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Austroads profile 
Austroads’ purpose is to contribute to improved Australian and New Zealand transport outcomes 
by: 

 providing expert advice to SCOT and ATC on road and road transport issues 
 facilitating collaboration between road agencies 
 promoting harmonisation, consistency and uniformity in road and related operations  
 undertaking strategic research on behalf of road agencies and communicating outcomes 
 promoting improved and consistent practice by road agencies. 

 

Austroads membership 
Austroads membership comprises the six state and two territory road transport and traffic 
authorities, the Australian Department of Infrastructure, Transport, Regional Development and 
Local Government, the Australian Local Government Association, and Transit New Zealand.  It is 
governed by a council consisting of the chief executive officer (or an alternative senior executive 
officer) of each of its eleven member organisations: 
 
 Roads and Traffic Authority New South Wales 
 Roads Corporation Victoria 
 Department of Main Roads Queensland 
 Main Roads Western Australia 
 Department for Transport, Energy and Infrastructure South Australia 
 Department of Infrastructure, Energy and Resources Tasmania 
 Department of Planning and Infrastructure Northern Territory 
 Department of Territory and Municipal Services Australian Capital Territory 
 Department of Infrastructure, Transport, Regional Development and Local Government 
 Australian Local Government Association 
 Transit New Zealand 

 
The success of Austroads is derived from the collaboration of member organisations and others in 
the road industry. It aims to be the Australasian leader in providing high quality information, advice 
and fostering research in the road sector. 
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SUMMARY 

Austroads Project NS1204 (Optimising Freeway Traffic Flow under Congested Conditions) aims to 
study the freeway flow breakdown process and determine how to maximise freeway utilisation 
during congested conditions.  The motivation for this study came from the observation that most 
capital cities in Australia and New Zealand are experiencing some levels of congestion on their 
freeway networks.  Sydney, Melbourne and Brisbane are experiencing congestion between three 
to eight hours per day.  The phenomenon of flow breakdowns on freeways, however, is still not 
well understood. 

The possible reasons for congestion and flow breakdowns on a freeway include:  

 mainline freeway flow in excess of capacity 

 uncontrolled access to the freeway from on-ramps 

 inadequate road geometries such as sudden lane-drop, excessive upgrades, freeway lane 
merge and insufficient weaving capacity 

 undisciplined driving behaviour 

 lack of real-time driver information to encourage better use of alternative routes or lanes 

 lack of an integrated approach that encourages better use of alternative transport modes. 

This report represents the first output of Project NS1204 on literature reviews.  Other tasks of the 
project include the selection of freeway study sites, compilation of freeway data and the analysis of 
the data towards better understanding of flow breakdowns and will be completed as the project 
progresses.  The contents of this report are as follows: 

 basic freeway flow theory and automatic freeway control tools (Section 2) 

 models for the characterisation of congested freeway flow (Section 3) 

 outline of future research tasks (Section 4) 

 conclusions (Section 5). 

A traffic system is a complex, time-dependent system.  It consists of the driver, vehicle and road 
infrastructure, and the interactions amongst the three components.  Driver behaviour is especially 
difficult to control.  The complexity of a traffic system is not a major concern as long as a road 
facility is uncongested but, with increasing congestion, certainly needs to be well understood for 
efficient network operations.   

There have been many attempts to develop mathematical models to characterise and understand 
traffic behaviour.  For example, the Lighthill-Whitham (1955) kinematic wave model, despite its 
limitations, remains useful for understanding shock waves at road bottlenecks.  Even though most 
models lack detail and reality, traffic control systems have long been employed to control arterial 
and freeway traffic macroscopic relationships. 

In recent years, freeways in some overseas and Australian cities have been installed with detector 
stations that can provide reliable traffic data at a high resolution in time and space.  It is now 
possible to obtain accurate empirical contours of flow, speed and occupancy for the analysis of 
flow breakdowns at bottlenecks.  
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The work of Kerner (2004) has been extensively reviewed in this report.  Kerner developed a 
model from empirical data consisting of three phases or states: free-flow, synchronised flow and 
moving jam.  From various combinations of these phases and their transitions, different flow 
patterns observed on a freeway can be reproduced or predicted.  An accurate prediction model is 
the first step in the effective implementation of freeway control tools such as ramp-metering and 
speed limit signs.   

This project has reviewed other models of flow breakdowns including the stochastic models and 
models with more than three states.  A general finding is that the Kerner approach has gone 
through a significant amount of research over ten years.  Apart from providing a good platform for 
the analysis of flow breakdowns, it has been successfully deployed for real-time control.  This 
project can benefit from the Kerner three-phase concept with additional input from other sources.   

The project team has already scanned through the flow, speed and occupancy data from the 
Monash Freeway, Westgate Freeway and Western Ring Road in Melbourne to decide what 
freeway sites should be selected for analysis.  The recommendations for subsequent stages of this 
project are as follows: 

 A freeway route is preferable to a few isolated sites from one or several freeways so that 
freeway flow can be studied in a network context – what happens upstream affects 
downstream flow.  The demand for that corridor will also be similar for a particular time of day 
if all sites are from the same freeway.   

 Analytical modelling processes are unlikely to explain complex driver behaviour before, 
during and after flow breakdowns.  An empirical spatio-temporal approach is recommended 
for congested freeway flow analysis.  The two-phase approach of HCM 2000 is too simplistic 
and the Kerner (2004) three-phase approach appears appropriate for the identification of flow 
breakdowns and will be adopted in this project.   

 The software MATLAB would provide a useful platform for data analysis and the 
development of rules and artificial intelligence in general for the identification of flow 
breakdowns and tracking of shock waves. 
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1 INTRODUCTION 
The purpose of Austroads Project NS1204 (Optimising Freeway Traffic Flow under Congested 
Conditions) is to determine how best to extract maximum utilisation and efficiency from existing 
freeway systems during peak periods and severe congested conditions by: 

 identifying factors that contribute to flow breakdown 

 developing a technique for determining the location of critical bottlenecks 

 identifying the speed of propagation of shockwaves and the extent of their influence 

 identifying any influence of current freeway design features on the formation of bottlenecks.  

The motivation for this study came from the observation that most capital cities in Australia and 
New Zealand are experiencing some levels of congestion on their freeway networks.  Sydney, 
Melbourne and Brisbane are experiencing congestion between three to eight hours per day.  The 
phenomenon of flow breakdowns on freeways, however, is still not well understood. 

The possible reasons for congestion and flow breakdowns on a freeway include: 

 mainline freeway flow in excess of freeway capacity (uncontrolled access) 

 uncontrolled access to the freeway from on-ramps  

 inadequate road geometries – pre-1960 and earlier freeway designs may not be suitable for 
congested flow conditions at present , e.g. sudden lane-drop, excessive upgrade, freeway 
merge lane and insufficient weaving capacity 

 undisciplined driving behaviour with frequent and unnecessary lane-changing and speed 
changes 

 lack of real-time driver information to encourage better use of alternative routes in a corridor 
and alternative lanes on a carriageway 

 lack of an integrated approach that encourages better use of all transport modes – buses, 
rail, trams and cycling apart from car use. 

This project will not be able to address all of these issues and will focus on the characterisation of 
freeway flow breakdowns under a range of traffic and geometrical conditions.  A clear 
understanding of the flow breakdown process will assist in identifying the correct parameters and 
relationships to be used in the tools for automatic freeway control, e.g. variable speed limit signs 
(VSLS) and ramp metering.  The use of these tools is included in the literature review in 
Section 2.3 but the operation and development of these tools will be addressed in other Austroads 
and road authority projects.  

It is also important to note that freeway flow breakdown does not necessarily imply a catastrophic 
failure of traffic flow with vehicles moving at slow speeds.  Similarly, a loss of maximum flow by 
itself may not necessarily imply flow breakdowns.  As the project progresses and as a better 
characterisation of flow breakdowns is available, then breakdowns can be quantified objectively.  It 
is likely that the definition of a flow breakdown would involve a substantial loss of maximum flow 
over a measurement time period and over some distance along a freeway segment.  

This report provides a literature review and represents the first deliverable of the project.  Its 
contents are as follows: 

 basic freeway flow theory and automatic freeway control tools (Section 2) 

 models for the characterisation of congested freeway flow (Section 3) 
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 outline of research tasks (Section 4) 

 conclusions (Section 5). 

VicRoads has an extensive network for vehicle detection in Melbourne freeways and can provide 
comprehensive freeway traffic data.  This project will therefore make use of data from VicRoads.   

The project work will also complement two other Austroads projects: 

 NS1375 (Freeway Design Parameters for Fully Managed Operations), which has a focus on 
improving freeway geometric designs to minimise flow breakdowns 

 NS1378 (Best Practice for Variable Speed Limits), which develops best practices in the use 
of VSLS for speed management. 
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2 BASIC FREEWAY TRAFFIC FLOW THEORY AND 
CONTROL TOOLS 

A freeway is generally known as an uninterrupted facility because traffic on the mainline is not 
interrupted by a control device such as a traffic signal.  Traffic flow on a freeway segment is 
therefore relatively easier to model analytically, especially in free-flow or uncongested conditions.  
This section provides the basic analytical framework for freeway traffic analysis and also briefly 
reviews the tools currently used for automatic freeway control.  It provides the context for 
subsequent sections on reviews of the characteristics of flow breakdowns. 

2.1 Basic Traffic Flow Model 
A traffic system is characterised by three traffic parameters: flow (q in veh/h), speed (v in km/h) 
and density (k in veh/km).  Flow can be measured with point sensors such as the inductive loop 
sensors.  A pair of sensors at a known distance apart (e.g. 5 m) is necessary to determine speed.  
The speed so measured is called a spot speed because it is the speed at a specific location in 
space. 

Density in vehicles per unit distance is a spatial concept and is difficult to measure using a point 
sensor and occupancy is used as a proxy density value.  Occupancy is the percentage of time in a 
measurement period (e.g. 1 min) that a sensor is occupied with vehicles.  As congestion increases, 
a sensor is occupied more often and both density and occupancy increases.  The occupancy 
becomes 100% for a particular minute when a vehicle becomes stationary on top of the sensor for 
that minute.  For a square loop of 2 m x 2 m, an occupancy in excess of 15% indicates slow 
moving traffic. 

On a freeway segment a relationship exists amongst the three parameters as follows: 

 Flow q (veh/h) = Speed v (km/h) x Density k (veh/km)  

or q = v k 1 

v is the space mean speed, or the average speed of all vehicles in a road segment where the 
density is determined from the number of vehicles in that segment. 

Empirically, it has long been observed that speed bears a reasonable linear relationship with 
density before over saturation occurs, i.e. speed drops as density increases.  A linear relationship 
between speed and density can take the following form (often known as the Greenshields model 
(see, e.g. May 1990): 

 v = vf – (vf/kj) k 2 

where vf is the free-flow speed and kj is the jam density so that speed is zero at k = kj. 

Substituting k = q / v from Equation 1 into Equation 2, flow becomes: 

 v =  vf  – (vf/kj) (q/v) 

Rearranging q = kj (v – v2 / vf) 3 

This is a parabolic relationship and there are two values of speed for each value of flow.  

The critical speed can be obtained by differentiating Equation 3 and equating dq / dv = 0: 
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 dq / dv = kj [1 – 2v / vf] = 0  

Hence, the critical speed is given by: 

 vc  =  vf / 2 4 

Similarly, the critical density kj can be shown to be equal to kj/2.  The critical flow when traffic flow 
starts to break down is given by Equation 1: 

 qc = vc kc  

  = vf kj / 4 5 

with a free-flow speed of 100 km/h and a jam density of 100 veh/km (e.g. a stationary queue of 
passenger cars with a jam spacing of 10 m/veh), the critical flow becomes: 

 qc = 100 x 100 / 4 

  = 2500 veh/h 

Figure 2.1 illustrates what are commonly known as the three fundamental diagrams relating speed, 
flow and density and can found in most textbooks on classical traffic flow theory, e.g. May (1990) 
and Taylor, Bonsall & Young (2000).  The relationships in Figure 2.1 have been useful for the basic 
understanding of traffic flow and control, especially for uninterrupted facilities such as freeways. 
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Flow q 

vc = vf /2 

vf 

Density k 
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kc kj 
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qm 

Flow q 

vf 

Speed v 

 

Figure 2.1:   Fundamental diagrams assuming linear speed-density relationship 
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Traffic science is a relatively new discipline and has become popular amongst academics and 
researchers only after the Second World War and with the advance of computers.  The collection 
and analysis of traffic data was often quite limited.  A measurement time slice of 15 min was 
commonly adopted but such a long aggregate time period often masks out important traffic 
phenomena.   

Traffic data analysis and applications now employ time slices of 20 s or even smaller with data 
collection carried out on 24-hour 7-day basis.  This level of detail has enabled the development of 
intelligent transport systems (ITS) amongst road agencies in Australia.  These include incident 
detection systems in the 1980s (Luk & Sin 1992), the calculation of travel times in Drive Time in the 
1990s (Hearn et al. 1996) and more recently the monitoring of congestion in real-time promoted as 
part of a revised National Performance Indicators Program (Troutbeck, Su & Luk 2007).   

Figure 2.2 illustrates the difference between a speed-flow curve based on data from 20 s and      
15 min time slices from a pair of loop detectors in the middle lane of an inbound freeway 
carriageway in Melbourne (Akcelik, Roper & Besley 1999).  Note the loss of information due to 
aggregation into 15 min data as mentioned earlier.  The maximum flow or capacity using a 20 s 
time slice was 3,200 veh/h per lane whereas it became 2,300 veh/h per lane at a 15 min time slice.  
The study further identified that the occupancy at maximum flow was 25% at a 5 min time slice.   

The test site in Akcelik, Roper and Besley (1999) was purposely chosen to be away from any 
bottleneck and their data is therefore unsuitable for analysing flow breakdowns in the context of 
this project.  The intent of their work was also to develop speed-flow relationships in congested and 
uncongested regimes largely for planning purposes.  Further, flow breakdown analysis will require 
data from more than one single detector at a bottleneck (Banks 1990, Hall, Hurdle & Banks 1992) 
and preferably from a network context (i.e. a whole freeway route) to identify shock waves 
(Sections 2 and 3 of this report). 

 

Source: Akcelik, Roper & Besley (1999) 

Figure 2.2:   Speed-flow data measured at time slices of 20 s and 15 min 

The concept of capacity is critical for the understanding of flow breakdowns.  Capacity is unlikely to 
be a fixed number but a variable from a stochastic process that depends on traffic dynamics, traffic 
composition, weather conditions and geometric designs.  It is important to note again the influence 
of the size of time slices on capacity.  A 20 s slice shows a much higher capacity value than a 15 
min slice as expected.  A high capacity value of 3200 veh/h per lane raises the question of what 
should be a suitable size for the understanding of flow breakdowns.  Traffic flow at a 20 s slice is 
too random to decipher a pattern and overseas work has employed a 1 min slice.  These issues 
will be addressed as the project progresses (see also Section 3.3). 
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2.2 Kinematic Wave Model 
An extension of the fundamental relationships is to consider speed, flow and density as functions 
of time (t) and space (x), and they are not independent parameters.  For example, flow is a function 
of density k, which is a function of time t.  A model that considers the traffic process in time and 
space is the kinematic wave model of Lighthill and Whitham (1955), which is more suitable for high 
density conditions and therefore has its place in analysing flow breakdowns.   

The kinematic model assumes that high density traffic will behave like a continuous fluid (hence 
also called a continuum model).  Consider the flow in and out of a short length of road Δx.  The 
condition of continuity requires that if the density of vehicles has increased it must have been due 
to a difference in the amounts flowing in at one end and out at the other, or: 

 
x
q

t
k

∂
∂

+
∂
∂

 = 0 6 

where q is the flow (veh/h) 

 k is the density (veh/km) 

 x is distance (km) 

 t is time (h) to travel a distance of x km. 

With q as a function of density k, Lighthill and Whitham developed Equation 6 further into the LW 
model as follows: 

 
x
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k
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t
k

∂
∂

∂
∂

+
∂
∂

 = 0  7 

Define below a wave speed U that represents the speed of waves carrying continuous changes of 
vehicle flow in a traffic stream: 

 U = 
k
q
∂
∂

 

then 
x
kU

t
k

∂
∂

+
∂
∂

 = 0  8 

Because q = v k from Equation 1, the wave speed: 

 U = 
k
vk
∂

∂ )(
 

  = 
k
vkv
∂
∂

+   9 

Because speed decreases with density, 
k
v
∂
∂

 is always negative (Figure 2.1) and the wave speed U 

is therefore always less than the space mean speed v.  
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The relationship between space mean speed (v) and wave speed (U) are illustrated in the flow-
density diagram in Figure 2.3, which also shows the shock wave speed (USW).  The following 
observations can be made (Wohl & Martin 1967): 

 At low densities when vehicle-to-vehicle interactions are minimal, 
k
v
∂
∂

 is almost zero and the 

wave speed is similar to the space mean speed.  The wave moves forward relative to the 
road. 

 At the maximum flow and critical density, the wave is stationary.  At densities higher than the 
critical density (kc), the wave moves backward relative to the road.   

 The wave speed changes with density according to Equation 9 and a traffic stream can have 
different densities at different sections of a freeway.  A section of light traffic could follow a 
section of high density due to a decrease in lanes, an accident or on-ramp traffic.  The wave 
in the low density traffic moves forward (relative to the freeway) at a speed faster than the 
wave in the high density traffic.   

 When the two waves meet, a new wave called a shock wave will be formed.  All three waves 
move forward for the situation shown in Figure 2.3.  The shock wave speed USW is given by: 

 USW = 
12

12

kk
qq

−
−  10 

 

  

k2 k1 

q1 

q2 

Wave speed U = ∂q/∂k 
Flow q 

Density k 

Shock wave speed USW 

Vehicle speed v = q/k at k2 

 

Figure 2.3:   The relationship between vehicle speed, wave speed and shock wave speed 

Figure 2.4 illustrates the case for a negative shock wave speed due to capacity decrease at a 
bottleneck (e.g. lane drop) on a freeway.  Two fundamental diagrams are required.  The inner 
diagram represents the characteristics of the bottleneck with capacity qb less than the approach 
section.  The approach flow qa is larger than qb and a complex queuing situation occurs at the entry 
to the bottleneck.   
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The density at the bottleneck entry suddenly increases from the density at C to the density at E in 
Figure 2.4.  The wave speed at E is negative with respect to the freeway and will be reflected from 
the bottleneck back to the approach section.  The reflected wave will meet the oncoming wave 
corresponding to the slope at C.  A shock wave of negative speed relative to the freeway is formed.  
The effect of the bottleneck will be reflected along the entire approach section if the arrival flow 
remains constant, with a consequent loss of maintaining capacity flow (qm).   

Edie and Foote (1958) reported how shock waves were generated at an upgrade leading to the 
Holland Tunnel exit in New York.  The shock waves propagated backward towards the tunnel entry 
with inefficient traffic flow.  The solution was to control the entry of vehicles into the tunnel so that 
the entry flow did not exceed the capacity of the bottleneck section.  The vehicles entered in short 
platoons of about 40 veh every 2 min with a 10 s gap between platoons. 

Maximum capacity q m 
C

E

Shock wave speed 

Speeds of vehicles 
in queue 

Speed of vehicles 
approaching queue 

Bottleneck capacity q b 

Speed of approaching wave 
Flow q 

Density k 

Speed of reflected wave 

 

Figure 2.4:   Fundamental diagrams of a bottleneck section and the approach section 

The kinematic model can be solved using the finite difference (or finite element) method and has 
continued to be an interesting area of research (see, e.g. Leo & Pretty 1992, Michalopoulos 1988, 
Ngoduy, Hoogendoorn & Van Zuylen 2006, Papageorgiou 1983, Payne 1971).  At the University of 
Queensland, Leo and Pretty were able to model the propagation of congested density upstream in 
a freeway lane drop situation and platoon movements in a pair of coordinated signals at very small, 
discrete levels of time (0.5 to 1 s) and space (about 15 m) but have not further pursued their 
research since the early 1990s.   

The LW model is a first order model with limitations such as (Papageorgiou 1998):  

 Assume that vehicle speeds can change instantaneously, i.e. large values of acceleration 
and deceleration rates are assumed possible at a bottleneck (E in Figure 2.4). 

 Predict that the tail-end of a platoon on arterial roads will speed up to catch up with the main 
platoon when it is more common to observe a dispersed rear-end. 

 Assume that outflow (qb) at a freeway bottleneck is best achieved with some congestion at 
the bottleneck entry.  This is equivalent to assuming that the outflow cannot be increased by 
avoiding mainline congestion, i.e. no control.  The reality is that some control of a bottleneck 
(if possible) can improve throughput.  
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Second order LW models have been proposed (Daganzo 2006, Papageorgiou, Blosseville & Haj-
Salem 1990, Payne 1971, Schonhof and Helbing 2007) to overcome these limitations.  Kinematic 
models can contribute towards the understanding of freeway flow breakdowns and will be revisited 
as the project progresses. 

2.3 Automatic Freeway Control Tools 
Automatic freeway control tools aim to improve the efficiency or safety of the mainline traffic 
movement.  They represent the more commonly employed control tools on freeways.  They have 
been in operation in overseas and Australian cities.  Control tools relevant to the identification and 
management of flow breakdowns are as follows: 

 automatic incident detection (AID) system 

 ramp metering  

 variable speed limit signs (VSLSs)  

 driver information systems (DISs) 

 traffic lane management systems. 

2.3.1 Automatic Incident Detection (AID) 
A traffic event that results in the loss of freeway flow efficiency can be due to recurrent congestion 
or a non-recurrent incident.  A freeway AID system generally aims to detect non-recurrent events 
(flow breakdowns) after they have occurred.  The traffic management centre (TMC) then initiates 
incident management plans to resolve the incident.  Ramp metering and VSLS generally aim to 
prevent flow breakdowns before they occur.   

A freeway AID system identifies unusual changes in speed, flow and occupancy due to planned 
and unplanned events such as vehicle breakdowns and roadworks.  An operator at the TMC 
receives a warning automatically when an incident is identified.  The infrastructure of lane-by-lane, 
dual loop detector stations and the incident parameters of 500 m spacing and 20 s time slice was 
introduced initially on the South Eastern Arterial in Melbourne (now part of the CityLink) 
subsequent to a major incident in the 1980s.  As mentioned, the infrastructure has been most 
useful for the development of incident detection systems, driver information systems, network 
performance monitoring, speed limit signs and ramp metering. 

The characterisation of an incident and hence its detection in real time (Luk & Sin 1992) was based 
on the time series analysis of speed, flow and occupancy, and by comparison of these parameters 
between adjacent detector stations and between lanes of the same station.   

Dia and Rose (1997) continued the research by employing an artificial neural network (ANN) to 
calibrate more accurately the detection algorithm.  They collected traffic data associated with 50 
incidents identified on Melbourne’s freeways.  The use of ANN for incident detection has continued 
at the Nanyang Technological University in Singapore (Mak & Fan 2004) and other academic 
institutions. 

The characterisation of a flow breakdown is closely related to the characterisation of an incident.  
Some of the related issues are: 

 A freeway incident is an unplanned event due to, e.g. road crashes or vehicle breakdowns on 
a freeway.   



Freeway Traffic Flow under Congested Conditions: Literature Review 

 

 
 

A u s t r o a d s  2 0 0 8  

— 10 — 

 Flow breakdowns could be due to unplanned events, planned events (e.g. road works), over 
saturation, or a range of reasons mentioned in Section 1 (merge area, lane drop, upgrade, 
driver behaviour, etc.).  The focus of this project is on recurrent congestion and the 
characterisation of flow breakdowns due to factors other than over saturation.   

 The characterisation of flow breakdowns can be carried out offline (and will be an offline 
exercise for this project).  Ultimately, this process will have to be undertaken in real time to 
facilitate the application of ramp metering and other freeway control tools.  The research into 
real-time ANN (or other similar techniques) is continuing but the limitation of these artificial 
intelligence techniques as essentially offline tools must be recognised. 

2.3.2 Ramp Metering  
Ramp metering began in the US in the early 1970s (Payne, Thompson & Isaken 1973) and in the 
UK in the late 1980s (Owens & Schofield 1988).  It reduces the on-ramp flow so that the mainline 
demand is maintained at or just below capacity and therefore reduces the occurrences of flow 
breakdowns.  All motorists using the freeway will benefit because the ultimate capacity and 
inherent safety of the freeway is maintained (Lowrie 1996).  Ramp metering also improves traffic 
conditions at the ramp merge point because it prevents the formation of small platoons at an on-
ramp.  On-ramp traffic can then merge easier and there is less interruption to the mainline flow and 
improved safety at the merge point. 

A ramp metering signal was installed in Brisbane in 1987 to resolve a bottleneck on the South East 
Freeway downstream of the Birdwood Road on-ramp (Blinco 1988).  The Brisbane system 
employed 1 min data using a single loop per lane in a detector station (speed was estimated by 
assuming an average vehicle length).  The bottleneck capacity was first determined and was found 
to be 4800 veh/h but dropped to 3600 veh/h during congested periods.  The bottleneck threshold 
could be changed by a TMC operator to account for wet weather conditions.  The system then 
predicted the real-time demand at the bottleneck.  Prediction was found necessary to allow time (1 
to 2 min) for the on-ramp flow to be reduced.  The permitted ramp flow was set equal to the 
bottleneck capacity less the mainline flow upstream of the on-ramp.   

The system was successful in reducing the duration of congested flow at the bottleneck by 30%, 
with a corresponding 19% reduction in ramp flow.  The benefits were however constrained by 
queuing from the on-ramp to the surface streets and the reality that the mainline freeway flow could 
not be gated to clear bottlenecks once flow breakdowns occur.  The system effectively deferred the 
onset of congested flow.   

Figure 2.5 illustrates this first generation of ramp metering in Australian cities.  Plans are in hand to 
meter other adjacent ramps on this freeway in Brisbane in a coordinated manner. 
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Source: Blinco (1988) 

Figure 2.5:   The ramp metering system in Brisbane installed in 1987 

Ramp metering is a continuing area of research in Europe (e.g. Kosmatopoulos et al. 2006, 
Papageorgiou, Hadj-Salem & Middelham 1997).  An assessment of 20 on-ramps equipped with 
metering on a motorway in the Netherlands showed reductions in travel time ranging from 3 – 10% 
(Taale & Middelham 2000).   

The Minnesota Department of Transportation switched off the entire ramp metering network in the 
Twin Cities area in St Paul for six weeks from October 16 to December 8, 2000 to determine the 
benefits of using ramp metering (which was a controversial issue in St Paul).  Cambridge 
Systematics (2001) reported the following results: 

 freeway flow decreased by 7% (14% in peak period) 

 travel time increased by 22% (7% reduction in speeds) 

 road crashes increased by 26%. 

Apart from Brisbane, ramp metering has also recently received interest in Auckland (Auckland 
Motorways n.d.) and Melbourne (Gaffney 2007, Transurban 2006, VicGov 2006) and Perth 
because of increasing congestion on the freeways of these cities.   

As mentioned, the aim of ramp metering is to maximise the mainline flow by controlling the amount 
of flow entering from the on-ramps without adding an unacceptable amount of delay to on-ramp 
traffic.  The issues that need to be addressed include: 

 For urban freeways, there may not be enough storage space on the entry ramps to store 
queuing vehicles.   

 The equity issue of balancing the delay of ramp traffic and maximum throughput of the 
mainline flow must be recognised.  This issue is not new and is similar to minimising side-
street delay and maintaining good platoon progression on an arterial road. 

 The best way to characterise flow breakdown in recurrent congestion and how to deploy a 
control tool such as ramp metering to delay or prevent a breakdown needs investigation.  
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 It is difficult to meter mainline traffic on a freeway in a manner similar to the Holland Tunnel in 
New York (Edie & Foote 1958; Section 2.2).  Without such metering, any improvement in 
mainline flow will invariably attract more traffic.  An alternative measure is freeway 
congestion pricing as used in Singapore (Luk 1999) when congestion tolls are varied to keep 
freeway speeds in the range 45 – 65 km/h, but congestion pricing has yet to be implemented 
as a demand management tool in Australia and New Zealand cities. 

Ramp metering can be at an isolated local level and has been implemented on various on-ramps in 
Brisbane and Melbourne.  As mentioned, VicRoads will soon be trialling also the benefit of 
coordinating a network of six entry ramps on the inbound direction of Monash Freeway.  A 
coordinated metering scheme offers the opportunity of spreading entry flows more evenly over 
several on-ramps. 

2.3.3 Variable Speed Limit Signs (VSLSs) 
VSLSs have been in use for many years on motorways in the Netherlands (Jenezon, Klijnhout & 
Langelaar 1987) and more recently in London (Highways Agency n.d.), Melbourne, Sydney and 
Brisbane (Bean 2002, Herley & Lennie 2007).  In Europe, these signs generally aim to reduce 
secondary road crashes by advising drivers upstream of a primary incident to slow down, 
especially in harsh weather conditions.   

VSLSs have been used also for a range of purposes as follows: 

 reduce flow breakdowns 

 reduce road crashes 

 increase motorway efficiency 

 provide general speed management during planned events such as road works or sports 
events. 

Figure 2.6 illustrates the formation of a shock wave subsequent to an accident on the M25 in 
London and how lower speed limits (60 mph, 50 mph and 40 mph) were then implemented to 
protect the queues formed. 

In the May 2007 National Variable Speed Limit Forum, Herley and Lennie (2007) reported the 
following statistics on Queensland motorways: 

 up to eight hours of flow breakdowns  

 minimum speeds in 100 km/h zones during peak hours as low as 15 km/h 

 standard deviations of traffic speeds up to 25 km/h 

 approximately 35% of road crashes in peak periods 

 about 50% of peak period crashes being rear-end crashes 

 about 20% of road crashes occurred during harsh weather conditions 

 up to 50% of crashes in harsh weather conditions being rear-end crashes. 

VSLSs are another useful freeway control tool to reduce flow breakdowns and road crashes and 
maintain efficient traffic flow.  This project aims to gain better understanding of the flow breakdown 
process and hence better use of this tool. 
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Source: Highways Agency (n.d.) 

Figure 2.6:   Variable speed limits to avoid flow breakdowns on M25 in London 

2.3.4 Driver Information Systems (DISs) 
DISs can take many forms that include roadside variable message signs (VMSs), radio 
broadcasting, Internet access, highway radio, SMS and other personal subscribed services.  An 
example of traveller information from a VicRoads website is shown in Figure 2.7.  A DIS can 
provide information for a traveller to: 

 be aware of road network conditions and conditions en route, e.g. the Drive Time System in 
Melbourne (Hearn et al. 1996) 
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 change travel mode before a trip starts from car mode to, say, public transport if severe 
congestion has occurred 

 change to a different destination if car travel is considered necessary 

 change routes and get off from a congested freeway if possible to avoid severe bottlenecks  

 change lanes on a freeway in the case of an incident  

 reduce speeds where appropriate at specific locations for safety reasons. 

A VSLS is, naturally, a particular case of a DIS that advises drivers to reduce speeds on a freeway 
corridor to avoid road crashes (e.g. in harsh weather conditions) or flow breakdowns in recurrent 
congestion.  DISs have yet to be fully exploited amongst road authorities to manage a road 
network but are expected to play more important roles as the larger cities in Australia and New 
Zealand become more congested. 

 

Source: http://traffic.vicroads.vic.gov.au/trafficinfo/default.aspx?width=1024
Note: red – heavy congestion, yellow – medium congestion, green – light congestion as recorded at 5:16 p.m. on 4 April 2007; 

Figure 2.7:   Traveller information from VicRoads 

2.3.5 Traffic Lane Management System 
The capacity of a carriageway in the peak period can increase if the shoulder lane in the peak-flow 
direction is opened for traffic.  This measure can be achieved by time-of-day using a static sign or 
a VMS and has been adopted in congested cities.   

Further, contra-flow operation has been introduced on freeways and arterial roads where tidal 
flows occur.  For example, more lanes are allocated to the southbound direction in the morning 
peak period at the Sydney Harbour Bridge and more lanes in the northbound direction in the 
afternoon peak.  This operation was previously a manual operation many years ago but has 
become traffic adaptive according to prevailing conditions at the Sydney Harbour Bridge and other 
river crossings in Sydney (Longfoot 1984). 
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The traffic lane management system is essentially a road space reallocation system and offers the 
potential to reduce flow breakdowns on freeways.  With improving driver information and other ITS 
technologies, traffic adaptive lane management systems will become more prevalent. 

2.4 Summary 
Classical traffic models have been useful for the development of relationships amongst speed, flow 
and occupancy (density).  These relationships are macroscopic by nature and have provided the 
basic understanding of a traffic process and for application of automatic freeway control tools.   

The review of basic freeway traffic flow theory has confirmed the validity of the concept embedded 
in the first order Lighthill-Whitham model.  The model forms the basis of flow breakdowns in an 
analytical framework.  Active research in second order models with solutions obtained by the finite 
difference method is on-going.  However, analytical models are unlikely to be able to capture 
driving behaviour before, during and after flow breakdowns. 

Various tools have been employed for freeway control in Australian cities.  These include ramp-
metering, incident detection, VLSLs, driver information tools and lane management.  They are 
already in operation and some already make use of more traditional, macroscopic models of traffic 
flow.   

In recent years, freeway data at a detailed level with small time slices and high density of detector 
stations has been available in Australian and overseas cities.  There has also been renewed 
interest in the physics of traffic flow, especially amongst researchers in Europe.  Their research will 
be reviewed in Section 3. 

The objective of this project, as mentioned, is to make better use of freeway control tools from a 
better understanding of the flow breakdown process through the study of empirical spatio-temporal 
maps of traffic data. 
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3 MODELS FOR THE CHARACTERISATION OF FREEWAY 
CONGESTED FLOWS 

The literature review on freeway congested flow continues in this section with the following 
contents: 

 freeway congested flow model of two states as adopted in the US Highway Capacity Manual 
(HCM) (Banks 1990, Hall, Hurdle & Banks 1992, Transportation Research Board (TRB) 
2000) (Section 3.1) 

 three state model promoted by Kerner (2004), largely based on 1 min data from German 
motorways (Section 3.2) 

 other models that include the stochastic concept of freeway capacity (Brilon, Geistefeldt & 
Regler 2005, Kerner 2007a, Kerner 2007b, Kerner 2007c, Schonhof & Helbing 2007) 
(Section 3.3). 

As mentioned in Section 1, the factors that lead to recurrent flow breakdowns on freeways include 
mainline flow that exceeds freeway capacity, uncontrolled access from on-ramps, inadequate road 
geometries, or erratic driver behaviour when the freeway is near maximum flow.  This section aims 
to study how various models published in the past deal with the characteristics of these 
breakdowns. 

3.1 Two Phase HCM Model 
A conventional understanding of the formation of congested flow conditions is that a queue would 
form upstream of a bottleneck due to conditions such as lane drop, merge area, weaving section or 
upgrade.  The trailing edge of the queue moves upstream at a rate depending on demand and 
capacity conditions.  When the tail of this queue reaches any upstream location, freeway operation 
moves from the uncongested regime to the congested regime, at approximately the same flow 
(Section 2.1). 

The HCM 2000 (TRB 2000) and the earlier 1986 edition have advocated the need to consider 
maximum flows or capacities of a freeway segment in two regimes or phases.  Two maximum flow 
rates can be identified as follows: 

 Maximum flow when flow is stable – this is the maximum flow before the formation of a 
queue at a bottleneck, i.e. the maximum pre-queue flow. 

 Maximum queue discharge flow – this is the maximum flow after a queue is formed and is 
associated with a speed drop, and has been found to be less than the pre-queue maximum 
flow rate.  A possible reason for this decrease in flow rate is driver caution – departures from 
a freeway queue require more care because drivers may not be aware of conditions 
downstream.  This is in contrast to a start-up queue at a signalised approach where 
maximum flow is achieved even though different vehicles have different acceleration rates. 

There have been debates on where the maximum flows should be measured.  Hall and 
Agyemang-Duah (1991) argued that the two phases are observable only if detectors are located at 
some distance upstream of a bottleneck, and that there is only one congested regime if they are at 
a bottleneck.   

In a study of a bottleneck on a four-lane freeway near San Diego (Interstate 8), Banks (1990) 
measured the above two maximum flow rates.  The frequency distribution polygons of the counts 
on the fast lane are shown in Figure 3.1.  The results clearly showed that there is a statistically 
significant difference between the two flow rates.   
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Source: Banks (1990) 

Figure 3.1:   Frequency distribution polygons of vehicle counts on the fast lane 

Hall, Hurdle and Banks (1992) finalised a speed-flow diagram as shown in Figure 3.2 which is 
adopted in the HCM 2000 (Figure 3.3).  The diagram overcomes the following issues: 

 the parabolic shape in uncongested flow is no longer used; speed remains quite similar until 
the degree of saturation or volume/capacity ratio reaches 0.75. 

 the queue discharge regime is included in the speed-flow diagram. 

 two maximum flow rates are used, one for the stable, pre-queue regime and another for the 
queue discharge rate (which is lower than the maximum pre-queue flow rate). 

As mentioned, ramp metering is useful for reducing on-ramp flow so that the mainline demand is 
maintained at or just below capacity and therefore reduces the occurrences of flow breakdowns 
and also improves traffic conditions at the merge point. 

Hall, Hurdle and Banks (1992) also suggested that much more research is needed in 
understanding freeway congested flow.  The vertical segment in Figure 3.2 or Figure 3.3 is not 
really a speed-flow function, but is plotted on a graph without the location axis.  It is therefore 
important to analyse flow-breakdowns in spatio-temporal diagrams described in the following 
section. 
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Figure 3.2:   Generalised speed flow relation for a typical freeway segment 
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Figure 3.3:   Speed-flow relationship for freeway in HCM 2000 

3.2 Three Phase Model  
This section reviews the three-phase model of Kerner (2004) and includes: 

 definition of three traffic phases 

 empirical probability nature of traffic breakdown 
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 engineering applications of three-phase theory (FOTO and ASDA) 

 freeway control application (ANCONA) 

 comments on Kerner’s three-phase model. 

3.2.1 Three Traffic Phases 
Kerner and Rehborn (1996) first proposed the classification of freeway traffic flow into three phases 
based on time series of flow, occupancy, and average speed.  Kerner (2004) later completed the 
three-phase traffic theory based on earlier work.  In the three-phase traffic theory, there are two 
traffic phases in congested traffic, synchronised flow and wide moving jam, defined as follows:  

 A synchronised flow is a congested traffic state and the downstream front of this flow is often 
fixed at a freeway bottleneck.  Within the downstream front of synchronised flow, vehicles 
accelerate from lower speeds in synchronised flow to higher speeds in free-flow. 

 A wide moving jam is a moving jam that maintains the mean velocity of the downstream jam 
front, even when the jam propagates through any other traffic states or freeway bottlenecks.  

The three traffic phases are therefore free-flow (F), synchronised flow (S) and wide moving jam (J). 

Figure 3.4 illustrates the traffic phase definition of synchronised flow and wide moving jams (Kerner 
2004).  The data in Figure 3.4 came from a section of Autobahn 5-South freeway near Frankfurt, 
Germany.  There are three bottlenecks labelled as B1, B2 and B3.  Average 1 min speed data in 
space and time is shown in (a).  A two-dimensional graph of the same data with the free-flow 
phase in white, the synchronised flow phase in grey, and the wide moving jam phase in black is 
shown in (b). 

 

 

Figure 3.4:   Synchronised flow and wide moving jams in congested traffic 

The three-phase traffic theory explains the complexity of traffic phenomena based on phase 
transitions among these three traffic phases.  For example, transitions can be spontaneous F→ S 
or induced F→ S, and their complex nonlinear spatio-temporal features.  In Kerner’s three-phase 
theory, a transition from F→ S is a flow breakdown (Kerner 2004, Kerner et. al. 2005).   
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An induced F→ S transition is caused by a short-term external disturbance in traffic flow. This 
traffic flow can be related to the propagation of a moving spatio-temporal congested pattern that 
initially occurs at a different freeway location.  Figure 3.4 (a) shows an example of induced F→ S 
transition – the wide moving jam propagated through the bottleneck location B2 and induced the 
synchronised flow at this bottleneck. 

Figure 3.5 shows an example of spontaneous F→ S transition.  This breakdown phenomenon or 
F→ S transition is caused by an internal local disturbance (e.g. an on-ramp bottleneck) in traffic 
flow. There are no external disturbances in traffic flow responsible for this phase transition  

 

Figure 3.5:   An example of spontaneous F→ S transition 

The F→ S transition or breakdown phenomenon usually occurs at the same freeway bottleneck.  
These bottlenecks are called effectual bottlenecks in Kerner’s model.  Examples of effectual 
bottlenecks are the bottleneck in Figure 3.5 and B1, B2, and B3 in Figure 3.4. 

Based on different combinations of traffic phases, different congested patterns are formed.  Kerner 
studied traffic flow on the A5 freeway over a large number of days and found that the spatio-
temporal structure of congestion patterns exhibits predictable features.  These features can be 
used to forecast freeway congestion and develop effective freeway control tools such as 
mentioned in Section 3. 

Lindgren (2005) also investigated a 30 km section of A5 freeway north of Frankfurt and found 
some similar traffic patterns that match Kerner’s three traffic phases.  In Lindgren’s A5 freeway 
study, traffic flows were observed in which speeds across all lanes were notably lower than in free-
flowing conditions, and they were more consistent across all lanes.  This phenomenon was 
observed in congested flows upstream of the bottleneck following activation.  This pattern matched 
Kerner’s synchronised flow phase.  Lindgren also revealed several occurrences of congested 
patterns in which a relatively short duration traffic disturbance travelled several kilometres 
upstream.  This pattern matched Kerner’s wide moving jam. 

Lindgren’s study represented some of the first apparent independent validation of Kerner’s traffic 
phase findings (Lindgren 2005, Lindgren et. al. 2006).  However, Lindgren also offered different 
analysis techniques and comments on Kerner’s work are reported in Section 3.2.5. 

Further, Brilon et al. (2005) also showed that three traffic flow states exist in a freeway: fluent traffic 
state, congested traffic state and a transient state that occurs in each breakdown and recovery of 
traffic flow.  Their study will be examined further in Section 3.3.1. 
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3.2.2 Empirical Probabilistic Nature of Traffic Breakdown  
Kerner (2004, 2007a, 2007c) found that the traffic breakdown exhibits a probabilistic nature.  At a 
given flow rate, traffic breakdown at a freeway bottleneck can occur but it may not necessarily 
occur.  

The probability for an F→ S transition, i.e. a traffic breakdown, (PFS
(B)) at a bottleneck is an 

increasing function of the flow downstream of the bottleneck qsum as shown in Figure 3.6 and 
Figure 3.7.  qsum is the sum of the flow on the on-ramp qon and mainline upstream flow qin.  There is 
a threshold flow rate qth

(B) and a critical flow rate qmax
(B).  Regardless of free-flow control application 

there is a range when qth
(B)  ≤ qsum ≤ qmax

(B) within which traffic flow breakdowns can occur with 
probability PFS

(B) > 0. 
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Figure 3.6:   Probability of traffic breakdown 

 

qsum = qin+qon
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Figure 3.7:   Traffic flow downstream of a bottleneck (qsum) 

A flow breakdown, if due to a speed disturbance in free flow in the neighbourhood of a bottleneck, 
occurs only when the speed decreases below a critical speed.  The critical speed depends on the 
qsum.  The smaller the qsum, the lower the critical speed required for breakdown.  The probability for 
traffic breakdown PFS

(B) is the probability of random critical speed disturbances appearing at the 
bottleneck.  Disturbances with small amplitudes in free flow at the bottleneck do not lead to 
breakdown.  However, if a random short-term speed disturbance in free flow at the bottleneck 
exceeds some critical values, traffic breakdown occurs.  

Kerner (2007a) stated that empirical fundamental features of probabilistic traffic breakdown cannot 
be explained and cannot be predicted by earlier freeway flow models. 
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3.2.3 The FOTO and ASDA Analysis Tools 
To recognise and track the spatio-temporal congested traffic patterns at freeway bottlenecks based 
on the three-phase theory, Kerner developed the FOTO and ASDA models (Kerner 2004, Kerner 
et. al. 2004).  

FOTO is used to recognise the location of the upstream and downstream fronts of synchronised 
flow.  ASDA is used to recognise the upstream and downstream fronts of wide moving jams.  Both 
could track these fronts in time and space (Figure 3.8).  In these models, artificial intelligence 
(fuzzy inference system) is used to classify the traffic phases based on local measurements.  

Traffic flow

FOTO and ASDA models:
1. Recognition of traffic phases: 

F: free flow S: synchronised flow J: wide moving jams 
2. Tracking of traffic phases      

F J1 F S J2 S F

Xup
(jam1) (t) Xdown

(jam1) (t) Xup
(syn) (t) Xdown

(syn) (t)Xup
(jam2) (t) Xdown

(jam2) (t)

Traffic flow

FOTO and ASDA models:
1. Recognition of traffic phases: 

F: free flow S: synchronised flow J: wide moving jams 
2. Tracking of traffic phases      

F J1 F S J2 S F

Xup
(jam1) (t) Xdown

(jam1) (t) Xup
(syn) (t) Xdown

(syn) (t)Xup
(jam2) (t) Xdown

(jam2) (t)  

Figure 3.8:   Illustration of FOTO and ASDA model approach 

The FOTO and ASDA softwares have been installed in the whole freeway network in the state of 
Hessen in Germany with approximately 2500 double loop detectors and 1200 km of freeway 
network.  Kerner also applied FOTO and ASDA models on American freeways in California (Los 
Angeles) based on 30 s stationary detector measurements of flow rates and occupancy.  

Kerner compared German and USA freeway applications and claimed that the FOTO and ASDA 
models could recognise and track all congested patterns with similar accuracy in different road 
networks, and without much effort in re-calibration.  

3.2.4 Freeway Control Application Based on Three-phase Theory 
Kerner and colleagues further presented freeway control methods based on the features of the 
breakdown phenomenon and congested pattern that emerge at freeway bottlenecks (Kerner et al. 
2005, Kerner 2007a, Kerner 2007c).  The ANCONA on-ramp metering system is an example.  

A u s t r o a d s  2 0 0 8  

— 22 — 



Freeway Traffic Flow under Congested Conditions: Literature Review 

 

 
 

The ANCONA approach is different from earlier on-ramp metering methods that are based on the 
free-flow approach.  The fundamental diagram in Figure 3.9 explains the theoretical background of 
free-flow approach.  The downstream bottleneck capacity qcap in this approach is related to the 
maximum flow of the flow-occupancy diagram. Traffic congestion upstream of the bottleneck 
occurs only when upstream flow exceeds qcap.  Free-flow approaches aim to maintain the free-flow 
at the bottleneck by keeping the downstream occupancy close to a chosen optimal occupancy.  
This optimal occupancy should be less than the critical occupancy ocr (when maximum flow qcap 
occurs; Section 2).  This theory is in contradiction with the probability of traffic breakdown in the 
three-phase theory - the probability of traffic breakdown is very close to one if the downstream 
occupancy is very close to the critical occupancy (Figure 3.6).  

Occupancy

Flow rate qsum

ocr

qcap

Occupancy

Flow rate qsum

ocr

qcap

 

Figure 3.9:   Fundamental diagram of free-flow control approach 

The ANCONA approach aims to control the congested pattern localised on the mainline in a small 
neighbourhood of the bottleneck.  The ANCONA detector is located at the upstream of an effectual 
bottleneck (Figure 3.10).  The on-ramp metering adjusts the ramp flow qon based on the average 
speed vdet measured at the feedback control detector.  If vdet drops down to equal or below a 
chosen congested speed vcong, which means a spontaneous traffic breakdown (F→ S transition) 
has occurred, the on-ramp metering then starts to reduce the ramp flow qon.  This will achieve a 
phase transition S→F and return to normal uncongested flow.  When vdet increases to above vcong, 
the on-ramp meter starts to allow greater ramp flow qon to merge into the mainline.  A F→ S 
transition may appear again, and the on-ramp meter reduces qon again.  Figure 3.11 illustrates the 
phase transition of this control approach. 

Kerner further observed that: 

 under a small enough on-ramp flow qon, S→F transition can easily occur 

 within the synchronised flow, the average speed is relatively high (about or more than 
60 km/h) 

 no wide moving jams are formed spontaneously within the high speed synchronised flow 

 the synchronised flow pattern can propagate upstream, but only at the localised area 
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 under a very high traffic demand when congestion has to occur somewhere in the traffic 
network, ANCONA tries to achieve greater throughputs.  
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Figure 3.10:   Location of ANCONA detectors 
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Figure 3.11:   Theoretical background of ANCONA 

Kerner (2007a, 2007b, 2007c) claimed the benefits of ANCONA as follows: 

 prevention of upstream propagation of congestion 

 greater throughputs at the bottleneck  
 shorter waiting time at the light signal in the on-ramp lane. 

3.2.5 Comments on Kerner’s Three-phase Model 
Lindgren (2005) and Schonhof and Helbing (2007) investigated the same section of A5 freeway 
traffic flows as Kerner did.  Lindgren reviewed Kerner’s work on three-phase models and 
commented that Kerner and colleagues had not made their data available to other researchers. 

Lindgren made the following observations:  

 Kerner’s time series plots cannot show excess accumulation (queuing) between 
measurement locations resulting from bottleneck activation.  Therefore, Lindgren applied a 
cumulative count curves technique that was used to complement the three-phase models to 
observe transitions between free flows to queued conditions and identify time-dependent 
traffic features of bottlenecks.  Figure 3.12 shows the bottlenecks in time and space identified 
by Lindgren. 
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 Kerner and colleagues only investigated a limited number of days and bottlenecks of A5, 
which failed to consistently determine the spatio-temporal limits of bottleneck activation 
before computing characteristics such as discharge flow.  Lindgren investigated 81 
bottleneck activations and deactivations, where queued traffic prevailed upstream of each 
bottleneck and un-queued traffic was present downstream.  

 Kerner suggested that there was up to a 50% capacity difference between free-flow and 
congested traffic, and claimed that there was significant variability of discharge flows. 
However, Lindgren found that high flows existed particularly in the mid and left lanes for 
several minutes prior to bottleneck activation.  The bottleneck discharge flows in Lindgren’s 
study were found to be essentially reproducible over several days, across all lanes and in the 
individual lanes.  

 Kerner suggested that traffic congestion can form and traffic can self-organise without a 
physical bottleneck.  However, it was shown that all 81 bottlenecks diagnosed in Lindgren’s 
study, activated at a predictable location (e.g. merge, diverge, vertical curves) and appeared 
to be linked to particular triggers rather than to have occurred spontaneously.  

 
Figure 3.12:   A5 speed contour diagram in Lindgren’s study – 1 min data 

Schonhof and Helbing (2007) introduced a six traffic phase model (see also Section 3.3.2) and 
commented on Kerner’s three-phase theory as follows: 

Kerner claimed that the three-phase theory is the only theory that can describe the empirical 
phenomena accurately.  However, Kerner has reported new spatio-temporal traffic patterns 
and the definition of synchronised flow is still a controversial topic. 

 

 Kerner’s criticism of models that use the fundamental diagrams is not convincing in Schonhof 
and Helbing’s study.  Therefore, it is not necessary to discard all previous knowledge 
accumulated in traffic modelling as suggested by Kerner. 
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3.2.6 Summary of Three-phase Model  
In summary, it has been found that there are empirical features of phase transitions and spatio-
temporal congested patterns at freeway bottlenecks that are reproducible.  The earlier freeway flow 
models and theories cannot explain or predict these empirical features of traffic breakdowns.  The 
literature review of Kerner and colleagues’ work in the past ten years shows that the three-phase 
theory models provide a promising tool to analyse mainline empirical spatio-temporal congested 
pattern features.  This spatio-temporal analysis of traffic flow includes:  

 observing and measuring traffic flow parameters at many freeway locations over the course 
of many days, and identifying the recurrent congested locations  

 finding effectual bottlenecks based on the investigation of congestion locations and freeway 
infrastructure plans 

 analysing the predictability and reproducible features of different congested patterns for each 
effectual freeway bottleneck or each set of several adjacent effectual bottlenecks  

 studying some specific congested patterns to identify synchronised flow patterns and wide 
moving jams based on the objective criteria for traffic phases in congested traffic situations.  

3.3 Other Models of Flow Breakdowns 
3.3.1 Stochastic Concept of Traffic Capacity 
Brilon et al. (2005) studied 5 min data on the freeways around the city of Cologne, Germany and 
found that the concept of stochastic capacities seems to be more realistic and more useful than 
traditional use of single value capacity.  Their empirical analysis shows that the distribution of 
freeway capacity fits very well into a Weibull distribution (Figure 3.13). The shape parameter 
seems to be in a range from 9 to 15 with an average of 13 for German freeways. The overload 
probability (traffic breakdown) for a single bottleneck is equal to the capacity distribution function as 
shown in Figure 3.13. This finding is consistent with Kerner’s analysis of probabilistic nature of 
traffic breakdown (Section 3.3.2). 

The concept of randomness permits the demonstration of the capacity reducing effect of wet road 
surfaces (-11%) and the capacity increasing effect of traffic adaptive variable speed limits.  

The study by Brilon et al. also showed that three traffic flow states exist in a freeway: fluent traffic 
state, congested traffic state and a transient state that occurs in each breakdown and recovery of 
traffic flow.  These three states seem to match Kerner’s three-phase theory but the definitions of 
the phases are slightly different.  

The stochastic concept of capacity reveals that the optimum degree of saturation for a German 
freeway is around 90%.  If the degree of saturation increases further, the risk of a breakdown 
becomes too high, so that the efficiency of freeway operation must be expected to be lower than a 
saturation of 90%.   
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Figure 3.13:   Capacity distribution functions for two German freeway sections – 5 min data 

3.3.2 Six Traffic State Model 
Schonhof and Helbing (2007) investigated 1 min date for the same section on the A5 freeway as 
Kerner and Lindgren.  They interpreted traffic flow by six states: free traffic (FT), pinned localised 
cluster (PLC), moving localised cluster (MLC), stop-and-go waves (SGW), oscillating congested 
traffic (OCT) and homogeneous congested traffic (HCT).  The most frequent states at the 
investigated freeway are the PLC and OCT states.  HCT occurs mainly after serious accidents with 
lane closures or during public holidays.  An adaptive smoothing method is used to identify the 
different traffic states.  This method interpolates and smoothes traffic date from successive freeway 
sections, taking into account the propagation speeds of perturbations in free and congested traffic.  

Schonhof and Helbing (2007) found that the congested traffic states identified by this model are in 
good agreement with prediction of some second-order macroscopic traffic models and some 
microscopic car-following models.  

3.4 Summary 
This section reviews the three-phase model and other relevant traffic models.  These traffic state 
models classify traffic flow into different state regimes and provide a useful way to illustrate 
congested freeway flow patterns.  Freeway data at a detailed level with small time slices and high 
density of detector stations is becoming more available in recent years.  It is now possible to 
investigate the time and space features of flow breakdowns in spatio-temporal diagrams such as 
speed contours described above.  After the spatio-temporal pattern features are understood, 
additional analysis of nonlinear pattern features could be performed using Lindgren’s cumulative 
count curve method.  
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4 PROJECT TASKS AND TIMELINE 
The inception of this project took place in June 2007.  This section provides an outline of future 
tasks beyond the current project task of literature review.  The various project tasks agreed with 
Austroads are as follows: 

 Task 1: Literature review and presentation – this review consists of traditional and current 
spatio-temporal techniques for analysing flow breakdowns.   

 Task 2: Progress report 1 – this stage involves the development of an experimental design 
for data collection, the compilation of data and the identification of sites suitable for flow 
breakdown analysis.  The sites are most likely from Melbourne freeways because of the 
large number of two-loop detector stations available.   

 Task 3: Progress report 2 – the tool for the analysis of flow breakdowns will be developed in 
this task and will follow the recommended approach as a result of the literature review in 
Task 1.   

 Task 4: Progress report 3 – the analytical tool will be applied to the sites included in the 
experimental design in Task 2. 

 Task 5: Draft project report and presentation – the results of analysis and the methodology 
will be compiled and presented. 

 Task 6: Final report and presentation. 

Table 4.1 shows the planned timeline for these tasks. 

Table 4.1:   Project timeline 

Task Description of work Month 
- Project inception June 2007 
1 Literature review  July 2007 
2 Progress report 1 Aug 2007 
3 Progress report 2 Oct 2007 
4 Progress report 3  Dec 2007 
5 Draft project report & presentation Feb 2008 
6 Final project report & presentation Mar 2008 

 

Sections 3.1 to 3.4 of this report constitute the output for Task 1.  Meetings have been held with 
VicRoads staff regarding the current M1 ramp metering project and the retrieval of data from 
VicRoads’ databases.   

As mentioned, inadequate road geometries such as sudden lane-drop, excessive upgrades, 
freeway lane merge and insufficient weaving capacity would cause flow breakdowns.  Inadequate 
geometries are some of the issues to be addressed in this project, and will also be pursued in 
greater detail in Austroads Project NS NS1375 (Freeway Design Parameters for Fully Managed 
Operations). 
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5 CONCLUSIONS 
A traffic system is a complex, time-dependent system.  It consists of the driver, vehicle and road 
infrastructure, and the interactions amongst the three components.  Driver behaviour is especially 
difficult to control.  The complexity of a traffic system is not a major concern as long as a road 
facility is uncongested but, with increasing congestion, certainly needs to be well understood for 
network operations.  The phenomenon of flow breakdowns on freeways is, however, still not well 
understood. 

There have been many attempts to develop mathematical models to characterise and understand 
traffic behaviour.  For example, the Lighthill-Whitham (1955) kinematic wave model, despite its 
limitations, remains useful for understanding shock waves at road bottlenecks.  Even though most 
models lack detail and reality, traffic control systems have long been employed to control arterial 
and freeway traffic macroscopic relationships. 

In recent years, freeways in some overseas and Australian-New Zealand cities have been installed 
with detector stations that can provide reliable traffic data at a high resolution in time and space.  In 
other words, it is now possible to obtain accurate empirical diagrams in time and space.  These 
spatio-temporal diagrams provide a good framework to analyse freeway congested flow and 
breakdowns at bottlenecks.  The work of Kerner (2004) has been extensively reviewed in Section 
3.  Kerner developed a model from empirical data and it consists of three phases or states: free-
flow, synchronised flow and moving jam.  From various combinations of these phases and their 
transitions, different flow patterns observed on a freeway can be reproduced or predicted.  An 
accurate prediction model is the first step in the effective implementation of freeway control tools 
such as ramp-metering and speed limit signs.   

This project has reviewed other models of flow breakdowns including the stochastic model of Brilon 
et al. (2005) and the six-state model of Schonhof and Helbing (2007).  A general finding is that the 
Kerner approach has gone through a significant amount of research over ten years.  Apart from 
providing a good platform for the analysis of flow breakdowns (which is the concern of this project), 
it has been successfully deployed for real-time control.  This project can benefit from the Kerner 
three-phase concept with additional input from the cumulative count curve method of Lindgren 
(2005).   

The project team has already scanned through the flow, speed and occupancy data from the 
Monash Freeway, Westgate Freeway and Western Ring Road in Melbourne to decide what 
freeway sites should be selected for analysis.  The recommendations for subsequent stages of this 
project are as follows: 

 A freeway route is preferable to a few isolated sites from one or several freeways so that 
freeway flow can be studied in a network context – what happens upstream affects 
downstream flow.  The demand for that corridor will also be similar for a particular time of day 
if all sites are from the same freeway.   

 Analytical modelling processes are unlikely to explain complex driver behaviour before, 
during and after flow breakdowns.  An empirical spatio-temporal approach is recommended 
for congested freeway flow analysis.  The two-phase approach of HCM 2000 is too simplistic 
and the Kerner (2004) three-phase approach appears appropriate for the identification of flow 
breakdowns and will be adopted in this project.   

 The software MATLAB would provide a useful platform for data analysis and the 
development of rules and artificial intelligence in general for the identification of flow 
breakdowns and tracking of shock waves. 
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Abstract: 

This report provides a literature review on the analyses of the flow breakdown 
process on a freeway.  It begins with the basic freeway flow theory and 
automatic freeway control tools now in operation.  A traffic system is a 
complex, time-dependent system.  The factors that contribute to flow 
breakdowns on a freeway include: mainline freeway flow in excess of capacity, 
uncontrolled access to the freeway from on-ramps, inadequate road 
geometries, undisciplined driving behaviour, and lack of real-time driver 
information to encourage better use of alternative routes or lanes.  There have 
been many attempts to develop mathematical models to characterise and 
understand traffic behaviour.  The Lighthill-Whitham model has been useful, 
despite its limitations, for understanding shock waves at road bottlenecks.  
Even though most models lack detail and reality, traffic control systems have 
long been employed to control arterial and freeway traffic with macroscopic 
relationships.  Models for the characterisation of congested freeway flow are 
described and the Kerner three-phase model is reviewed in some detail.   
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