First,
the tropical countries are most susceptible to ENSO anomalies. Second,
the asymmetries in the ENSO effect are particularly pronounced, as
negative growth effects during El Niño conditions are not matched by
positive growth effects in the wake of La Niña.

To better illustrate these asymmetries, for each country we simu-
lated 1000 paths of growth dynamics by randomly sampling five-year
vectors of historical realizations of the SST anomalies,

= … ′
− +x x x x* ( , , , )t t t t1 1 , and then iterating forward the growth rates

using these data to generate the baseline scenario. Similarly, we gen-
erated two additional paths of growth rates, where in period t, a unit
shock (i.e., 1 °C) was added to or subtracted from the SST realization,
thus forming the El Niño and La Niña scenarios, respectively. The dif-
ference between these scenarios and the baseline scenario, averaged
across 1000 simulated paths, form the expected path of growth rate
dynamics illustrated in Fig. 5. Besides the asymmetries, the figure also
shows that the impact of an ENSO event largely dissipates two years
after the event in all zones.

Alternatively, the effect of ENSO may vary across continents. This
could be due to climatological reasons, as differing proximity to the
Niño3.4 region can result in varying growth effects of ENSO.
Moreover, socio-economic and political factors that characterizes a
given geographic cluster of countries may also result in regional het-
erogeneity of the ENSO effects. To examine this, we grouped countries
into three geographic regions: Africa, Americas, and Asia-Pacific. Table 5
presents the regression results.

In addition to the previously noted ENSO effects, several features of
interest emerge from these parameter estimates. In Africa, back-to-back
El Niño events are growth limiting, but this adverse effect can be mi-
tigated by a La Niña after an El Niño. Similarly, in Asia-Pacific, back-to-
back La Niña events significantly reduce economic growth, but an El
Niño after a La Niña can induce growth in the region. Compared to
these two geographic regions, in the Americas, the growth impact is of
lower magnitude and not statistically significant. Fig. 6 illustrates the
dynamics of these effects using a simulation method outlined pre-
viously.

Table 2
Linear impact of ENSO on growth.

1 2 3 4 5

SSTt −0.269** −0.305** −0.226* −0.227* −0.227*

(0.103) (0.100) (0.096) (0.093) (0.092)
SSTt−1 −0.237* −0.248* −0.159 −0.136 −0.104

(0.114) (0.111) (0.105) (0.104) (0.103)

Fixed effects Y Y Y Y Y
Linear trend N Y N N N
Lag order N N 1 2 3
R-squared 0.004 0.059 0.115 0.149 0.169

Note: values in parentheses are standard errors that are adjusted to account for spatial
autocorrelation of arbitrary form within 2000 km and serial correlation over three years
as per Conley (1999)

* Statistical significance at 0.05 level.
** Statistical significance at 0.01 level.

Table 3
Nonlinear impact of ENSO on growth.

1 2 3 4 5

SSTt|SSTt−1 ≥ 0 −0.763** −0.818** −0.576** −0.616** −0.596**

(0.164) (0.158) (0.148) (0.145) (0.142)
SSTt−1|SSTt−1 ≥ 0 −1.093** −1.046** −0.89** −0.935** −0.855**

(0.296) (0.287) (0.270) (0.265) (0.263)
SSTt|SSTt−1 < 0 −0.135 −0.131 −0.188 −0.177 −0.179

(0.164) (0.157) (0.154) (0.148) (0.147)
SSTt−1|SSTt−1 < 0 0.277 0.192 0.328 0.386 0.383

(0.226) (0.224) (0.210) (0.209) (0.209)

Fixed effects Y Y Y Y Y
Linear trend N Y N N N
Lag order N N 1 2 3
R-squared 0.009 0.065 0.119 0.153 0.173

Note: values in parentheses are standard errors that are adjusted to account for spatial
autocorrelation of arbitrary form within 2000 km and serial correlation over three years
as per Conley (1999).

** Statistical significance at 0.01 level.
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4.3. The ENSO impact through agriculture

As alluded from the very beginning, countries where agriculture
plays an important role in total economic output are likely to be more
susceptible to ENSO shocks. We examine the role of agriculture by in-
teracting the country-invariant SST anomaly with the time-invariant
and country-specific vulnerability measure, the latter being either the

agriculture value added (% of GDP) or the employment share of agri-
culture (% of total employment). We use country-averages of these
measures, partly because agriculture (relative to GDP)—and, to a lesser
extent, temporal labor displacement—can be a function of weather; but
also due to data limitations, as for many countries the lengths of these
series are much shorter than those of growth and SST anomalies.
Finally, to facilitate comparison with parameter estimates from pre-
vious models, these measures are cross-sectionally mean-centered.
Tables 6 and 7 summarize the parameter estimates of models associated
with each of the two vulnerability measures.

In accord with expectations, we find that the growth tends to be
more sensitive to ENSO events in countries with a larger agriculture
share of GDP or larger employment share in agriculture. Moreover, the
results for the two vulnerability measures are very similar. On average,
the negative growth effect of El Niño event is up to 0.2 percentage
points larger in magnitude for countries that are 10% more agricultural
(as measured by either of the two vulnerability indices). This difference,
while economically meaningful, is not statistically significant. There is
no doubt, agriculture is one of the major pathways by which ENSO
affects growth. But the signal in this causal mechanism may be miti-
gated as other socio-economic or political factors also mediate (though,
not confound) climatic shocks on broader macroeconomic variables.

4.4. Cross sectional dependence and sensitivity analyses

Unobserved common shocks can influence growth rates in

Fig. 4. Heterogeneous impact of ENSO on growth.

Fig. 5. Dynamics of nonlinear impact of ENSO on growth across climatic zones. Note:
Each curve represents an average of individual country dynamics obtained by iterating
forward a positive or negative 1 °C SST deviation in period t, given 1000 randomly
sampled vectors of SST realizations for periods {t − 1, t, …, t+ 3}.
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neighboring countries. Recent developments in the heterogeneous dy-
namic panel data modeling literature offer a possibility of addressing
the error cross sectional dependence (see, e.g., Pesaran, 2006; Chudik
and Pesaran, 2015; Chudik et al., 2017). The approach involves aug-
menting the original model with cross-sectionally averaged dependent
variable as well as independent variables (that vary across units and
over time). While we acknowledge the benefits of the aforementioned
methodology in certain circumstances, here we do not implement it for
reasons discussed below. Because ENSO is an observed common factor,
by introducing into the model the cross-sectionally averaged dependent
variable that is very likely correlated with ENSO, we will be altering
conditioning set in a way that may not be desirable. Under the main-
tained assumption of exogeneity of ENSO, and to the extent that ENSO
on average impacts growth rates of the countries in consideration, the
cross-sectionally averaged dependent variable will act as “bad control”,
and bring with it the caveats discussed in the Model section. For ex-
ample, growth among neighboring countries may be correlated due to
trade-induced spillovers. But if the change in trade is an outcome of an
ENSO event, we would not want to control for it as long as the goal
remains to estimate the total effect of ENSO. Alternatively, if an un-
observed common factor is in fact uncorrelated with ENSO, we could
potentially benefit from model augmentation, but that would merely
improve efficiency rather than stability of parameter estimates. Instead,
in this study we apply a general method of moments approach put
forward by Conley (1999), which allows for adjustments in spatial and
temporal correlation in error terms (see, also, Hsiang, 2010; Hsiang and
Meng, 2015).

The applied specific-to-general modeling approach allows us to ex-
amine several model specifications that range from a parsimonious
linear fixed effects to flexible nonlinear and heterogeneous alternatives.
To complete the modeling cycle, we conducted an array of robustness

checks (see Appendix Table A2 and A3). In particular, to test for a
placebo effect, we added two-year-ahead leads of SST anomalies to the
originally estimated models. The results show hardly any indication of
the placebo effect, while the parameter estimates of current and lagged
SST anomalies remain comparable to those reported previously. As an
alternative test, we regressed population growth rate on current and
lagged SST anomalies. Again, the results reveal no evidence of spurious
correlation. Finally, to check that very small or very large countries in
the sample are not systemically altering the results—an effect that, in
part, could be attributed to the previously discussed issue of the mea-
surement error—we re-estimated parameters using a subset of data that
exclude small countries (with 2010 population less than 5 million) or
large countries (with 2010 population greater than 100 million). The
results are qualitatively similar to those reported previously, with an
exception of the Asia-Pacific region, where the large economies, such as
China and India among others, appear to be playing a considerable role
in the previously reported results.

5. Implications and limitations

Linking ENSO shocks to the economic growth of an array of coun-
tries in Africa, Asia, and Americas has several important implications.
El Niño and La Niña events should be explicitly considered when
making macroeconomic decisions and forecasts. For example, ENSO-
related lower economic growth can be countered by expansionary
macroeconomic policies, such as increased government spending.
However, this may be an unattainable luxury for many developing
countries. In such instances, the international community—the devel-
oped world in particular—could provide relief by directing aid flows to
regions that are most affected by ENSO-induced weather shocks.
Effective policy actions, moreover, can also be of the microeconomic

Table 4
Nonlinear impact of ENSO on growth across climatic zones.

1 2 3 4 5

Tropical/Humid (n = 39)
SSTt|SSTt−1 ≥ 0 −0.833**,‡ −0.874**,‡ −0.67**,‡ −0.692**,‡ −0.68**,‡

(0.205) (0.202) (0.183) (0.183) (0.183)
SSTt−1|SSTt−1 ≥ 0 −1.487**,‡ −1.465**,‡ −1.263**,‡ −1.266**,‡ −1.194**,‡

(0.407) (0.400) (0.369) (0.357) (0.355)
SSTt|SSTt−1 < 0 −0.278 −0.284 −0.342 −0.253 −0.241

(0.213) (0.207) (0.199) (0.193) (0.190)
SSTt−1|SSTt−1 < 0 0.693* 0.639* 0.71**,† 0.759**,† 0.739**,†

(0.286) (0.293) (0.259) (0.252) (0.252)

Temperate/Arid (n = 30)
SSTt|SSTt−1 ≥ 0 −0.671**,† −0.744**,† −0.448 −0.512* −0.479*

(0.255) (0.242) (0.237) (0.231) (0.221)
SSTt−1|SSTt−1 ≥ 0 −0.576 −0.498 −0.404 −0.499 −0.409

(0.389) (0.371) (0.367) (0.367) (0.365)
SSTt|SSTt−1 < 0 0.056 0.073 0.017 −0.075 −0.093

(0.243) (0.237) (0.229) (0.219) (0.219)
SSTt−1|SSTt−1 < 0 −0.272 −0.397 −0.177 −0.105 −0.087

(0.342) (0.333) (0.326) (0.327) (0.329)

Fixed effects Y Y Y Y Y
Linear trend N Y N N N
Lag order N N 1 2 3
R-squared 0.011 0.067 0.120 0.155 0.174

Note: n denotes the number of countries. Values in parentheses are standard errors that are adjusted to account for spatial autocorrelation of arbitrary form within 2000 km and serial
correlation over three years as per Conley (1999).

* Statistical significance at 0.05 level.
** Statistical significance at 0.01 level.
† Statistical significance at 0.05 level after Bonferroni correction.
‡ Statistical significance at 0.01 level after Bonferroni correction.
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nature, targeted towards reducing climate sensitivity of lower-income
rural communities.

Communicating ENSO forecasts to the relevant parties can provide
them with the opportunity to decrease their climate vulnerability.
While the prediction of ENSO events has certainly improved, the spatial
variability of teleconnections across different events complicates fore-
casting for a specific region. Nonetheless, there are benefits to a priori

knowledge that reduces uncertainty about future climate, and thus af-
fected (and involved) parties can take beneficial and timely action
(Meza et al., 2008). For example, the forecast of an El Niño event,
combined with the knowledge that it increases the probability of dry
conditions for a region, could lead to increased preparedness and cost
mitigation via the planting of more drought resistance crops. Policy-
makers aiming to curb climate-induced growth shocks and alleviate the
risks to agricultural production can benefit from forecast communica-
tion. Moreover, efforts to improve trade and storage capacity would be
effective in smoothing supply, as well as price and consumption. In-
ternational aid, be that in cash or via food programs, can mitigate socio-
economic issues associated with supply shortage and inflationary
pressures due to the climate shocks.

Finally, in the current study the ENSO effect may be camouflaged
for at least two potential reasons. First, the impact of ENSO may be too
localized or too short-term to be reflected in movements of the annual
country-wide economic growth measure. That is, the aggregation over
time and across space may mask important regional and temporal
heterogeneities. Second, there may be limitations in using the SST
anomalies to measure the impact of ENSO. While deviations in this
index are closely linked to an increased probability of droughts and
pluvial periods, there are spatial and intensity differences from one
event to another that makes comparison difficult. That is, all else being
equal, the broader macroeconomic implications could differ markedly
during different ENSO episodes despite events recording identical

Table 5
Nonlinear impact of ENSO on growth across geographic regions.

1 2 3 4 5

Africa (n = 38)
SSTt|SSTt−1 ≥ 0 −1.01**,‡ −1.017**,‡ −0.794**,‡ −0.843**,‡ −0.811**,‡

(0.249) (0.240) (0.225) (0.219) (0.212)
SSTt−1|SSTt−1 ≥ 0 −1.241**,† −1.158**,† −1.099**,† −1.152**,† −0.979*

(0.435) (0.422) (0.402) (0.391) (0.389)
SSTt|SSTt−1 < 0 −0.01 0.004 −0.063 −0.046 −0.053

(0.239) (0.230) (0.232) (0.219) (0.217)
SSTt−1|SSTt−1 < 0 −0.145 −0.198 0.001 0.069 0.058

(0.336) (0.337) (0.318) (0.318) (0.319)

Americas (n = 16)
SSTt|SSTt−1 ≥ 0 −0.492 −0.496 −0.258 −0.317 −0.319

(0.287) (0.289) (0.251) (0.262) (0.262)
SSTt−1|SSTt−1 ≥ 0 −0.679 −0.676 −0.488 −0.486 −0.467

(0.483) (0.481) (0.399) (0.412) (0.410)
SSTt|SSTt−1 < 0 −0.296 −0.298 −0.329 −0.254 −0.225

(0.316) (0.318) (0.289) (0.282) (0.276)
SSTt−1|SSTt−1 < 0 0.285 0.28 0.407 0.421 0.373

(0.392) (0.393) (0.345) (0.321) (0.306)

Asia-Pacific (n = 15)
SSTt|SSTt−1 ≥ 0 −0.432 −0.666** −0.374 −0.372 −0.343

(0.272) (0.245) (0.234) (0.225) (0.218)
SSTt−1|SSTt−1 ≥ 0 −1.174* −1.169* −0.811 −0.886 −0.982

(0.570) (0.554) (0.537) (0.537) (0.533)
SSTt|SSTt−1 < 0 −0.263 −0.279 −0.332 −0.404 −0.429

(0.283) (0.250) (0.260) (0.259) (0.258)
SSTt−1|SSTt−1 < 0 1.339**,‡ 1.079**,† 1.067**,† 1.152**,† 1.244**,†

(0.414) (0.405) (0.390) (0.394) (0.412)

Fixed effects Y Y Y Y Y
Linear trend N Y N N N
Lag order N N 1 2 3
R-squared 0.014 0.068 0.122 0.156 0.176

Note: n denotes the number of countries. Values in parentheses are standard errors that are adjusted to account for spatial autocorrelation of arbitrary form within 2000 km and serial
correlation over three years as per Conley (1999).

* Statistical significance at 0.05 level.
** Statistical significance at 0.01 level.
† Statistical significance at 0.05 level after Bonferroni correction.
‡ Statistical significance at 0.01 level after Bonferroni correction.

Fig. 6. Dynamics of nonlinear impact of ENSO on growth across geographic regions. Note:
Each curve represents an average of individual country dynamics obtained by iterating
forward a positive or negative 1 °C SST deviation in period t, given 1000 randomly
sampled vectors of SST realizations for periods {t − 1, t, …, t+ 3}.
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warming or cooling phases. The aforementioned considerations should
be factored in during the decision making process, especially in coun-
tries where little evidence is found in support of the ENSO role in per
capita GDP growth.

6. Conclusion

Societies across the world are subjected to the repercussions of
ENSO-induced weather anomalies. This is even more true for countries
in the developing world. Many of these countries are reliant on

agriculture and primary commodity exports as major sources of eco-
nomic activity and a channel via which they develop. The historically
strong links between agriculture and food security further amplify the
adversity of ENSO events. The findings of this study make several no-
table additions to the body of literature concerned with the macro-
economic consequences of ENSO shocks.

In this study, we investigate the effect of ENSO on economic growth
of a large set of developing countries. We find that growth rates respond
asymmetrically to ENSO shocks. In particular, while an El Niño event
considerably reduces economic growth, the effect of a La Niña event is

Table 6
Nonlinear impact of ENSO through agriculture share of GDP.

1 2 3 4 5

SSTt|SSTt−1 ≥ 0 −0.763**,‡ −0.819**,‡ −0.575**,‡ −0.616**,‡ −0.595**,‡

(0.164) (0.158) (0.147) (0.145) (0.142)
SSTt−1|SSTt−1 ≥ 0 -1.097**,‡ −1.05**,‡ −0.892**,‡ −0.938**,‡ −0.858**,‡

(0.296) (0.287) (0.270) (0.266) (0.264)
SSTt|SSTt−1 < 0 −0.137 −0.134 −0.189 −0.179 −0.181

(0.164) (0.157) (0.155) (0.149) (0.147)
SSTt−1|SSTt−1 < 0 0.28 0.194 0.328 0.387 0.383

(0.226) (0.224) (0.210) (0.209) (0.210)
AGRi×SSTt|SSTt−1 ≥ 0 0.001 −0.006 −0.004 −0.003 −0.002

(0.013) (0.012) (0.012) (0.012) (0.011)
AGRi×SSTt−1|SSTt−1 ≥ 0 −0.024 −0.024 −0.023 −0.018 −0.017

(0.023) (0.023) (0.022) (0.021) (0.021)
AGRi×SSTt|SSTt−1 < 0 −0.011 −0.012 −0.007 −0.006 −0.007

(0.012) (0.012) (0.012) (0.011) (0.011)
AGRi×SSTt−1|SSTt−1 < 0 0.013 0.006 −0.002 −0.001 −0.002

(0.017) (0.017) (0.016) (0.016) (0.016)

Fixed effects Y Y Y Y Y
Linear trend N Y N N N
Lag order N N 1 2 3
R-squared 0.010 0.066 0.120 0.154 0.174

Note: values in parentheses are standard errors that are adjusted to account for spatial autocorrelation of arbitrary form within 2000 km and serial correlation over three years as per
Conley (1999).

** Statistical significance at 0.01 level.
‡ Statistical significance at 0.01 level after Bonferroni correction.

Table 7
Nonlinear impact of ENSO through employment share in agriculture.

1 2 3 4 5

SSTt|SSTt−1 ≥ 0 −0.776**,‡ −0.84**,‡ −0.575**,‡ −0.64**,‡ −0.646**,‡

(0.170) (0.165) (0.152) (0.151) (0.149)
SSTt−1|SSTt−1 ≥ 0 −1.029**,‡ −0.982**,‡ −0.789**,‡ −0.906**,‡ −0.866**,‡

(0.302) (0.293) (0.272) (0.274) (0.272)
SSTt|SSTt−1 < 0 −0.095 −0.091 −0.13 −0.171 −0.184

(0.175) (0.168) (0.165) (0.158) (0.158)
SSTt−1|SSTt−1 < 0 0.336 0.238 0.381 0.445* 0.476*

(0.235) (0.230) (0.218) (0.217) (0.217)
EMPi×SSTt|SSTt−1 ≥ 0 −0.001 −0.007 −0.005 −0.003 −0.003

(0.008) (0.008) (0.008) (0.007) (0.007)
EMPi×SSTt−1|SSTt−1 ≥ 0 −0.012 −0.016 −0.011 −0.011 −0.013

(0.013) (0.013) (0.012) (0.012) (0.012)
EMPi×SSTt|SSTt−1 < 0 −0.002 −0.003 −0.001 −0.003 −0.002

(0.007) (0.007) (0.007) (0.007) (0.007)
EMPi×SSTt−1|SSTt−1 < 0 0.012 0.008 0.003 0.006 0.005

(0.011) (0.011) (0.010) (0.010) (0.010)

Fixed effects Y Y Y Y Y
Linear trend N Y N N N
Lag order N N 1 2 3
R-squared 0.011 0.071 0.141 0.176 0.196

Note: standard errors that are adjusted to account for spatial autocorrelation of arbitrary form within 2000 km and serial correlation over three years as per Conley (1999).
* Statistical significance at 0.05 level.
** Statistical significance at 0.01 level.
‡ Statistical significance at 0.01 level after Bonferroni correction.
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much less apparent. Moreover, we find that the regional heterogeneities
exist in the impact of ENSO shocks. Of particular importance is strong
evidence of the ENSO impact in tropical countries. An indication of
such effect has been offered previously (Hsiang and Meng, 2015), but
here we show that not only agriculture but economy as a whole can be
negatively affected by El Niño events. In addition, we find that coun-
tries in Asia-Pacific tend to react negatively to not only events causing
dry conditions but also those characterized by increased precipitation.
Countries in Africa also experience significantly reduced growth during
El Niño events, particularly those back-to-back, whereas developing
economies in the Americas appear to be less affected by these climate
events.

Several interesting directions for future research emerge from this
analysis. A more complex modeling framework may uncover mechan-
isms through which the ENSO shocks manifest into growth. Identifying
such channels could assist policy-makers to pinpoint actions in reducing
climate vulnerability. We refer readers to Cashin et al. (2017) for one
such application. While the effect of ENSO on agricultural productivity

has been already examined (e.g., Hsiang and Meng, 2015), another
interesting line of further research would be to analyze the impact of
ENSO on various other factors of development, such as education,
health, and living standards. For example, the hypothesis that in-
equality is entrenched in regions exposed to ENSO events would be an
interesting venue to examine. The aforementioned are potentially im-
portant questions that emerged from the main findings of the current
research—which we shall leave for future studies to consider.
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Appendix A

Fig. A1. ENSO teleconnections.
Source: http://www.metoffice.gov.uk/
research/climate/seasonal-to-decadal/gpc-
outlooks/el-nino-la-nina/enso-impacts.
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Fig. A2. Heterogeneous impact of ENSO on growth.
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Table A1
Descriptive statistics by country.
Sources: The World Bank, and the Center for International Earth Science Information Network.

Country ISO3 Climatic zone T Growth rate AGR EMP

Mean s.d. Min Max

Angola AGO Temperate/Arid 30 1.7 8.4 −27.1 18.5 12.2 5.1
Burundi BDI Tropical/Humid 55 0.1 5.5 −15.4 19.1 52.8
Benin BEN Tropical/Humid 55 0.8 3.0 −7.2 7.0 33.1 45.1
Burkina Faso BFA Temperate/Arid 55 1.9 3.0 −4.3 8.0 33.9 83.6
Bangladesh BGD Tropical/Humid 55 1.8 3.9 −15.5 7.7 35.5 57.8
Bolivia BOL Tropical/Humid 55 1.2 3.5 −13.9 5.7 17.0 30.7
Brazil BRA Tropical/Humid 55 2.3 3.8 −6.6 11.2 9.7 22.2
Botswana BWA Temperate/Arid 55 5.5 5.4 −9.5 22.3 11.2 25.4
China CHN Temperate/Arid 55 6.9 6.8 −26.5 16.1 24.2 54.5
Cote d’Ivoire CIV Tropical/Humid 55 0.5 5.1 −14.8 13.0 23.3 48.3
Cameroon CMR Tropical/Humid 55 0.9 5.5 −13.0 18.6 25.9 76.9
Congo, Dem. Rep. COD Tropical/Humid 55 −1.5 6.0 −16.8 18.2 28.8
Congo, Rep. COG Tropical/Humid 55 1.5 5.3 −11.6 20.0 11.2
Colombia COL Tropical/Humid 55 2.3 2.1 −5.6 6.0 16.6 8.2
Costa Rica CRI Tropical/Humid 55 2.2 3.0 −9.8 6.7 10.6 20.5
Cuba CUB Tropical/Humid 45 2.6 6.0 −15.4 19.1 9.5 21.4
Dominican Republic DOM Tropical/Humid 55 3.1 5.0 −15.2 14.9 14.6 14.6
Algeria DZA Temperate/Arid 55 1.5 7.3 −21.6 31.0 9.9 16.5
Ecuador ECU Tropical/Humid 55 1.6 3.0 −6.5 10.8 19.9 11.4
Egypt, Arab Rep. EGY Temperate/Arid 50 2.6 2.8 −1.8 12.1 20.0 36.2
Ethiopia ETH Temperate/Arid 34 2.5 6.8 −13.9 10.4 50.5 24.0
Ghana GHA Tropical/Humid 55 1.0 4.3 −14.5 11.3 44.1 42.0
Gambia, The GMB Temperate/Arid 49 0.5 3.4 −7.4 9.0 25.8 31.5
Guinea-Bissau GNB Tropical/Humid 45 0.5 6.9 −29.6 15.8 48.6
Guatemala GTM Tropical/Humid 55 1.3 2.3 −6.1 6.6 12.6 35.9
Honduras HND Tropical/Humid 55 1.4 2.9 −4.4 7.2 23.4 44.0
Indonesia IDN Tropical/Humid 55 3.2 3.4 −14.4 7.9 16.6 47.8
India IND Temperate/Arid 55 3.3 3.2 −7.4 8.8 30.3 53.4
Jamaica JAM Tropical/Humid 49 0.6 4.4 −7.8 16.2 6.9 20.5
Kenya KEN Temperate/Arid 55 1.5 4.4 −10.6 17.9 32.3
Lao PDR LAO Tropical/Humid 31 4.3 3.0 −4.8 10.9 43.9
Sri Lanka LKA Tropical/Humid 54 3.5 2.2 −2.3 8.3 8.8 36.2
Lesotho LSO Temperate/Arid 55 3.2 5.7 −15.5 23.8 26.4 35.8
Morocco MAR Temperate/Arid 49 2.9 3.7 −6.9 10.7 15.2 24.1
Madagascar MDG Tropical/Humid 55 −0.9 3.9 −15.3 6.8 29.4 77.4
Mexico MEX Temperate/Arid 55 1.8 3.2 −7.5 8.5 7.3 17.4
Mali MLI Temperate/Arid 48 1.7 5.1 −9.3 18.1 44.6 41.5
Myanmar MMR Temperate/Arid 55 4.1 5.8 −12.9 12.8 41.5 66.5
Mongolia MNG Temperate/Arid 34 3.1 5.3 −10.3 15.3 21.5 40.6
Mozambique MOZ Tropical/Humid 35 3.1 6.9 −17.4 23.0 32.1
Mauritania MRT Temperate/Arid 54 1.1 6.0 −7.8 24.0 31.4
Mauritius MUS Tropical/Humid 39 3.7 3.2 −11.6 8.9 10.4 10.1
Malawi MWI Temperate/Arid 55 1.4 5.1 −10.5 15.6 40.5
Malaysia MYS Tropical/Humid 55 3.8 3.3 −9.6 9.0 19.8 20.8
Namibia NAM Temperate/Arid 35 1.0 3.3 −4.5 11.0 9.3 30.0
Niger NER Temperate/Arid 55 −0.7 5.6 −19.3 10.3 40.1
Nigeria NGA Tropical/Humid 55 1.5 8.1 −17.6 30.3 32.7 48.1
Nicaragua NIC Tropical/Humid 55 0.5 5.9 −28.6 10.7 19.5 37.2
Nepal NPL Temperate/Arid 55 1.8 2.7 −5.2 7.2 50.7 71.9
Pakistan PAK Temperate/Arid 55 2.5 2.2 −2.2 8.4 29.7 49.4
Panama PAN Tropical/Humid 55 3.1 4.3 −15.2 10.4 6.5 23.4
Peru PER Tropical/Humid 55 1.6 4.8 −14.2 10.2 12.1 8.0
Philippines PHL Tropical/Humid 55 1.7 3.0 −9.8 6.0 21.5 43.3
Papua New Guinea PNG Tropical/Humid 54 1.6 4.7 −6.4 15.3 36.6 72.3
Paraguay PRY Tropical/Humid 55 2.5 3.9 −5.8 12.5 18.9 11.7
Sudan SDN Temperate/Arid 55 1.4 5.4 −9.1 12.9 39.0
Senegal SEN Temperate/Arid 55 0.0 3.5 −9.3 6.1 18.9 39.9
Sierra Leone SLE Tropical/Humid 55 0.6 6.8 −22.3 20.5 43.8 68.5
El Salvador SLV Tropical/Humid 50 1.1 3.8 −13.3 6.1 12.4 23.2
Swaziland SWZ Temperate/Arid 45 2.8 4.2 −5.1 17.0 20.0
Chad TCD Temperate/Arid 55 0.9 8.0 −23.0 28.7 40.9
Togo TGO Tropical/Humid 55 1.0 5.8 −17.1 12.3 36.6
Thailand THA Tropical/Humid 55 4.4 3.3 −8.7 11.3 17.8 55.0
Tunisia TUN Temperate/Arid 50 2.8 3.3 −3.9 15.2 15.1 26.4
Uganda UGA Tropical/Humid 33 2.5 3.0 −6.4 8.1 47.1 71.4
Vietnam VNM Tropical/Humid 31 4.9 1.8 0.4 7.8 20.5 57.6
South Africa ZAF Temperate/Arid 55 1.0 2.5 −4.6 6.1 5.5 7.7
Zambia ZMB Temperate/Arid 55 0.2 4.7 −10.9 13.0 15.2 62.1
Zimbabwe ZWE Temperate/Arid 55 0.1 6.7 −18.9 18.6 17.1 64.5

Note: T is the number of growth rate observations available between 1961 and 2015; the growth rate is defined as the per capita GDP growth rate measured in percentage terms. AGR is
the within-country average of the agriculture value added (% of GDP); EMP is the within-country average of the employment share in agriculture (% of total employment).
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Table A2
Placebo tests.

Tropical/Humid Temperate/Arid Africa Americas Asia-Pacific

Dependent variable: per capita GDP growth rate
SSTt+2|SSTt+1 ≥ 0 −0.315* −0.198 −0.372 −0.293 0.031
SSTt+2|SSTt+1 < 0 0.085 0.454 0.186 0.121 0.529*

SSTt|SSTt−1 ≥ 0 −0.755**,‡ −0.429 −0.857**,† −0.313 −0.346
SSTt−1|SSTt−1 ≥ 0 −1.259**,‡ −0.227* −1.052* −0.475 −0.598
SSTt|SSTt−1 < 0 −0.298 0.217 0.027 −0.271 −0.116
SSTt−1|SSTt−1 < 0 0.694* −0.319 −0.037 0.399 0.854*

Dependent variable: population growth rate
SSTt|SSTt−1 ≥ 0 0.028 0.039 0.038 0.016 0.038
SSTt−1|SSTt−1 ≥ 0 0.009 0.044 0.016 0.013 0.059
SSTt|SSTt−1 < 0 −0.004 −0.01 −0.012 0.001 0.000
SSTt−1|SSTt−1 < 0 0.034 −0.006 0.03 0.004 −0.004

Note: in all instances, fixed effects model with lag order of one are applied; standard errors (not reported here) are adjusted to account for spatial autocorrelation of arbitrary form within
2000 km and serial correlation over three years as per Conley (1999).

* Statistical significance at 0.05 level.
** Statistical significance at 0.01 level.
† Statistical significance at 0.05 level after Bonferroni correction.
‡ Statistical significance at 0.01 level after Bonferroni correction.

Table A3
Nonlinear impact of ENSO in subsets of countries.

Tropical/Humid Temperate/Arid Africa Americas Asia-Pacific

Countries with population greater than 5 million (n = 56)
SSTt|SSTt−1 ≥ 0 −0.989**,‡ −0.543* −0.981**,‡ −0.715* −0.512*

SSTt−1|SSTt−1 ≥ 0 −1.379**,‡ −0.535 −1.136* −0.717 −1.094
SSTt|SSTt−1 < 0 −0.351 0.165 0.069 −0.421 −0.283
SSTt−1|SSTt−1 < 0 0.655* −0.464 −0.289 0.211 1.157**,†

Countries with population less than 100 million (n = 61)
SSTt|SSTt−1 ≥ 0 −0.811**,‡ −0.711* −0.981**,‡ −0.386 −0.533
SSTt−1|SSTt−1 ≥ 0 −1.405**,‡ −0.427 −1.144**,† −0.53 −1.095
SSTt|SSTt−1 < 0 −0.297 0.181 −0.019 −0.305 −0.073
SSTt−1|SSTt−1 < 0 0.699* −0.852* −0.165 0.349 0.373

Note: the population numbers are for 2010; n denotes the number of countries; in all instances, the fixed effects model with lag order of one are applied; standard errors (not reported
here) are adjusted to account for spatial autocorrelation of arbitrary form within 2000 km and serial correlation over three years as per Conley (1999).

* Statistical significance at 0.05 level.
** Statistical significance at 0.01 level.
† Statistical significance at 0.05 level after Bonferroni correction.
‡ Statistical significance at 0.01 levels after Bonferroni correction.
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