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The interpretation of the anode current characteristics obtained in the famous Franck-Hertz experiment of 1914
led to the verification of Bohr’s predictions of quantised atomic states. This fundamental experiment has been
often repeated, and nowadays is generally part of the curriculum in modern physics education. However,
the interpretation of the experiment is typically based upon significant simplifying assumptions, some quite
unrealistic. This is the case especially in relation to the kinetics of the electron gas, which is in reality quite
complex, due mainly to non-uniformities in the electric field, caused by a combination of accelerating and
retarding components. This non-uniformity leads to a potential energy valley in which the electrons are trapped.
The present state of understanding of such effects, and their influence upon the anode characteristics, is quite
unsatisfactory. In this article a rigorous study of a cylindrical Franck-Hertz experiment is presented, using
mercury vapour, the aim being to reveal and explain what really happens with the electrons under realistic
experimental conditions. In particular, the anode current characteristics are investigated over a range of mercury
vapour pressures appropriate to the experiment to clearly elaborate the effects of elastic collisions (ignored in
typical discussions) on the power budget, and the trapping of electrons in the potential energy valley.

1 Introduction

The famous Franck-Hertz experiment [1] was developed to verify the existence of quantised energy states in
atomic systems and was originally conducted in mercury vapour. Since that time this fundamental experiment
and many variants of it [2–5] have been frequently repeated, especially in physics education on modern atomic
theory [6, 7] and have been described and qualitatively interpreted in various textbooks on this subject [8, 9].

Apart from the basic features of this experiment with respect to the atomic physics, the kinetics of the electron
gas involved is quite complicated. This is particularly so due to the combined effects of accelerating and retarding
electric fields, leading to the occurrence of trapped electrons in the region of the extraction grid, and the interplay
between elastic and inelastic electron-atom collisions. Generally speaking, considerable simplifications are made
for the interpretation and explanation of the behaviour of the electron gas [10,11] and the resultant anode current
characteristics in the experiment. Modelling the real electron velocity distribution by either a mono-energetic
beam or a Maxwellian distribution and neglecting the influence of elastic collisions [10] on the electron kinetic
properties are particularly problematic assumptions.

A first attempt to model the Franck-Hertz experiment electron kinetics was made recently [11], using a multi-
term solution of Boltzmann’s equation. Some qualitative features of the experiment, namely spatial oscillations
of some transport properties in mercury under the action of a space-independent accelerating field with period
length corresponding to the quantised excitation energy, were reproduced. However, the experiment was idealised
as taking place without the action of a retarding field in unbounded space, equivalent to a steady-state Townsend
experiment, and an approximate method of estimating the anode current was discussed in outline form only.
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The present paper rigorously considers many of the details, and indeed goes all the way in modelling actual
experiments.

Over the last years considerable progress with respect to the rigorous quantitative analysis of the space-
dependent kinetics of the electron gas has been obtained [12,13]. This analysis includes the effect of nonuniform
electric fields on the electron gas as well as the impact of various kinds of electron-atom collision processes.
Moreover, very recently the kinetic treatment of trapped electrons [14] has become possible. These recent ad-
vances form the basis for the present study of the kinetics of the electron gas arising in the famous Franck-Hertz
experiment.

Thus, the main objective of the following presentation is to comprehensively analyse on a kinetic basis the
spatial behaviour of the electron gas in the Franck-Hertz experiment conducted in mercury vapour. The analysis is
performed in detail for various energy-space averaged, macroscopic electron transport and dissipation properties,
for some energy space resolved properties, and, especially, for the resultant anode current characteristics. This
study makes it possible, in particular, to quantitatively characterize the velocity distribution of the electrons, the
effect of the electron capture and the considerable impact of the energy loss in elastic collisions on the overall
power dissipation in the experiment.

Accordingly, the presentation starts with a brief introduction into the model arrangement of the Franck-Hertz
experiment and some basic relations of the kinetic treatment.

2 Main aspects of the Franck-Hertz experiment

As in the original work of Franck and Hertz a cylindrical arrangement of the experiment is considered in the
following analysis. According to the schematic representation in Fig. 1 the electrons are continuously emitted
from the cathode surface at the radius rc into the region between the cathode and the anode surface at the radius
ra. This region is occupied by mercury atoms of constant density and subdivided by a grid positioned in front of
the anode at rg . Between the cathode and the grid the electron accelerating voltage Ucg and between the grid and
the anode the electron retarding voltage Uga is applied. Because of the presence of the retarding voltage a certain
part of the cathode current is trapped around the grid and extracted from the volume by the grid. Thus, this part
cannot contribute to the anode current. This extraction is modelled by a space-dependent electron loss frequency
νg(r) that is supposed to act in the immediate vicinity of the grid only.

0 rc rt rg ra

cathode

grid

anode

r

-V(r)

Ucg

Uga

νg(r)

Fig. 1 Schematic setup of the Franck-Hertz experiment.

According to the conventional textbook explanation the physical situation in the steady-state experiment is as
follow: Each electron, released from the cathode with almost zero energy by thermionic emission, is accelerated
by the voltage between rc and rg and thus gains kinetic energy. If its kinetic energy just exceeds the threshold
energy of the lowest excitation process of the mercury atoms, the electron suffers an exciting collision and loses
largely all its kinetic energy. If this happens close to the grid the electron is trapped by the retarding voltage in
front of the anode, can no longer contribute to the anode current and is finally extracted by the grid. Almost the
same final state is reached if at higher accelerating voltage the electron can repeatedly undergo exciting collisions
on its way and has its last exciting collision close to the grid. However, if the position of the last exciting collision
is sufficiently far from the grid the electron can still gain a certain amount of energy on its remaining way to the
grid position, can consequently overcome the retarding voltage in front of the anode and contribute further on to
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the anode current. Thus, at appropriately fixed retarding voltage Uga the anode current becomes an oscillating
function of the applied cathode-grid voltage Ucg and the respective cathode-grid voltages related to the maxima
of the anode current should be a direct measure of the threshold energy of the lowest inelastic electron-mercury
atom collision process.

However, as detailed below the real kinetics of the electrons in the experiment is much more complex than in
this conventional picture. There are various points that have a considerable impact on the kinetics of the electrons
and consequently on the finally resultant anode current characteristics obtained at fixed retarding voltage Uga.
First of all the impact of the energy loss in elastic collisions, in addition to the loss in exciting collisions and
the considerable nonuniform energy transport are to be mentioned. Furthermore, the electrons released from the
cathode by thermionic emission (i) possess a certain spread of their velocity distribution, (ii) undergo at least two
largely overlapping excitation processes with very adjacent threshold energies and (iii) experience a considerable
control with respect to the importance of the different energy dissipation channels in collisions by means of the
magnitude of the applied cathode-grid voltage Ucg and the resultant spatial dependence of the accelerating part of
the potential V (r). The usual text book explanations avoid any mention of a distribution of velocities, effectively
treating the electrons as a mono-energetic beam, and also neglect elastic collision effects. As McMahon points
out [4], the experiment is sometimes misunderstood for these and other reasons.

3 Basic relations of the kinetic study and the boundary conditions

In the cylindrically symmetric and axially uniform arrangement of the Franck-Hertz experiment the spatial
evolution of the electron gas is predominantly controlled by the effect of the nonuniform radial electric field
�E(r) = E(r)�er, the impact of elastic and inelastic electron-atom collisions and the electron extraction around
the grid with the loss frequency νg(r). The electrons are primarily described by their velocity distribution F (�v, r)
which ultimately can be found by solving the corresponding version of the electron Boltzmann equation

�v · ∇�xF − e0

me

�E · ∇�vF = Cel(F ) +
∑

l

Cin
l (F ) − νgF . (1)

Here −e0 and me are the charge and mass of the electron and Cel(F ) and Cin
l (F ) denote the collision integrals

for elastic collisions and important inelastic collision processes of the electrons with the ground state mercury
atoms. Because of the relatively low magnitude of the reduced electric field E(r)/N typically used in the ex-
periment, ionisation is negligible and only elastic and exciting collisions of the electrons with the mercury atoms
are of importance in the kinetic study. To simplify the solution of the kinetic equation (1) for the axially uni-
form cylindrical geometry, a spherical harmonic expansion of the velocity distribution F (�v, r) with respect to
the velocity directions �v/v has been used in the kinetic equation to derive an appropriate hierarchy equation sys-
tem [15, 16] for the coefficients of the spherical harmonic expansion. However, when considering the parameter
range of the intended application to the experiment in mercury and when taking into account the specific findings
of preceding multi-term analyses in mercury [11, 17], it is only necessary to retain the first two terms of the
expansion, i.e., to treat the problem in the so-called two term approximation. In this way sufficiently accurate
macroscopic as well as energy space resolved properties of the electron gas with remaining inaccuracies of less
than few percent can be obtained.

Thus, with the truncated expansion
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are obtained for the two expansion coefficients f̄0(U, r) and f̄r(U, r), with U being the kinetic energy. Fur-
thermore, M , N , Qd(U), Qin

l (U) and U in
l are the mass and density of the gas atoms, the momentum transfer

cross section for elastic collisions, the total cross section and the associated threshold energy of the lth excitation
process.

To study the spatial evolution of the electron kinetics in the Franck-Hertz experiment, the system of partial dif-
ferential equations (3) and (4) for the isotropic distribution f̄0(U, r) and the anisotropic distribution part f̄r(U, r)
has to be solved in the spatial range between the cathode at rc and the anode at ra and for kinetic energies U
between 0 and a sufficiently large value U∞. The value U∞ is chosen in such a manner that the overall decrease
of the velocity distribution with the energy reaches about ten orders of magnitude, i.e., the distribution becomes
negligibly small. Appropriate boundary conditions have to be imposed on both sides of the spatial range as well
as of the energy range.

Because of the very frequent elastic electron collisions with the mercury atoms it can be assumed that the
electrons released from the cathode by thermionic emission undergo a strong angular scattering immediately in
front of the cathode. This conclusion is directly supported by the representation of the mean free path λel of the
elastic collisions in mercury given below in Fig. 2b for the specific experimental conditions. Thus, the energy
distribution of the emitted electrons fem(U) largely equals the energy distribution, i.e., the square root of the
energy times the isotropic distribution, close to the cathode surface and the appropriate boundary condition at the
cathode for 0 ≤ U ≤ U∞ is

f̄0(U, rc) = fem(U)/U1/2 . (5)

The energy distribution of the emitted electrons fem(U) can be approximated by the expression [18]

fem(U) = n(rc) c U exp
(
− U

k T

)
, c =

(∫ ∞

0

U exp
(
− U

k T

)
dU

)−1

, (6)

where n(rc) is the electron density at the cathode and T is the absolute temperature of the thermionic cathode.
Within the framework of the two term approximation, the boundary condition of the kinetic problem at the

anode for 0 ≤ U ≤ U∞ has been fixed by the relation [19–21]

f̄r(U, ra) =
3
2

1 − �

1 + �
f̄0(U, ra) (7)

between f̄r and f̄0 describing the partial reflection of the electrons at the anode with reflection coefficient �,
whose values lie between zero and unity.

With respect to the energy space appropriate conditions at vanishing and sufficiently large kinetic energy are
required. Here the conditions

f̄r(U = 0, r) = 0 , (8)

f̄0(U ≥ U∞, r) = 0 (9)

for rc ≤ r ≤ ra are used to complete the kinetic problem. These conditions simply state that the anisotropic
part f̄r of the velocity distribution naturally vanishes at zero kinetic energy and that the isotropic part f̄0 (or the
energy distribution) becomes sufficiently small above an appropriately chosen large energy U∞.

A further structural simplification of the equation system (3), (4) can be reached if the kinetic energy U is
replaced by the total energy ε defined by the relation ε = U + W (r), where W (r) = e0

∫ r

rg
E(r̃)dr̃ is the

potential energy of the electrons in the electric field E(r) related to the grid position rg . After the transformation
of the equations (3), (4) and of the conditions (5) to (9) to the variable ε a parabolic differential equation problem
in ε and r for the transformed distributions fi(ε, r) = f̄i(Uεr, r) with i = 0, r and Uεr = ε − W (r) is obtained.
Since ε presents the progression direction of this parabolic problem, it can be efficiently solved as initial-boundary
value problem downwards from high to low total energies ε starting with the correspondingly transformed initial
condition (9) [22, 23].

The typical shape of the potential V (r) and thus of the potential energy W (r) = −e0 V (r) occurring in the
cylindrical Franck-Hertz experiment is shown in Fig. 1. Thus, the relevant solution area of the kinetic problem
in the (ε, r)-space is that above the potential curve −V (r) , i.e., ε ≥ W (r), and between the cathode and the
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anode. Because of the presence of an accelerating and a retarding potential branch the region rt ≤ r ≤ ra of
trapped electrons occurs whose extent depends on both the cathode-grid voltage Ucg and the grid-anode voltage
Uga. The resultant non-monotonic shape of the potential −V (r) leads to a peculiarity in the solution process in
the sense that the solution area in radial direction becomes bounded finally on both sides by the potential profile
only where the condition (8) of vanishing anisotropic distribution f̄r applies.

The numerical solution of the initial-boundary value problem can, after some generalizations and adaptation,
ultimately be obtained by a specific solution technique of the parabolic problem that has been detailed and used
in former kinetic studies [22, 23].

4 Atomic data and input data of the kinetic approach

For the description of the electron collision processes with mercury atoms a set of reliable as possible collision
cross sections is required for energies up to about 10 eV. The Fig. 2a shows the momentum transfer cross section
Qd and the total cross sections Qin

l for the lowest four excitation processes, i.e., that leading to the excitation of
the 63P0, 63P1, 63P2 and 61P1 state with the corresponding threshold energies 4.67, 4.89, 5.46 and 6.68 eV. The
cross section Qd, taken from [24] for energies up to 2 eV and smoothly extended to higher energies by means of
that from [25], reaches very large values around 0.5 eV. The cross section for the excitation of the 63P0, 63P1

and 63P2 states were taken from [26] for energies up to 6 eV and were extended to higher energies by means of
those from [25]. Furthermore, the cross section for the excitation of the 61P1 state was taken from [27].

The geometric parameters of the cylindrical experiment arrangement were chosen to be rc = 0.1 cm, rg =
0.8 cm and ra = 1.0 cm. These values nearly equal those of a commercially available Franck-Hertz tube [28].

In order to model the electron extraction by the grid, as mentioned above, a loss term containing the space-
dependent loss frequency νg(r) = ν̄gh(r) has been used. The loss has been assumed to take place just around
the grid, i.e., in the region rg − δr ≤ r ≤ rg + δr, with the spatial averaged frequency ν̄g and the profile h(r)
normalised to unity according to

∫ rg+δr

rg−δr h(r) dr = 1. As illustrated by the insertion in Fig. 1, the spatial electron
extraction has been modelled by the shape of the sine function. Based on certain evaluations of the periodic
movement of trapped electrons through the grid and the expected penetration probability of the grid, the averaged
loss frequency has been fixed to ν̄g = 103 s−1 and the width of the loss range to 2 δr = 0.1 cm.

Because of the very low currents in the experiment the formation of space charges can be neglected and the
potential and field distribution in the cathode-grid and grid-anode region can be sufficiently described by the
Poisson equation for the vacuum. This leads in each of the two regions to shapes of the form

V (r) = c1 ln r + c2 , E(r) = −c1
1
r

. (10)

The two pairs of resulting integration constants c1 and c2 can easily be determined by the conditions V (rg) = 0,
V (rc) = −Ucg and V (ra) = −Uga with given positive cathode-grid and grid-anode voltages Ucg and Uga.
But this idealised choice would lead to a discontinuous field reversal at the grid position. In reality a smooth
transition from the accelerating to the retarding field in the neighbourhood of the grid, with zero-crossing at the
grid position has to be expected. To model such a behaviour on both sides of the grid, starting with the same
distance δr from the grid as used for the loss frequency, the respective field shape according to (10) has been
continuously extended to reach zero at rg using for this range the shape of the sine function from its minimum
(or maximum) to zero. The resultant profiles of the field E(r) and of the associated potential energy W (r) are
shown in Figs. 2c and 2d for the two values 6 and 20 V of the cathode-grid voltage Ucg at the fixed value 1.5 V of
the grid-anode voltage Uga. The latter value has been used to deduce the succeeding results. The figure clearly
illustrates that at lower radial positions a pronounced non-uniformity of the electric field, particularly at higher
cathode-grid voltages, occurs in the experiment and that the left hand side extension of the region of trapped
electrons considerably changes with the voltage Ucg.

In the Franck-Hertz tube the pressure p of the mercury vapour and thus the gas density N is determined by
the vapour temperature T . This dependence is approximately described with p in mTorr and T in K units by the
relation [29]

ln p (T ) = 30.804− 0.8254 ln T − 7564 / T . (11)
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Fig. 2 Input data for the kinetic treatment: (a) Cross section of the electron-atom collisions in mercury, (b)
mean free path of the electrons due to elastic (λel) and inelastic (λin) collisions, (c) electric field E(r) and (d)
potential energy W (r) for Ucg= 6 and 20 V.

A temperature of 180◦ C has been supposed for the analysis, i.e., the study has been performed at a gas density
N of 18.4× 1016 cm−3 related to a pressure p of 8.6 Torr. Using this gas density and the collision cross sections
given in Fig. 2a the mean free path λel(U) = 1/(N Qd(U)) and λin(U) = 1/(

∑
l N Qin

l (U) ) of the elastic
and inelastic collisions in mercury have been determined and represented in Fig. 2b. Especially the shape of λel

clearly shows the extremely small mean free path of low energy electrons in elastic collisions compared with the
cathode-grid distance. Thus, the above assumption concerning the immediate formation of a widely isotropic
velocity distribution of the electrons, released by the thermionic emission, should be quite justified.

The energy distribution of the thermionic electron emission according to (6) has been fixed by an emitter
temperature of T = 1500◦ K [18] and an electron density at the cathode of n(rc) = 105 cm−3. Because of the
complete linearity of the kinetic problem (3) to (9), the choice of the electron density n(rc) ultimately serves for
the normalization of both distributions f̄0 and f̄r and, consequently, of the resultant macroscopic quantities.

Furthermore, an electron reflection at the anode of 80 % has been assumed [30], i.e., ρ =0.8 is used in the
boundary condition (7).

5 Results and discussion

After the solution of the kinetic problem (3) to (9) for specified parameter conditions of the experiment, the cor-
responding spatial profiles of all relevant macroscopic properties of the electrons can be deduced by appropriate
energy space averaging over the isotropic and anisotropic distribution f̄0(U, r) and f̄r(U, r), respectively. When
performing the solution approach for a larger sequence of cathode-grid voltages Ucg at fixed grid-anode voltage
Uga finally the well-known anode current characteristics of the Franck-Hertz experiment can be obtained.
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5.1 Electron flux characteristics and transport properties

From the representation (2) of the velocity distribution function the expressions

n(r) =
∫ ∞

0

U1/2f̄0(U, r) dU , (12)

um(r) =
∫ ∞

0

U3/2f̄0(U, r) dU /n(r) , (13)

jr(r) =
1
3

√
2/me

∫ ∞

0

Uf̄r(U, r) dU , (14)

jer(r) =
1
3

√
2/me

∫ ∞

0

U2f̄r(U, r) dU (15)

for the electron density n(r), the mean energy um(r) and the particle and energy flux density �j(r) = jr(r)�er

and �je(r) = jer(r)�er can be derived.
Because of the cylindrical geometry the radial particle and energy flux of the electrons through the cylindrical

shell per unit of the cylinder’s length at the position r is given by Jr(r) = 2πrjr(r) and Jer(r) = 2πrjer(r).
Furthermore, the electron particle balance, consistent with the considered kinetic problem (3) to (9), reads

1
r

d

dr
( r jr(r) ) = −νg(r)n(r) (16)

and its formal solution is given by

Jr(r) = Jr(rc) − 2π

∫ r

rc

νg(r̂)n(r̂) r̂ dr̂ . (17)

Thus, owing to the spatially limited electron extraction, the flux Jr(r) remains constant in the region rc ≤ r ≤
rg −δr and equals the cathode flux Jc

r ≡ Jr(rc). Similarly, Jr(r) does not change in the region rg +δr ≤ r ≤ ra

and represents there the anode flux Ja
r ≡ Jr(ra).

Instead of the electron currents the electron particle fluxes per unity of the cylinder length Jr, Jc
r and Ja

r will
be used in the succeeding presentation of the results of the kinetic study.

For the parameters given above, the cathode and anode flux, obtained by the solution of the kinetic problem
for a sequence of about 80 cathode-grid voltages Ucg, is displayed in Fig. 3a showing the dependence on Ucg.
Apart from the pronounced increase of the cathode flux the experimentally well known oscillating structure and
an increasing amplitude of the oscillation of the anode flux can be clearly observed with growing Ucg from
this figure. The acceleration voltages related to the anode flux maxima and minima are marked in this figure,
and in Figs. 3b,c as well, by vertical dotted and dashed lines, respectively. Furthermore, the numbers presented
additionally in the figure approximately give (starting from left hand side) the voltage of the first anode flux
maximum and the voltage differences between successive maxima of the anode flux. The first voltage and the
further voltage differences are the crucial values in the framework of the interpretation of the Franck-Hertz
experiment. According to various textbook explanations of the experiment mentioned above they should be all
equal to the threshold energy of the mercury excitation. But obviously this is not strictly the case and considerable
deviations, particularly with respect to the first maximum, from this expectation are found by the kinetic study of
this famous experiment. This point will be considered more in detail below in the framework of the analysis of
the energy transfer processes, to make the reasons for these deviations on the basis of the complex behaviour of
the electron gas under real experimental conditions more understandable.

In order to present a detailed overview of the variation of the transport properties with the applied cathode-grid
voltage Ucg, the spatially resolved behaviour of the density n, mean energy um and of the particle and energy
flux Jr and Jer are shown in Fig. 4 for the first three maxima and the second minimum of the anode flux Ja

r , i.e.,
for Ucg = 5.0, 9.62, 11.5 and 14.35 V.

In all four cases a large spatial variation of the electron density, always starting from the value 105 cm−3 in
front of the cathode, can be observed. After some oscillations, that occur at not too small voltages Ucg, a large



Contrib. Plasma Phys. 43, No. 3-4 (2003) 185

0 5 10 15 20 25
0

1

2

3

4

J r(U
cg

) 
 [ 

10
10

 s
-1

cm
-1

 ]

0 5 10 15 20 25
0

5

10

15

20

25

in
te

gr
al

 e
ne

rg
y 

tr
an

sf
er

 [ 
eV

 ]

0 5 10 15 20 25
Ucg [ V ]

0

1

2

3

4

5

6

It  +
 I

el
 +

 I
g    

[ e
V

 ]

4.67

(b)

4.67

4.70

4.74

4.97

Jr
a

Jr
c
/2

I
el

I
f

I
in

(a)

I
el
+I

in
r = rg

(c)

r = rg
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flux, (b) spatially integrated energy gain and losses and (c) lumped loss It + Iel + Ig .

increase of the density by almost two orders of magnitude around the grid position, i.e., around the minimum
of the valley of the potential energy W , occurs. Then, towards the anode a strong density decrease far below
the original value close to the cathode takes place because of the decreasing influence of electron capture and
the overlapping influence of the electron absorption at the anode. The density oscillations in the cathodic region
are very similar to former results on the spatial electron relaxation [11–13] initiated by local disturbances of the
velocity distribution function or by non-uniformities of the electric field. In the cathodic region the density related
to the second minimum of the anode flux behaves very similar to that at the maxima, but becomes the largest at
the minimum position of W and the smallest at the anode because of the large electron capture that especially
occurs if the anode flux approaches its minimum.

The representation in Fig. 4 shows that the mean energy um of the electrons amounts to about 0.3 eV close to
the cathode, passes through considerable oscillations with an amplitude of few eV in the cathodic region, assumes
very small values of about 0.05 eV around the region of the strongest electron capture and approaches values of
about 1 eV close to the anode. The mean energy belonging to the minimum of the anode flux remains markedly
smaller in the broader surrounding of the grid compared to the cases associated with the neighbouring maxima
of the anode flux. This is a reflection of the large electron capture close to the grid in this case.
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Fig. 4 Spatial variation of macroscopic quantities for selected values of the accelerating voltage Ucg at a
mercury vapor temperature of T = 180◦C.

The representation of the electron flux Jr for the same anode flux conditions shows that in all four cases a
pronounced change of the flux Jr takes place in the immediate vicinity of the grid position. This almost abrupt
change is mainly caused by the overlapping peak-like profiles of the extraction frequency νg(r) and the density
n(r) of the trapped electrons close to rg . The fact that the flux Jr varies only in the region close to the grid is in
complete agreement with the above conclusions deduced from the particle balance (16) and its formal solution
(17).

The right bottom part of Fig. 4 presents the spatial behaviour of the energy flux Jer per unit length of the
cylinder. In all four cases a rapid increase of the energy flux starting from its low value at the cathode can be
observed. In the cathodic part the oscillating behaviour of Jer is similar to that of the density n. Despite the
considerable increase of the electron density around the grid and the almost abrupt decrease of the electron flux
in this region a more smooth change around the grid is obtained followed by a larger decrease of the energy flux
when approaching the anode. Under the condition of anode flux minimum, i.e., large electron capture close to
the grid, the energy flux towards the anode becomes also very small.

To give a certain overview on some transport properties in the grid-anode region with respect to the same
broad range of the cathode-grid voltages, as considered in Fig. 3a, the Figs. 5a,b show the density n and the mean
energy um of the electrons as a function of Ucg at the grid position rg and halfway between the grid and the
anode, i.e., at rga ≡ (rg + ra)/2. The acceleration voltages related to the anode flux maxima and minima are
marked in these figures by the same vertical lines as in Figs. 3a-c. Orders of magnitude different densities at the
grid and halfway from the grid to the anode, but further on in the potential energy valley, can be observed from
Fig. 5a at all acceleration voltages. In a certain sense an opposite behaviour results for the mean energy at rg

and rga with significantly higher mean energies at rga compared to those in the minimum of the potential energy
valley. Furthermore, some fixed phase relations obviously occur in these figures, especially between the minima
of the density at rg and the anode flux maxima and between the minima of the mean energy at rga and the anode
flux minima.
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accelerating voltage Ucg at a mercury vapor temperature of 180◦C.

5.2 Energy space resolved electron behaviour

For the three cathode-grid voltages 9.62, 11.5 and 14.35 V, associated with the second maximum, the second
minimum and the third maximum of the anode flux in Fig. 3a, the contour plots of the isotropic part f0(ε, r) and,
in reduced form in the insertion, those of the anisotropic part fr(ε, r) are shown in Fig. 6 over the corresponding
(ε, r)-area. The lower ε-border of both distribution parts corresponds to the limit of vanishing kinetic energy U
and presents, according to ε = U + W (r), the shape of the potential energy W (r). In each plot, the horizontal
dot-dash line at ε = Uga marks the region of trapped electrons that extends below this line from the left short
vertical line up to the anode.

Owing to the thermionic emission the electrons start at rc with a narrow, isotropic distribution of low kinetic
energies and are accelerated towards the grid by the action of the large cathodic field, as it is obvious from
Fig. 2c. On their way they undergo elastic and inelastic collisions exciting the atoms. As a result of the small
amount of the energy loss in each elastic collision the contours of the isotropic distribution smoothly decline
towards smaller total energies. But, due to each exciting collision, the respective electron loses the corresponding
threshold energy U in

l and jumps down by this energy to a lower total energy, at an unchanged spatial position. By
this latter process a further group of electrons occurs at lower ε and the overall process, just illustrated, of field
action and collisions can continue a few times, largely depending on the overall magnitude W (rc) = e0 Ucg of
the potential energy considered. However, when approaching the left margin of the potential energy valley with
increasing r, i.e., the region of trapped electrons, the situation completely changes. Electrons, depending upon
their energy as they approach the left margin of the potential energy valley, can either remain energetically above
the valley up to the anode, or become trapped in the valley before reaching the anode. If the first case applies to
the majority of the electrons a large anode flux occurs and such situations are illustrated by the upper and lower
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Fig. 6 Contour plot of the isotropic and anisotropic part of the electron velocity distribution function for the
accelerating voltages Ucg= 9.62, 11.50 and 14.35 V.

part of Fig. 6. In the opposite extreme, as displayed by the centre part of this figure, the larger part of the electrons
are trapped on their way towards the anode and a low anode flux only occurs. Which of the different energetic
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conditions, that are possible close to the left margin of the potential energy valley, ultimately emerge, depends
on several parameters of the experiment and at fixed geometry and mercury vapour pressure, in particular, on the
magnitude of the cathode-grid voltage Ucg.

Because of the moderate change and smaller magnitude of the electric field in the region close to the left
margin of, and within the potential energy valley a larger energy loss in elastic collisions and, consequently, a
stronger decline of the contours of f0 becomes obvious in all three f0 representations of Fig. 6. This largely
contributes to the very efficient electron capture by the potential energy valley. Therefore, even those electrons
which suffer inelastic collisions already somewhat before reaching the left margin of the potential energy valley
are finally captured.

According to the relation (14) the flux density jr close to the anode, and thus the flux per unit length Jr,
are primarily determined by the energy space average over the anisotropic distribution in this spatial region. The
magnitude of the transformed anisotropic part fr(ε, r) ≡ f̄r(ε−W (r), r) is shown in this region by the insertions
in Fig. 6 . Rather low values of the positive part of fr can be observed close to the anode in the centre part (min-2)
of the figure however considerably larger values of the positive part of fr in the upper (max-2) and lower part
(max-3) of Fig. 6. Furthermore, the representations of the anisotropic distributions clearly show that generally in
the grid-anode region a negative part appears in theses distributions at low kinetic energies. This negative part
describes the back flow of the trapped electrons towards the grid in the retarding branch of the potential energy.

To illustrate the energy dependence of both distribution parts more in detail, Fig. 7 displays, for the same
cathode-anode voltages as considered in Fig. 4, the distributions f̄0(U, r) and f̄r(U, r) as a function of the kinetic
energy U at the grid position (left) and halfway between the grid and the anode (right), i.e., at rg and rga. The
upper energy margin of the potential energy valley at these positions is additionally marked by vertical doted
lines in all parts of the figure. For comparison, the isotropic distribution f̄0(U, rc) in front of the cathode, fixed
by the boundary condition (5), is additionally shown in the left upper part of the figure.

At the grid position a maximum in the population of low energy electrons in the isotropic distribution can
be seen as a consequence of the strong electron capture around the minimum of the potential energy valley. In
the energy range of a few eV, a considerable variation of the population of f̄0, and of f̄r as well, arises with
consecutive orders of the maxima of the anode flux and, in particular, with the transition from the maximum
to the neighbouring minimum. In particular, the modulation of f̄r coincides with the corresponding one of the
anode flux. The anisotropic distributions at grid position are generally small, because of the field reversal at this
position, and possess a somewhat unexpected structure. Thus, in the distributions belonging to the first and third
anode flux maxima, an intermediate negative part just below 1 eV even occurs, possibly due to some overshooting
in the back flow of the captured electrons from the adjacent retarding potential region.

Both parts of the distribution at the halfway position of the retarding potential energy branch, i.e., at rga, no
longer possess the low energy part of the captured electrons present in the distribution parts at rg , and seems, from
rough considerations, to be associated with a shift to smaller kinetic energies of the corresponding distributions at
rg . However, in all anisotropic distributions a considerable negative part at lower energies appears, which reflects
the backward electron flux caused by the reverse electric field in the grid-anode range. The upper energy margin
of the negative part of the anisotropic distributions at rga is almost the same for the three anode flux maxima, and
extends up to about the upper margin of the potential energy valley at this position.

For a somewhat broader spatial range this can clearly be seen from the representation of fr(ε, r) in the in-
sertions of Fig. 6. However, the extent of the negative part of the anisotropic distribution shows a considerable
variation with the applied cathode-grid voltage Ucg. This fact becomes quite obvious when comparing in Fig. 6
the corresponding distributions related to a maximum and the minimum of the anode flux.

5.3 Evaluation of the power gain and loss processes

In order to characterise the behaviour of the electron gas from the energetic point of view, the energy transfer
processes occurring in the experiment have to be analysed on a kinetic basis.

The consistent power balance equation of the electron gas can be derived by appropriate energy space averag-
ing over the lowest hierarchy equation (3) and can be given the representation

P t(r) = P f (r) − P el(r) − P in(r) − P g(r) , (18)
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where

P t(r) =
1
r

d

dr
( r jer(r) ) , (19)

P f (r) = −jr(r) e0E(r) , (20)

P el(r) = 2
me

M

√
2/me

∫ ∞

0

U2NQd(U)f̄0(U, r) dU , (21)

P in(r) =
∑

l

U in
l

√
2/me

∫ ∞

0

UNQin
l (U)f̄0(U, r) dU , (22)

P g(r) = νg(r)um(r)n(r) . (23)

The expression (19) describes, via the divergence of the energy flux density jer , the power loss or gain P t at the
position r caused by the transport of kinetic energy. Furthermore, the power gain P f from the electric field, the
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power loss in elastic (P el) and inelastic (P in) collisions and the power loss P g due to the electron extraction by
the grid are given by the expressions (20) to (23).

For the same four maximum and minimum conditions of the anode flux as considered in Fig. 4, the spatial
variation of the power losses P el and P in in elastic and inelastic collisions and, for comparison, the power gain
P f from the field are displayed in Fig. 8. Because of the field reversal in the grid-anode range, the field term P f

becomes negative between r = 0.8 and 1.0 cm, and represents here always a power loss of the electrons in the
retarding field. In addition, the left margin and the minimum position of the potential energy valley are marked
in each part of the figure by thin vertical lines.

The upper part of the figure, related to the condition of the first anode flux maximum, shows that the loss in
elastic collisions P el dominates in this case to a large extent over the loss in inelastic collisions P in, and this
dominance holds in the entire range between the cathode and the anode. Thus, this fact is in obvious contradiction
to some textbook interpretations of the first anode flux maximum according to which the energy loss in elastic
collisions is completely neglected compared with the inelastic loss.

Furthermore, the shape of the inelastic losses in this figure makes it obvious that the first inelastic collisions
already appear significantly before the grid position, i.e., when the electrons have suffered an accelerating voltage
still markedly smaller than the lowest excitation energy of 4.67 eV. The latter effect doubtless results from the
energy of the electrons available in the tail of the isotropic distribution f̄0(U, rc) at the cathode boundary, shown
in the left upper part of Fig. 7.

With increasing cathode-grid voltage Ucg, i.e., in the further three parts of Fig. 8, the overall role played by P el

continuously decreases, but remains significant, particularly in the field reversal range, where primarily trapped
electrons of low energy are present.

The parts of the figure related to the three anode flux maxima clearly exhibit, with growing number of maxima,
the same increasing number of spatial ranges where inelastic collisions occur. The width of these inelastic
collision regions grows when going at fixed Ucg from the cathode to the grid and the width, e.g., of the first
cathode-sided inelastic collision region, decreases with growing voltage Ucg. These peculiarities primarily result
from the distinct increase of the radial variation of the potential profile W (r) or the field profile E(r) especially
in the cathodic region at fixed Ucg and the drastic amplification of this property with growing voltage Ucg, as
shown in Figs. 2c and 2d.

In the three cases of maximum anode flux the considerable spatial extent of the grid-sided region of the
inelastic losses with a left margin significantly away from the grid position makes quite clear that the conventional
textbook explanations of the formation of an anode flux maximum is in some contradiction to the reality and
presents a substantial idealisation.

When comparing the two centre parts of Fig. 8 related to the second anode flux maximum and minimum rather
different magnitudes of the grid-sided contributions to P in can be observed. In the case of minimum anode flux
(Ucg = 11.5 V) significantly larger energy losses in inelastic collisions, occurring in a broader range markedly
before the grid position, can be observed and consequently a distinctly stronger electron capture around the grid
takes place at minimum anode flux or maximum extraction by the grid.

In order to get a more detailed evaluation of the energy transfer processes which proceed between the cathode
and the anode and, especially, up to the grid position, a spatially integrated version of the power balance equation
(18), normalized before on the macroscopic electron flux Jr(r), yields the appropriate basis. Thus, with the
integral operation

Ii(r) = 2 π

∫ r

rc

P i(r̂)
Jr(r̂)

r̂ d r̂ , i = t, f, el, in, g (24)

from (18) the spatially integrated power balance

It(r) = If (r) − (
Iel(r) + Iin(r) + Ig(r)

)
(25)

is obtained. In particular, the application of (24) to the field term P f (r) of (18) yields the expression

If (r) = −e0

∫ r

rc

E(r̂) dr̂ = W (rc) − W (r) = e0 Ucg − W (r) . (26)
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Fig. 9 Intergated energy transfer for selected values of the
accelerating voltage Ucg at T = 180◦C.

Thus, the power input per flowing electron If accumulated between the cathode and the position r simply
equals the gain per electron from the potential energy between these positions. Correspondingly, the other terms
Ii(r), i = el, in, g, t in the integrated power balance (25) represent the losses in elastic and inelastic collisions,
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the loss by the grid extraction and the loss or gain by the energy transport which took place per flowing electron
on its way from the cathode to the position r.

The representation of these accumulated gains and losses is given in Fig. 9 for the same four anode flux
conditions as considered in Figs. 4, 7 and 8. More in detail, the figures show the spatial behaviour of If , Iin,
Iin + Iel and Iin + Iel + Ig; the latter above rg − δr, where Ig becomes non zero. The comparison between the
dot-dash-dash line and the crosses above rg indicates that the loss Ig, caused by the grid extraction of the trapped
electrons with very low kinetic energy, is always very small and can be neglected in the further discussion. The
difference area between If and Iin + Iel + Ig gives the contribution of the transport term It to the integrated
power balance (25).

The upper part of the Fig. 9 related to the first anode flux maximum clearly shows that a considerable part
of the invested field energy If is increasingly transferred with growing r to the mercury atoms by the loss in
elastic collisions Iel. The accumulated inelastic loss Iin is always small and this happens as well around the
grid position. The consideration of the three figures related to the anode flux maxima clearly illustrates that the
accumulated elastic loss Iel decreases, especially in the cathodic region, with growing number of the maxima
in comparison with the accumulated inelastic loss Iin. However, in the range around the grid a portion of some
eV of the invested field energy If is always covered by elastic collisions. The reduced role played by the elastic
loss in the cathodic region with growing voltage Ucg results from the significant increase of the electric field in
this region as being illustrated in Fig. 2c. All parts of Fig. 9 well demonstrate with growing r by the step-like
increases of the accumulated inelastic loss Iin the spatially limited regions where significant contributions to
Iin arise. Especially the figures related to the anode flux maxima show that under this condition always the
next increase of Iin starts just before the grid position and proceeds here still in a rather smooth manner. This
slight increase is the realistic reflection of the idealized textbook explanation that when reaching the anode flux
maximum with growing Ucg the electrons just become capable to undergo inelastic collisions at the grid position.

A comparison of the figure parts belonging to the second maximum and second minimum clearly demonstrates
that a much better characterization of the accumulated inelastic losses Iin at the grid position becomes possible
at minimum anode flux because of its nearly space-independent value around the grid. The vertical distances
between the horizontal parts of the accumulated inelastic loss Iin can be interpreted to present the effective
energy loss per flowing electron and per inelastic collision event of the mainly involved excitation processes, i.e.,
of the lowest two inelastic loss channels in mercury. Under the minimum condition almost all electrons that reach
rg have suffered inelastic collisions in a certain region before the grid and are trapped in the minimum range of
the potential energy valley, but largely in consequence of the further energy losses in elastic collisions.

In all parts of Fig. 9 the term It related to the accumulated energy transport per flowing electron varies around
a considerable magnitude, is positive in the cathode-grid region and becomes negative in the grid-anode region.
This means that in almost the entire spatial range a considerable portion of the invested field energy If is lastly
contained in the power source and sink contribution arising from the pronounced non-uniformity of the energy
flux Jer and this part does not be available to contribute to the power loss in collisions. This term is an immediate
consequence of the distinct nonlocal character of the power transfer under the parameter conditions of the exper-
iment. At maximum anode flux always a portion of several eV of the invested field energy If is covered by the
transport term It in the region close to the grid. However, at minimum anode flux the accumulated transport term
It passes through zero very close to the grid position. Then, apart from the invested field energy, the important
contributions to the integrated power balance per flowing electron (25) are only those by the inelastic and elastic
collisions at the grid position.

To provide a more complete overview in a broader range of the cathode-grid voltage, the energy transfer
contributions per flowing electron, accumulated between the cathode and the grid position, are shown in Fig. 3b
as a function of Ucg. Apart from the field term If again the losses Iin, Iel +Iin and additionally Iel are displayed
at r = rg . The difference between If and Iel + Iin represents according to (25) the accumulated transport term
It. Furthermore, as in Fig. 3a, the accelerating voltages related to the anode flux maxima are marked by vertical
dotted lines and the minima by vertical dashed lines. The behaviour of Iin with growing Ucg clearly shows that
at about the respective Ucg voltage of all five anode flux maxima the electron gas becomes increasingly capable
to undergo inelastic collisions and that at about the respective Ucg voltage of the four anode flux minima the
electrons become increasingly incapable to perform inelastic collisions close to the grid position.
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Furthermore, the Fig. 3b shows that at all maximum voltages an amount of a few eV of the invested field
energy If is transferred by the elastic loss Iel as well as by the transport term It. Whilst the portion of the
elastic loss slowly decreases with increasing flux maximum voltage an opposite nature results for the portion of
the transport term It. Almost the same variation of the elastic loss proportion can be observed with growing flux
minima voltages, however, the proportion of the transport term is almost negligible at all flux minima voltages.
As mentioned above, according to the simplified explanation of the anode flux maxima formation the invested
field energy If should be largely transferred by the accumulated loss in inelastic collisions Iin. However, the
integrated balance (25) only says If (rg) − Iin(rg) = It(rg) + Iel(rg) + Ig(rg), i.e., the difference between
the field term and the inelastic loss is given by the lumped term It + Iel + Ig mainly containing the elastic loss
and the loss due to the nonuniform energy transport. This lumped term is additionally displayed in Fig. 3c in
dependence on Ucg. Its contribution to the integrated balance at r = rg amounts to several eV in the entire Ucg

range and, unexpectedly, assumes an almost constant value of about 4 eV at all anode flux maxima.

5.4 Anode flux characteristics and energy transfer at different mercury pressures

As a result of the complex interplay of the invested field energy If and the dominant energy loss and transport
processes Iin, Iel and It in the electron gas the anode flux characteristics shown in Fig. 3a is formed. This
interplay has been illustrated in a radially resolved form for some anode flux maxima and one minimum in Fig. 8
and in dependence on the accelerating voltage Ucg for the grid position rg in Figs. 3b,c. From these figures it
can be clearly seen that the first anode flux maximum is entirely dominated by elastic losses. Consequently
its corresponding acceleration voltage of 4.97 V does not present a reflection of the lowest energy threshold of
the mercury excitation. Its value is about 0.3 eV larger than the lowest excitation threshold of 4.67 eV and this
happens despite the additionally available mean energy um(rc) of about 0.3 eV of the emitted electrons at the
cathode. At this low acceleration voltage related to the first flux maximum the lowest mercury excitation process
is the only one of importance.

However, the voltage differences between the successive anode flux maxima, additionally given in Fig. 3a, are
obviously a good reflection of the energy loss in inelastic collisions per flowing electron under the considered
parameter conditions. This conclusion is mainly based on the almost constant value of the lumped loss It +
Iel + Ig at all anode flux maxima shown in Fig. 3c. Consequently, when taking the difference between two
applications of the accumulated balance (25) for r = rg to successive anode flux maxima the corresponding
difference between the two lumped losses It + Iel + Ig largely compensate each other. Then, the corresponding
difference of the invested field energies If largely equals the difference of the inelastic losses Iin. Furthermore,
the slight increase of the corresponding difference energies from 4.67 eV to 4.74 eV in Fig. 3a indicates the weak
shift from dominant energy loss by the lowest excitation process to a certain contribution of the second excitation
processes with the threshold energy of 4.89 eV when increasing the accelerating voltage to about 24 V.

The anode flux characteristics in Fig. 3a has been derived for a mercury vapour pressure of 8.6 Torr related
to a temperature of 180◦ C. As to be seen from this figure, the saturation of the anode flux with respect to the
cathode flux amounts to about 50 % under these conditions. To illustrate especially the influence of the vapour
pressure on the structure of the characteristics, the resultant anode flux saturation and on the energy transfer
processes accumulated between the cathode and the grid, the Figs. 10 and 11 display these quantities at the
pressures of 16.9 and 2.8 Torr which belong to vapour temperatures of 200◦ C and 150◦ C and to gas densities of
34.4× 1016 cm−3 and 6.39× 1016 cm−3, respectively. All other parameters, especially those of the electric field
and the cathode- and anode-sided boundary conditions, have been kept unchanged. The corresponding maxima
and minima voltages of the anode flux are again indicated by vertical doted lines and dashed lines as done in
Figs. 3a-c.

In the first case a very low saturation of about 10% and in the second case an almost 100% saturation of the
anode flux is obtained for accelerating voltages around the anode flux maxima. Correspondingly, the Fig. 10b
shows a markedly enhanced contribution and Fig. 11b a very small contribution of the accumulated elastic loss
per flowing electron Iel compared with the contribution Iel in Fig. 3b. However, quite the reversal behaviour
can be observed with respect to the contribution of the transport term It, given by the difference between If

and Iel + Iin. With increasing pressure a distinct transition toward a local energy transfer, i.e., with negligible
contributions of the transport term It to the spatially integrated power balance is found.
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tially integrated energy gain and losses and (c) lumped loss
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Fig. 11 Variation of macroscopic quantities of the elec-
trons with the accelerating voltage Ucg at a vapor tem-
perature of 150◦C (correspondingly p = 2.8 Torr, N =
6.39 · 1016cm−3).

An immediate consequence of the varied pressure and the resultant change of Iel is the significant variation
of the accelerating voltage related to the first anode flux maximum. The corresponding energies are 6.40 eV at
the higher pressure and 4.00 eV at the lower pressure as indicated by the first number on the left hand side in the
figures. Furthermore, the Figs. 10b and 11b clearly demonstrate that the spectrum of difference energies related
to the successive anode flux maxima slightly decrease, even below the lowest threshold energy, at the higher
pressure, however slightly increase at the lower pressure. In the first case the stronger elastic losses mainly
determine this variation whilst in the latter case the pronouncedly nonlocal energy transfer as exhibited by the
transport term It and the shift in the dominance of the two lowest inelastic loss channel exert the main influence
on the difference energy variation. But in both these cases the derived difference energies remain close to the
threshold energies of the two lowest mercury excitation processes which are the only dominant inelastic loss
channels under the considered parameter conditions. This latter conclusion is again based on the behaviour of
the lumped loss It + Iel + Ig at r = rg shown in Figs. 10c and 11c for the higher and lower vapour pressure.
According to these results the lumped loss assumes almost the same value at all acceleration voltages related to
anode flux maxima.
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6 Conclusions

In recent years a considerable progress concerning the detailed study of the spatially one-dimensional kinetics of
the electrons, moving in a neutral gas under the action of a pronouncedly non-uniform electric field and even a
field reversal and undergoing various types of binary collisions with the gas particles, has become possible. Based
on this experience, a comprehensive kinetic analysis of the electron gas in the cylindrical arrangement of the
Franck-Hertz experiment under typical parameter conditions has been performed by using the correspondingly
adapted Boltzmann equation for the electrons. A two term approximation of the velocity distribution has been
used to elaborate the significant features of the complex electron kinetics.

The study includes an electron accelerating field between a thermionic cathode and a grid and a retarding
field between the grid and a partially electron absorbing anode. Closely around the grid a smooth field reversal
between the accelerating and retarding regions, with logarithmic potential profiles in each of these, was assumed.
Furthermore, in the same spatial range an appropriate electron extraction by the grid was introduced to allow
a steady-state flow of electrons between cathode and anode. As far as possible an accurate cross section set of
electron collision with mercury atoms has been selected from the literature to describe the elastic collisions and
the lowest excitation processes of the electrons in the relevant range of some eV above the respective threshold
energies.

Based on a large number of numerical solutions of the resultant kinetic initial-boundary value problem the
anode flux characteristics could be deduced in a broad range of the accelerating cathode-grid voltage as well as
for different mercury vapour pressures. Furthermore, a spatially resolved analysis of the isotropic and anisotropic
part of the electron velocity distribution has been performed to elaborate especially the impact of the elastic
collisions on the electron capture in the potential energy valley around the grid and on the formation of the anode
flux maxima. This analysis has been extended by a discussion of the spatially resolved representation of the
relevant electron transport properties and of the dominant contributions to the electron power balance equation.

Moreover, the overall importance of the various contributions to the energy transfer processes in the elec-
tron gas could be elaborated by analysing the balance equation of the spatially integrated energy gain and loss
processes per flowing electron between the cathode and the grid position.

Altogether, a detailed picture of the complex kinetics of the electron gas in the cylindrical Franck-Hertz ex-
periment has been presented and some basic assumptions and simplifications used so far in the interpretation of
this experiment could be critically evaluated on a sufficiently rigorous kinetic basis.
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