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Propagation in Doubly Clad Single-Mode Fibers
MICHEL MONERIE

Abstract-General propagation properties and universal curves are
given for doubly clad single-m6de fibers with inner cladding index higher
or lower than outer cladding index, using the two pararneterx inner
cladding/core radii ratio and inner cladding/core index differences ratio.
LPO1, LP11, and LP02 cutoff conditions are examined. It is shown
that dispersion properties largely differ from the singly clad single-mode
fiber case, leading to large new possibilities for low-loss dispersion-free

fibers at any wavelength between 1.3 and 1.7 pm.

I. INTRODUCTION

T HIS paper results from calculations made on doubly clad

fibers. We observed experimentally that the cutoff prop-

erties of LPI 1 and LP02 modes did not always match the

values predicted by the weakly guiding singly-clad fiber theory

and calculated with data issued from other experiments (re-

fracted near-field pattern and preform measurements). The-

oretical results on doubly clad fibers with depressed inner

cladding have been previously published [1] - [3], but we

experimentally study low-index inner cladding and high-index

inner cladding as well. We then wanted to extend the theory

to all types of doubly clad fibers. Some developments of our

calculations led us to pay more attention to the dispersion

properties of such structures. Kawakami and Nishida [1] al-

ready reported some features of the anomalous dispersion of

W-type fibers, principally the theoretical possibility to cancel
the glass dispersion at a wavelength of 1 pm, but with fiber,

specifications hardly very obtainable in practice. However,
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we show here that another part of the dispersion curves of

W-type fibers allow us to obtain free dispersion operation with

very low doping levels, contrary to singly clad fibers which

require high doping levels. Now it has been demonstrated that
particular attention should be paid to minimize the amount of

germanium dopant required for any fiber design, in order to

reduce loss [4]. This leads us to propose a new low-loss fiber

structure with zero total dispersion at any wavelength between

1.3 and 1.7 Km.
.,

The purpose of this paper is then to study the inner cladding

effect on the propagation properties of the first guided modes

of doubly clad fibers: cutoff, normalized propagation param-

eter, dispersion properties. We solve numerically the Maxwell

equations without trying to find analytical formulas approach-

ing the exact solution. However, as far as possible we give the

physical meaning of some unusual results, especially when

they differ from those of the singly clad fiber case.

Section II of this paper is devoted to the mathematical for-

mulation of the problem: field solutions, dispersion equation,

and its resolution.

Section III deals with results concerning the cutoff condi-

tions for LPO1, Ill 1, and LP02 for some practical cases. We

show that a very simple general formula gives the condition for

a n,onzero LPO 1 cutoff in the case of depressed inner cladding.

Universal curves giving the normalized propagation param-

eter B are shown in Section IV for various cases of doubly clad

fibers. We deduce from these data the @Ol modal dispersion

properties of these fibers and review the possibility to obtain

low-loss dispersion-free fibers in the range 1.3 to 1.7 Km.
We study the structure shown in Fig. 1: a weakly guiding

fiber has a core radius a and a core refractive index ?rI. The
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Fig. 1. Refractive index variation along a cross section diameter of a
doubly clad weakly guiding fiber.

inner cladding has a radius b and a refractive index n2. The

refractive index of the surrounding medium (outer cladding)

is n.

H. MATHEMATICAL RESOLUTION

We note (see Fig. 1) that

An=nl-nz

An ’=n2-n

V= V, = lcoa(rzt - rz2)1/2 = kOa[2n(An +An’)] ]/2

F’* ‘lcob(lrz% - rz21)l/2 ‘kOb[2nl An’l]1f2

where k. is the vacuum wave number.

We also introduce the two main parameters R = An’ /An and

S’= b/a. It will be shown further that propagation character-

istics depend only on R, S, and V. Note that R >-1 for

mathematical guiding (propagation constant ~ > k. n). In this

work we limit ourselves to An > O; An <0 means a dip in the

inner cladding but this does not correspond to a practical

fiber. It rather describes a single-mode fiber with a dip in the

core, the inner cladding (with An’ > O) becoming the core.

A. Eigenfields

~ being the mode propagation constant, we define the usual

normalized propagation parameter B

Our purpose is to complete B(V) and the mode dispersiorr

parameters d(VB)/dV and V(d2 (VB)/dV2 ) for various values
of R = An’/An and S = b/a.

We define mode parameters

~ = a(k~n; _ /3Q)@

u’=b(k~nj - B2)1’2

u’=b(~2 - k~n~)l/2

~ = b(@ - k~nQ)@.

For the azimuthal order m, the radial dependence ~(r) of

the axial fields components are expressed as [5]

()$=AoJm UT
a

for r<a

$=’41J44+A2Y4U’:)
for a<r<b if /3<kon2

()Q=A3Km V:

forr>b

and as

for r<a

+=A’’m(v’:)+A’Km(v
for a<r<b if /3>kOn2

(1)

for r>b (~)

where Jm, Ym, Im, and Km are the usual Bessel and modified

Bessel functions. AO and A: are normalization coefficients.

Analytical expressions for A ~, AZ, A ~ and A\, A;, A: are

given in Appendix 1. The field components are derived as

usual from ~ [5] .

B. The Dispersion Equation

We find the dispersion equation by matching I) and&+/6 r at

interfaces between core, inner cladding, and outer cladding. In

the limit of a weakly guiding fiber (all relative index differences

<<1), this continuity is equivalent to the continuity of the
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transverse components [6]. This leads to a (4X 4) matrix taking into account the formal identities 1-1 (x) =11 (x) and

which determinant must be equal to zero to ensure a nontrivial K.l (x)= K1 (x), we obtain for An’< O and for all cases

solution. (m= Oandnz>l)

For O<k. nz, we have

[?w(24)- Pm(u’c)] [im(u) -in(u’)]
[in(u) - ;m(u ‘c)] [im(u) - tm (u’)]

= J?n+l(~’C)ym+l (u’)
~w+,(~’)ym+l(u’c)”

(3)

For /3> k. nz, we have
.

[fm(u) -km (u’c)] [Z?m(u)+ ;m(u’)]
[fm(U]+im(v’c)] [Z?m(u) - & (v’)]

= h+I(U’C)Km+l (U’)
Irn+l (u’) Km+l (u’c)

where

.2m(x)=
Zm (x)

Xzm ,1 (x)

(4)

(5)

(Z representing the Bessel functions .1, Y, 1, or K) and

III. CUTOFF PROPERTIES

A. Cutoff Equations

At cutoff, ~ = 7G0n. The radial propagation constants take

?m(V) - I?m(V2C) = In+1(V2c)Km_1 (Vz)
—.
Jm (V)+ ~m (~zC) Km+l(V,c)Zm.l(V,) “

(9)

B. Cutoff Curves

Equations (8) and (9) contain V, V2, and V2C, which can be

expressed as functions of V = k. a~2n (An + An ‘), R = An’/

An, and S = b/a, since c = 1/S and V2 = VS(IR 1/1 +R)l/2. We

deduce relations fm (Vcm, R, S) = O for modes with azimuthal

order m, VCm being the normalized frequency at cutoff.

1) LPO1 Mode: As pointed out by Kawakami and Nishida

[1] and Sammut [3], the fundamental mode has not neces-

sarily a nonzero cutoff as soon as An’ <O. The refractive

index gap must be large enough (b/a >>1 or IAn’ I = An) for

the field to be modified. Fig. 2 shows the limit between guid-

ing and leaky areas for the LPO1 mode in the (b/a, An ‘/An)

diagram. This curve is the exact one, computed numerically

from (9).

However, it is possible to find in a simple way the equation

of this curve. Kawakami and Nishida [1] speak of the average

index effectively seen by the wave. Using a stationary expres-

sion allows us to quantify this idea and effectively leads to the

exact equation, but we prefer here to give a direct demonstra-

tion. We shall look at the condition leading to V= Oat cutoff

of the LPO1 mode. Starting from (9) and taking its limiting

form for V-+ O, we have

the values
to(v)- 2 V-2, &(v2c)

{

- -ln (V2C), tO(V2c) - 2( V2C)-2
Up’ r<a

the right term being equal to C2. We then obtain
u’=V2(An’>0) or u’=V2(An’<0) a<r<b

()

c2+~2 b

()

lAn’l ‘1/2
~=o i->b.

v~ ‘1’ ‘r ;=Z “
(lo)

(6)

Close to cutoff, the radial propagation, constant u decreases
to zero. We find the cutoff conditions by calculating the limit-

ing form of the dispersion equation for u -+ O. We use the

limiting form of Km (u) for small arguments [7]

for u ~ O, Ko(u) - -ln (u)

Km (V) -
2rn-1 I’(m)

urn “
(7)

1) For An’> O, the LPO 1 mode is always guided. l?m~(v) is

equivalent to 1/2 m (m> 1), and the brackets containingKm (v)

in (3) become -Jm _l (V2 )/2m Jm+l (V2 ) at numerator and
- Ym_l ( V2)/2m Ym+l (V2 ) at denominator. We then have the

cutoff conditions for higher order modes (m > 1)

~m (v) - ~m(vzc) = Jm+l(v2c)ym-l(v2) (8)
fm (v) - fm (V2C) Yin+, (V,c)Jn-, (V,) “

2) For An’< O, the LPO 1 mode may be lealcy. & (v) is

equivalent to -ln (v) and the terms containing Km (v) cancel

out. For m >’1, they becomelm-l (V2 )/2m Im+l (V2 ) (numer-

ator) and Km_l (V2 )/2m Km+l (V2 ) (denominator). Finally,

This is the equation of the curve shown in Fig. 2. As a mat-
ter of fact, this is the condition for the LPO1 mode to have

no cutoff, but it does not give the cutoff value of P’ when it is

different from zero.

It must be well understood that we speak here of the mathe-

matical cutoff, defined as/3 = k. n. Obviously, the LPO1 mode

will be physically guided whatever An’ may be, as soon as b/a

is sufficiently large, its attenuation being very low [2].

2) LPO1, LP1l, and LP02 Modes: We show in Figs. 3 and 4

the cutoff characte~istics of the first propagating modes. Fig.

3 represents the VC value of the normalized frequency V at

cutoff as a function of An ‘/An for two values of b/a. Curiously,

one can see that if b/a is sufficiently large then there is a range

of positive An’/An for which the LP02 mode is guided, whereas

the LPI 1 mode is still leaky. This seems easily understandable

since the LP02 mode takes advantages of the core index dif-

ference (maximum field value for r = O), whereas the LP11

mode is principally affected by the inner cladding refractive

index (slightly above cutoff, the oscillating part of the field

spreads up to r = b).

Fig. 4 shows VC versus b/a for various An ‘/An for the LPO1

and LP1 1 modes.
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Fig. 2. Cutoff limit for the LPO1 mode,

IV. NORMALIZED PROPAGATION AND DISPERSION

PARAMETERS

A. Normalized Propagation Constant B( V)

It is possible to express u, u‘, u’, and v as functions of B,R =

An ‘/An, and S = b/a. We have from Section II-A

()R
1/2

u“vs-
l+ R-B

()

R 1/2

v’=VS B-—
l+R

v = Vso.

It is thus possible to compute B( V) for given values of R and

S. Fig. 5(a)-(c) shows the curves B(V), respectively, for b/a=

1.5, 2, and 5, for various values of An ‘/An. The curvature

sign change around V= 3 (Fig. 5(c), LP11 mode, An’ > O)

v. approximately occurs for the V value for which the oscillating

k- b-5—— a-

6-

5-

4-

3-

2-

1

I

b_2a–
I

LP 11

_____________

‘\
‘.

part of the field spreads in the inner cladding.

B. Normalized Mode Dispersion Parameters d( VB)/dV

and V(d2 ( VB)/dV2 )

Defining the group delay of the LPO 1 mode as r = d~/do,

we obtain the derivative of the group delay with respect to the

wavelength A as (see Appendix II)

:=MI+A*I-HV%=91
(11)

-\\. \ i k“+ where N = n - k(dn/dk) is the group index of the outer clad-
I 1!1 An’

-a6 -05 -Cu -(22 0 02 K

Fig. 3. Normalized frequency at cutoff V= versus An ‘/An for b/a= 2
and b/a = 5. Note that in area A for bfa = 5, the LP02 mode is guided,
whereas the LPI 1 mode is leaky.
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Fig. 4. Normalized frequency at cutoff Vc as a function of b/a for
various An ‘/An values.

ding, M = (1/c) (dN/dk) its material dispersion, p the mean

profile dispersion parameter, and A the relative core index

difference (An + An’)/n. It is then necessary to compute

d(VB)/dV and V(d2 (VB)/dV2 ) to know how to cancel the

total (material + modal) mode dispersion. For An’/An = O

(singly clad fiber) simple enough analytic expressions are known
for these two quantities [8] . As the similar expressions for

the doubly clad fibers must likely be quite complex, we merely
did a numerical computation of d(VB)/dV and V(d2 (VB)/

dV2 ) from B(V) for three neighboring values of V. The rela-

tive accuracy on B is 10-6, and the computed mode dispersion

parameters for An’ = O are within 10-3 compared to the exact

analytical results in the case of the singly clad fiber. However,

some numerical difficulties appear close to cutoff, when the

LPO1 has a nonzero VC. In this case, thel?(~) curve is strongly

affected and its derivatives vary very rapidly. It can be shown

easily that at cutoff, for all guided modes, d(VB)/dV and

V(d2 (VB)/dV2 ) tends to zero when V approaches VC.

Fig. 6 shows what occurs in the vicinity of B = O for R =

-0.5. The left vertical scale B2 =/3 - k. n2 /kO (n ~ - n2 ) =

B(I + R) - R is associated with the lower horizontal scale

V12 = V(l + R)-1/2 and is valid for the broken line, showing

the normalized propagation parameter without outer cladding.

The right horizontal scale B, associated with the upper hori-
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Fig. 5. (a) ll(P’) for various An ‘/An for b/a= 1.5, (b) b/a= 2, and (c)
b/a = 5.

zontal scale V, is valid for full lines and shows B(V) for b/a=

1.5 and 5. It is clear that B will vary rapidly the larger b/a is,
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Fig. 6. Depressed inner cladding influence on the B(V) curve. See
explanations in the main text.

leading to very fast changes of d(VB)/dVand V(c12(VB)/d~ ).

Roughly speaking, there will be a sharp peak ford’ (VB)/dV2

when Vc will approach the asymptotic value of the curves

V, (b/a) in Fig. 4. This limiting value corresponds to the

crossing between Bz (Vlz ) and the V axis in Fig. 6.

Figs. 7 and 8 show d(V..)/dV (a) and V(d2 (VB)/dV2 ) (b),

respectively, for b/a = 1.5 and b/a = 2 for various An ‘/An.

One can see the above-mentioned curve features, especially the

high values of d2 (VB)/dV2 when VC is close to its asymptotic

value for b/a -+ GO.

C. Zero Total Mode Dispersion

To obtain a zero total dispersion at a wavelength between

1.3 and 1.7 ~, it is necessary to have a high negative modal

dispersion to cancel the high positive material dispersion coef-

ficient M of silica (22 ps/nm/km at 1.55 ~m, 31 ps/nm/km

at 1.7 ~). V(d2 (VB)/dV2) has a maximum value of 1.4

for singly clad single-mode fiber, leading to high core/cladding
index differences for dispersion-free operation: An = 10.10-3

at A= 1.55 #m, An= 15.10-3 at k= 1.7~m [9]. These high

values lead to excess propagation loss, since the scattering

losses increase with increasing dopant concentration in ger-

manium doped silica fibers [4], [10] . Using doubly clad

fibers avoids this drawback. It would not be advisable to use

the very high obtainable peak values of V(d2 ( VB)/dV2 ) since

tolerances would be very stringent. Moreover, the cutoff

region would bring extra bending losses. However, it seems

possible to ensure V(d2 ( VB)/dV2 ) = 2-3 without disadvan-

tage. It would then not be convenient to work at the top of

the curve, but rather on a side in order to relax the manufac-

turing parameters by taking advantage of compensation phe-

nomena between different successive fibers. Of course, we

shall choose the right side to avoid cutoff. Many combinations

between An, An ‘/An, and b/a can be found to cancel the total

mode dispersion. We shall not give exhaustive relations be-

tween these three parameters, but only some results concern-

ing the “best” fibers having the minimum total loss taking into

account microbendings, bends, lateral and angular misalign-
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Fig. 7. (a) Dispersion parameters o!( PZ?)/dV and (b) V(d2 ( V13)/dV2)
for b/a = 1.5 for various An ‘/An values. Crosses indicate the limits of
single-mode operation.

ments at splices, absorption, and scattering. The best equiva-

lent step-index singly clad fiber has a core/cladding index

difference equal to 6.5 10-3 when working at 1.55 ym (opti-

mization for terrestrial and submarine applications), this result

being not affected by the P’ value for 1.6< 1’<2.4 [11].

From the equivalence relations established by Matsumura

[12] , we compute the W-fiber equivalent to this best step-

index singly clad fiber. For An ‘/An = -0.5 and b/a = 1.5, this

leads to An = 12.610-3. For An’/An = -0.25 and bla = 2.0,

we obtain An = 7.7 103. Using (12) and curves of Figs. 7 and

8 we find that IVA V(d2(VB)/dV2) must be equal to 10.10-3

for A= 1.55 Urn and 16.10-3 for A= 1.7 pm, leading to the

following results for zero total dispersion (dr/dA = O):

An’— =.0.50, ~= 1.5,
An a

An + An’ = 6.310-3

{

~=1.55pm-V*=l.6, V=l.8

1=1.7 pm~Vd~~)=2.5, V=I.65

An’
—=-0.25, ‘=2,
An a

An +An’=5.g 10-3:

[
A=l.55um-V

GP(V13) = ~ 7

dv2 “ ‘
V=l.55

These fibers will have very similar total attenuations for a

given wavelength since they correspond to the same equivalent

step-index singly clad fiber (same Veq and Woeq for the same

wavelength). The second data set (for b/a = 2) will perhaps
even show less scattering losses since the germanium doping

level is lower in the core than for the singly clad fiber. Fig. 9

shows the three structures and their dispersion properties

(their attenuations being very close) as seen above.

This particular 1example shows the very large possibilities

offered by the doubly clad fibers in order to obtain low-loss

dispersion-free fibers between 1.3 and 1.7 vm. The upper part

of Fig. 9 gives an idea of what can be done with W-type fibers.
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Fig. 8. (a) Dispersion parameters d(?%)/dV and (b) V(d2(VB)/dV2)
for bfa = 2 for various An ‘/An values. Crosses indicate the limits of
single-mode operation.

We did not take into account the dopant contribution to ma-

terial dispersion because various solutions can be found for

a same index profile (pure silica, germanium or fluorine and/or

phosphorus- doped silica). In all cases the dispersion contribu-

tion of the dopants will be less than 2 ps/nm/km between

1.2 and 1.9 wm. We also ignored the dispersion contribution

of profile imperfections; for example, a core dip only has a

very small effect on waveguide dispersion. Finally, the disper-

sion curves of Fig. 9 are correct within a few ps/nm/km, the

correction depending on the exact dopant concentration and

on the real profile.

V. CONCLUSION

By using the weakly guiding approximation, we solved nu-

merically the dispersion equation of all doubly clad fibers with

core index higher than inner cladding index. We gave universal

propagation curves B(V) for LPO1 and LPI 1 modes and cutoff

properties as well.

Concerning the important point of dispersion, we show how

it is possible to obtain dispersion-free propagation with opti-

mum doping levels lower than those required by dispersion-
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(b) (c)(a)
Fig. 9. (b) and (c) Possible low-loss dispersion-free W fibers. (a) shows

the “best” singly clad fiber [11 1. The utmer Dart shows the total
dispersion for ‘fi-e three types- of “fibers: a) “s~ep;ndex, core diameter
2a =6.5 pm, b) b/a= 1.5 bl: 2a =6.5 ~m b2: 2a= 6.6 pm, c)
b/a= 2.0 cl: 2a= 5.7pm c2: 2a= 5.4~m.

free singly clad fibers. This seems to be attractive, especially

at 1.55 #m (theoretical and experimental minimum attenua-

tion for high silica fibers), where state of the art laser diodes

operate monochromatically only with great difficulty when

modulated. This new possibility could avoid the use of an

external modulator, thus leading to an improved link power

budget.

APPENDIX I

THE FIELD COEFFICIENTS

A ~, A2, A ~ as functions of A. are found from (1) by solving

the system below:

[

Jm (U) Jm (U ‘C)

uJ~ (u) u ‘c J; (u ‘c)

o Jn(u’)

o u’J~(u’)

“H
A.

-A ~
. 0

-Az

A3

Ym (u ‘c) o’

u ‘c i~ (u ‘c) o

Ym(u’) Km (u)

u’Y~ (u’) uK~ (u)

where Z‘ = dZ/dr (Z Bessel function).

Using the classical Bessel functions properties [7] , we have

(
A, = ~ [u Jm+l (u) Ym (tJ ‘c) - u ‘c Jm (u) Ym+l (u ‘c)]

A2 . ~“ [u’cJm+l(u’c)Jm (U) - U Jti+I(u)Jw (u’c)]

[
A3 = ~ [AI Jm(u’)+A, Yn(u’)].

m
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For /3> k. rtz, we must solve from (2)

[

Jw (U) Im (v ‘C) Km (U ‘C) o

uJ~ (U) u ‘c ~~ (u’c) u ‘C ~~ (SJ‘c) O

0 Im(v’) Km(u’)

1

Km (u)

o u’1~ (u’) u’K~ (rJ’) vK~ (V)

leading to
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where Ni = ni - A(dni/dA) is the group index. We then have

ld~N
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N, - N d(VB)
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cdkc N 1dV “
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in our case.

to the wavelength givesDifferentiating with respect

+ N’ dV d2(VB)

c ~ dV2

where M = 1/c W/d k is the material dispersion.

Introducing the classical mean profde dispersion parameter

P = ~/A dA/dA (P ~ 0.1 at A = 1.55 #m for germanium doped
graded-index fibers [14] ) and using again (A.11- 1), we obtain

(12)


