• Basis of VB theory:

The Heitler-London wave function (1927) for H₂

$$\Psi_{HL} = |a\overline{b}| - |\overline{b}a|$$

$$H \bullet - \bullet H$$

A two electron **covalent bond** is described by :

- electrons occupying localized atomic orbitals
- singlet coupling between the two spins

• Basis of classical VB theory:

Pauling (1930-33): covalent-ionic superposition

$$\Psi_{VB} = \mathbf{c}_1(|\mathbf{a}\mathbf{b}| - |\mathbf{a}\mathbf{b}|) + \mathbf{c}_2(|\mathbf{a}\mathbf{a}| + |\mathbf{b}\mathbf{b}|)$$

$$H \longrightarrow H \longrightarrow H : H \longrightarrow H : H$$

A two electron **covalent bond** in **classical VB** described by :

- electrons occupying "strictly" localized (atom-centered) orbitals
- singlet coupling between the two spins
- Classical VB: covalent/ionic supperposition

• Basis of classical VB theory:

Generalization to multiple bonds

$$\Psi_{HL} = \left| (c_1 \overline{h_1} - \overline{c_1} h_1)(c_2 \overline{h_2} - \overline{c_2} h_2)(c_3 \overline{h_3} - \overline{c_3} h_3)(c_4 \overline{h_4} - \overline{c_4} h_4) \right|$$

→ Thanks to the use of "strictly" localized orbitals

"classical" VB achieves a quantum dressing of Lewis structures

Basis of classical VB theory:

Practical case: inactive/active separation

$$\psi_{VB} = \mathcal{A} \Big[\{ inactives \} \cdot \{ actives \} \Big]$$

Example:
$$\psi_{VB} = \left| \underbrace{\sigma_1 \sigma_2 ... \sigma_n}_{\text{delocalized MOs}} (a\bar{b} - \bar{a}b) \right| + \left| \underbrace{\sigma_1 \sigma_2 ... \sigma_n}_{\text{delocalized MOs}} b\bar{b} \right|$$

⇒ Only active orbitals/e⁻ are described at the VB level

Quantifying the « classical » paradigm of a two-electron bond

- 1) Orbitals are localized on single atom or fragment
- 2) The covalent and ionic components of the bond are explicitly considered

Quantifying the classical paradigm of a two-electron bond

$$\Psi_{A-X} = c_1(A \cdot - \cdot X) + c_2(A^+ : X^-) + c_3(A : - X^+)$$

In modern ab initio valence bond methods, orbitals and ci coefficients are simultaneously optimized

Another common type of bond: the three-electron bond

The Hartree-Fock picture of the $[A:X]^-$ bond:

The Valence Bond picture:

$$\Psi(\mathsf{A} : \mathsf{X})^- = c_1(\mathsf{A} \cdot : \mathsf{X}^-) + c_2(\mathsf{A} : - \mathsf{X})$$

Conjugated molecules with interacting VB structures

 Ψ_{VB} is a multistructure wave function

$$\Psi_{VB} = \sum_{i} C_{i} \Phi_{i}$$

where each Φ_i is a VB structure

Example: the π system of benzene

6 electrons, 6 centers

15 possible covalent VB structures (not linearly independent)

Which ones to choose?

Conjugated molecules with interacting VB structures

$$\Psi_{VB}$$
 is a multistructure wave function: $\Psi_{VB} = \sum_{i} C_{i} \Phi_{i}$

where each Ψ_i is a VB structure

Exemple: the π system of benzene

6 electrons, 6 centers

15 possible VB structures (not linearly independent)

Which ones to choose: - Rumer's Rules 1

- Weyl tableaux ²

¹: Pauncz book - Young tableaux and operators ^{1,3}

²: H. Weyl. The Theory of Groups and Quantum

Mechanics; Dover: New York, 1956.

³: McWeeny

An overview of modern ab initio Valence bond methods

Rumer's rule for a covalent n-electron/n-orbital system:

- 1) Put the orbitals around an imaginary circle (doesn't need to have the shape of the molecule)
- 2) Generate all possible VB structures * *not displaying* * crossing bonds

- Complete and non-redundant set of VB structures
- •VB structures are chemically meaningful

-Redundant
-Chemically
meaningless

Rumer's rule for covalent *n*-center/*n*-electron systems

1,3-Butadiene:

Put the orbitals around an imaginary circle, even if the molecule is not a ring

Rumer's rule for covalent *n*-center/*n*-electron systems

1,3-Butadiene:

Other possible (but unphysical!) choice:

- Complete and non-redundant set of VB structures
- Chemically meaningless !!

Rumer's rule for n-center/n-electron ionic structures

Example benzene:

- 1) Choose a distribution of charges
- 2) Apply Rumer's rules on the rest of the system

3) Choose another distribution of charges...

... and so on...

Rumer's rule for m-center/n-electron covalent structures

Example cycopentadienyl anion, m>n

- 1) Choose a center for the lone pair
- 2) Apply Rumer's rules on the rest of the system

3) Choose another center for the lone pair...

And so on..

Application on ozone: see tutorials

Rumer's rule for radicals (m-e/m-c, m odd)

Exemple : [H---H---H]

- 1) Add a fictitious center with one electron
- 2) Treat the system as a singlet

Same number of structures as in the (m+1)-e/(m+1)-c system

Application on allyl radical: see tutorials

Rumer's rule for radicals (m-e/m-c, m odd)

Exemple : [H---H---H]

3) Then wipe out the fictitious atom

Same number of structures as in the (m+1)-e/(m+1)-c system Application on allyl radical: see tutorials

Rumer's rule for triplets

- 1) Insert the atoms + a fictitious center in the circle
- 2) Link the fictitious center to two atoms (they will have [spins)
- 3) Link the other atoms 2 by 2, applying the non-crossing rule

Exemple: butadiene

Number of covalent structures for N-e/N-c systems)

Weyl's formula:
$$f_S^N = \frac{(2S+1)N!}{(\frac{1}{2}N+S+1)!(\frac{1}{2}N-S)!}.$$

N	4	6	8	10	12	
f_S^N	2	5	14	42	132	

Number of covalent+ionic structures for *N*-e/*m*-c systems)

Weyl's formula:
$$g_S^{N,m} = \frac{2S+1}{m+1} \begin{pmatrix} m+1 \\ \frac{N}{2}+S+1 \end{pmatrix} \begin{pmatrix} m+1 \\ \frac{N}{2}-S \end{pmatrix}$$

$$N=m$$
 | 4 | 6 | 8 | 14 | 28 | f_s^N | 20 | 175 | 1764 | 2.76×10⁶ | 2.07×10¹⁴

Solution: treating an **active space** at the VB level (the bonds that form/break), and **the rest** as MOs (« spectator orbitals »).

Example:

S_N2 Transition state: a 4-e/3-orbital VB system only 6 VB structures

Orbitals in VB structures: localized or semi-localized?

The localized orbital option (so-called « classical » VB)

Active orbitals are strictly localized on a single atom

or on a single fragment

- An active orbital must not be delocalized on a center to which it is bonded
- Covalent and ionic structures must be explicitly generated

The semi-localized orbital option: Coulson-Fischer orbitals

Used in:

- Generalized Valence Bond (GVB, W. A. Goddard)
- Spin-Coupled valence Bond (J. Gerratt, D. L. Cooper)

The Generalized Valence Bond Method (GVB)

$$\Psi_{\text{GVB}} = (1 + \epsilon^2)(|\varphi_a \overline{\varphi_b}| + |\varphi_b \overline{\varphi_a}|) + 2\epsilon (|\varphi_a \overline{\varphi_a}| + |\varphi_b \overline{\varphi_b}|)$$

$$\mathbf{H} \bullet - \bullet \mathbf{H} \qquad \mathbf{H} - \mathbf{H}^+ + \mathbf{H}^+ \mathbf{H}^-$$

 $\Psi_{\rm GVB}$ is formally covalent, but physically covalent-ionic optimized

The Generalized Valence Bond Method (GVB)

Ionic structures are implicitely included => they **must not** be explicitly introduced in the GVB wave function

The Generalized Valence Bond Method (GVB)

$$\Psi_{\text{GVB}} = |\Phi_a \overline{\Phi}_b| + |\Phi_b \overline{\Phi}_a|$$

« GVB pair »
Overlapping distorted AOs

Ionic structures are implicitely included => they **must not** be explicitly introduced in the GVB wave function

Generalization:

$$\Psi_{\text{GVB}} = \left[(\phi_{1a} \overline{\phi}_{1b} + \phi_{1b} \overline{\phi}_{1a}) (\phi_{2a} \overline{\phi}_{2b} + \phi_{2b} \overline{\phi}_{2a}) (\dots \right]$$

Four GVB pairs

Albeit full orbital delocalization is allowed, orbitals appear as fairly localized

Hartree-Fock, GVB, CASSCF ... and static correlation energy

localized or semi-localized orbitals...

To what extent do we (semi-)delocalize the orbitals?

1) On 2 centers only: bond-distorted orbitals (BDOs)

Example: BDOs for a Kekulé structure of benzene

$$\Phi_1$$

 Φ_{2}

 $\Phi_{\mathfrak{z}}$

 Φ_4

 Φ_{5}

 Φ_6

$$\Psi_{BDOs}^{VB} \propto \left| (\Phi_1 \overline{\Phi}_2 + \Phi_2 \overline{\Phi}_1) (\Phi_3 \overline{\Phi}_4 + \Phi_4 \overline{\Phi}_3) (\Phi_5 \overline{\Phi}_6 + \Phi_6 \overline{\Phi}_5) \right|$$

describes a Kekulé structure « stricto sensu », with 3 fully localized π bonds

localized or semi-localized orbitals...

To what extent do we (semi-)delocalize the orbitals?

2) Fully allowed to delocalize: overlap-enhanced orbitals (OEOs) (Option used in GVB or SCVB methods)

Example: GVB or SCVB description of benzene with two Kekulé structures

$$\Psi^{GVB} \propto \left| (\Phi_1 \overline{\Phi}_2 + \Phi_2 \overline{\Phi}_1)(\Phi_3 \overline{\Phi}_4 + \Phi_4 \overline{\Phi}_3)(\Phi_5 \overline{\Phi}_6 + \Phi_6 \overline{\Phi}_5) \right|$$

$$+ \left| (\Phi_2 \overline{\Phi}_3 + \Phi_3 \overline{\Phi}_2)(\Phi_4 \overline{\Phi}_5 + \Phi_5 \overline{\Phi}_4)(\Phi_6 \overline{\Phi}_1 + \Phi_1 \overline{\Phi}_6) \right|$$

$$\Phi_1 \qquad \Phi_2 \qquad \Phi_3 \qquad \Phi_4 \qquad \Phi_5 \qquad \Phi_6$$

Orbitals are delocalized on 3 centers

Summary (exemplifed on benzene π bonds) Three options:

Localized orbitals

Bond-distorted orbitals (BDOs)

Overlap-enhanced orbitals (OEOs)

How does one calculate VB wave functions with localized orbitals?

$$\Psi_{VB} = \sum_{i} C_i \Phi_i$$
 where each Φ_i is a VB structure

Basic method: VBSCF (Balint-Kurti & van Lenthe)

Example: the F₂ molecule

Coefficients C_i and orbitals optimized simultaneously (like MCSCF) *All* orbitals are optimized (active as well as spectator ones)

VBSCF ~ equivalent to GVB, SCVB

Accuracy of the various methods

Test case: the dissociation of
$$F_2$$
 F_-F $\xrightarrow{\Delta E}$ $F \bullet + F \bullet$

Calculation of ΔE for F-F=1.43Å, 6-31G(d) basis:

Hartree-Fock: - 37 kcal/mol (repulsive!)

Reason: too much ionic

- Full configuration interaction (6-31G(d) basis) 30-33 kcal/mol
 - GVB, VBSCF, CASSCF Only ~ 15kcal/mol

Reason: we miss dynamic correlation.

What does this physically mean?

What is missing in GVB and VBSCF?

GVB/VBSCF: a closer examination

The coefficients and orbitals are optimized, but...

- The same set of AOs is used for all VB structures: optimized for a mean neutral situation

What is missing in GVB and VBSCF?

GVB/VBSCF: a closer examination

The coefficients and orbitals are optimized, but...

- The same set of AOs is used for all VB structures: optimized for a mean neutral situation

A better wave function:

The « Breathing-Orbital » VB method (L-BOVB)

Provides optimized covalent-ionic coefficients (like GVB)

- Different orbitals for different VB structures
- Orbitals for F•—•F will be the same as VBSCF
- Orbitals for ionic structures will be much improved
- One expects
- A better description of ionic structures
- A better bonding energy

Test case: the dissociation of F₂

$$F-F \longrightarrow F \cdot + F \cdot$$

Calculation of ΔE for F-F=1.43Å, 6-31G(d) basis:

Iteration GVB,VBSCF		De (kcal)	F • _ • F	$F^+F^- \Leftrightarrow F^-F^+$	
		~ 15	0.768	0.232	
BOVB	1	24.6	0.731	0.269	
	2	27.9	0.712	0.288	
	3	28.4	0.709	0.291	
	4	28.5	0.710	0.290	
	5	28.6	0.707	0.293	
Full CI		30-33			

The « Breathing-Orbital » VB method (BOVB)

Different orbitals for different VB structures: How different are the orbitals?

The π lone pairs of F_2 in BOVB:

Small difference in shape, significant effect in energy

Improvements of the BOVB method

• Improvement of the ionic VB structures

- basic level:

- improved level (« split-level » or **S**)

The « active » orbital is split.
This brings radial electron correlation

Improvements of the BOVB method

• Improvement of the ionic VB structures

- basic level:

- improved level (« split-level » or **S**)

Actual shapes of the split orbitals:

• Improvement of the interactions between spectator orbitals

• Spectator orbitals can be:

- local atomic orbitals

- bonding and antibonding combinations

Slightly better (« Delocalized » level or **D**)

The various levels of the BOVB method

• Basic: L-BOVB

All orbitals are localized, ionics are closed-shell

• **SL-BOVB**

All orbitals are localized, but active orbitals in ionics are split

- SD-BOVB
- Active orbitals are split in ionics
- Spectator orbitals are delocalized in all structures
- **D-BOVB** Spectator orbitals are delocalized in all structures

Electron correlation in BOVB

- Non-dynamic correlation (VBSCF, CASSCF,GVB)
 - Non dynamic correlation gives the correct ionic/covalent ratio

Electron correlation in BOVB

Non-dynamic correlation (VBSCF, CASSCF,GVB)

- Non dynamic correlation gives the correct ionic/covalent ratio

Dynamic correlation

- All the rest. This is what is missing in VBSCF-CASSCF-GVB.
- BOVB brings that part of dynamic correlation that varies in the reaction

What is an accurate description of two-electron bonding?

- Spin exchange between two atomic orbitals
 - Electrons are on different atoms and they exchange their positions

What is an accurate description of two-electron bonding?

- Spin exchange between two atomic orbitals
 - Electrons are on different atoms and they exchange their positions

Charge fluctuation

- Sometimes both electrons are on the same atom.
- There is some charge fluctuation. All orbitals instantaneously rearrange in size and shape to follow the charge fluctuation (orbitals « breathe »).

This is differential dynamic correlation

Delocalizing also the active orbitals in BOVB?

No! Never! No way! By no means!

• Delocalizing the active orbitals in a formally covalent function is *one way* of taking care of ionic structures

• Explicitly writing covalent and ionic structures with localized orbitals is *another way*:

- Combining *both ways* leads to *redundancy*
 - no consequences in VBSCF
 - artefactual energy lowering in BOVB

Delocalizing also the active orbitals in BOVB?

No! Never! No way! By no means!

Test case: the dissociation of F₂

1) BOVB with strictly local active orbitals

L-BOVB De = 29.1 kcal/mol

SD-BOVB De = 36.3 kcal/mol

2) BOVB with delocalized active orbitals

L-BOVB De = 51.5 kcal/mol

SD-BOVB De = 102 kcal/mol (!)

Faraday Discuss., **2007**, *135*, 369-371

Experiment

De = 38 kcal/mol

Delocalizing also the active orbitals in BOVB?

No! Never! No way! By no means!

Test case: the dissociation of F₂

1) BOVB with strictly local active orbitals

L-BOVB De = 29.1 kcal/mol

SD-BOVB De = 36.2 kcal/mol

2) BOVB with delocalized active orbitals

L-BOVB Be = 51.5 kcal/mol

SD-BOVB De = 102 kcal/mol(!)

Faraday Discuss., **2007**, *135*, 369-371

Experiment

De = 38 kcal/mol

Summary: the two great families of VB methods

Exemple: the H₂ molecule

Static correlation

Classical VB Local approach

Coulson-Fischer Semi-delocal approach

$$\Psi_{\rm CF} = \bullet \bullet \bullet$$

- $\Psi_{VB} = H \bullet -\!\!\!\!-\!\!\!\!-\!\!\!\!\!- H + H^-\!H^+ + H^+\!H^-$
 - Keep strictly local orbitals
 - *Explicit* inclusion of ionic structures

- Use semi-delocalized orbitals
- *Implicit* inclusion of ionic structures

Dynamic correlation

BOVB, VBCI, VBPT2, VB-QMC

CCCI, VB-QMC

Calculation of diabatic energies

What for?

Resonance energies

$$RE = E(1) - E(1 \longrightarrow 2)$$

VB-state-crossing diagrams

See VB lecture III by Prof. S. Shaik

Calculation of diabatic energies

Example: Covalent-ionic resonance energy in H₂

$$\Psi_{VB} = C_1 \Phi_{cov} + C_2 \Phi_{ion-1} + C_2 \Phi_{ion-2}$$

$$RE = E(\Phi_{cov}) - E(\Psi_{VB})$$

How does one calculate $E(\Phi_{cov})$?

First method: « Consistent Diabatic Configuration »

 Φ_{cov} is simply extracted from the Hamiltonian matrix

$$RE(CDC) = -1.85388 + 1.86452 = 0.01064 \text{ au} = 6.7 \text{ kcal/mol}$$

Calculation of diabatic energies

Example: Covalent-ionic resonance energy in H₂

$$\Psi_{VB} = C_1 \Phi_{cov} + C_2 \Phi_{ion-1} + C_2 \Phi_{ion-2}$$

$$RE = E(\Phi_{cov}) - E(\Psi_{VB})$$

Second method: « Variational Diabatic Configuration »

 Φ_{cov} is calculated separately: $E(\Phi_{cov}) = 1.85778$ au $\Rightarrow \Phi_{cov}$ is *variationally optimized*

"Charge shift" bond

• What is a Charge Shift bond*?

Polar-Covalent bond

"Charge-Shift" bond

A bond is called "charge shift" when it owes its stability to the **resonance energy** between the **covalent** and **ionic** states of the bond

^{*} Shaik, S.; Danovich, D.; Wu, W.; Hiberty, P. C. Nat. Chem. 2009, 1, 443–449. Zhang H., Danovich, D.; Wu, W.; Braïda B.; Hiberty, P. C.; Shaik S. JCTC 2014, 10, 2410–2418

"Charge shift" bond

• Prototype examples of charge-shift bond : F₂ :

H₂ and F₂ both ~80% covalent and 20% ionic!

^{*} Shaik, S.; Danovich, D.; Wu, W.; Hiberty, P. C. Nat. Chem. 2009, 1, 443–449. Zhang H., Danovich, D.; Wu, W.; Braïda B.; Hiberty, P. C.; Shaik S. JCTC 2014, 10, 2410–2418

"Charge shift" bond

Condition for charge-shift bonding:

CS-bonding appears when there is much Pauli repulsion around the bond (high T)

Necessary condition for charge-shift bonding: at least one of the atoms involved in the bond should bear lone pair(s)