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Directional  Couplers  Made of Nonidentical 
Asymmetric  Slabs 

Part 11: Grating-Assisted  Couplers 

Abstract-In this  second  part  of  the  paper  we  discuss  TE  and  TM 
mode  directional  couplers  made of nonsynchronous,  nonidentical 
asymmetric  slab  waveguides.  Coupling  is  accomplished  with  the  help 
of  a  diffraction  grating  that is placed on either  of  the  two  guides on the 
side  facing  the  opposite  slab.  The  grating  couples  the  compound  modes 
of  the  complete  slab  structure to each  other.  However,  since  the two 
slabs  are  nonsynchronous,  the  compound  modes  resemble  closely  the 
modes  of  each  slab in isolation.  We  also  provide  approximate  expres- 
sions  that  result  from  approximating  the  compound  modes  with  the 
modes  of  the  individual  slabs.  The  accuracy of these  approximations is 
estimated by comparison  with  the  exact  results. 

I 
INTRODUCTION 

N THE FIRST part of this paper  we  discussed  direc- 
tional couplers made  of nonidentical slab waveguides 

[l] .  Complete  exchange of light  power  between the two 
guides  occurs  for  those  modes  that  have  identical  propa- 
gation constants.  However,  complete  power  exchange be- 
tween  the  two  slab  waveguides is possible  even if their 
modes  have different propagation  constants,  provided  a 
diffraction grating is etched into the face  of at least one 
slab on  the  side facing the  opposite  slab  [2],  [3].  A grat- 
ingLassisted directional coupler is schematically shown  in 
Fig. 1. The  grating may be located on  either  slab, but its 
effectiveness depends  on its position.  Complete  power ex- 
change  between  the  two slabs can  occur if the difference 
of the  propagation constants of the modes that are to be 
coupled satisfies the relationship [4] 

2n 
P z  - P1 = n 

with A indicating the length of one period of  the diffrac- 
tion grating. 

The  performance of a  grating-assisted directional cou- 
pler  can  be  described by conventional  coupled  mode the- 
ory [5] .  However,  this theory is based on  the  assumption 
that the interacting modes  are  mutually  orthogonal.  This 
requirement  excludes  the  use of the  modes of each  indi- 
vidual slab  since these modes are not orthogonal  once  the 
two slabs are placed in close  proximity to each  other. 

In the first part of  this  paper  we  have  made  use  of  the 
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Fig. 1 .  Schematic  of a grating-assisted  slab  directional  coupler  showing 
two  slab  cores  (width dz and d 4 )  and a square  shaped  index  grating on 
the  lower slab. 

compound  modes of the  combined structure of the  two 
slabs to describe  the  directional  coupler.  These  modes  are 
mutually  orthogonal.  Their superposition at the input end 
of the directional coupler  could  be  arranged so that most 
of the light power is concentrated over  the input slab.  Ex- 
change of power  occurs  due to the difference in the prop- 
agation constants of the  two  compound  modes.  After the 
distance L = 2n / ( Pz - p1 ), the  phase relationship 
among  the  modes is reversed. Thus, the superposition of 
the  two  modes now results in cancellation  of  the light 
power over  the input slab  and  reinforcement over  the  op- 
posite slab, which results in transfer of light from  one slab 
to  the  other.  The  same  process  can  approximately  be  de- 
scribed by a system of coupled differential equations for 
the amplitudes of the modes  of  the individual slabs.  Both 
approaches yield results that are  in good  agreement.  How- 
ever,  the coupled equations thus obtained are only ap- 
proximately valid and  do not follow  directly  from  the  con- 
ventional theory of coupled  orthogonal  modes. 

The standard coupled  mode theory for describing a 
grating-assisted directional  coupler requires the  use of a 
system  of  orthogonal  modes [6].  The  logical  choice for 
such  a  mode  system  are  the  modes of the  compound struc- 
ture consisting of the  two  slabs.  In  the  absence of the grat- 
ing,  these  modes  are not coupled  with  each  other;  cou- 
pling is provided by the  grating.  Even  though  compound 
modes  of the combined  slab  structure are used for  describ- 
ing power  exchange in synchronous  directional couplers 
as well as in asynchronous grating-assisted couplers,  their 
roles are  very different in the  two  cases. In the  asynchro- 
nous couplers,  the  modes of the compound  structure- 
even  though they overlap  both  slabs-carry  power pre- 
dominantly  only in the region of one or the  other  slab. 

0733-8724/87/0200-0268$01'.00 O 1987 IEEE 



MARCUSE:  DIRECTIONAL COUPLERS MADE OF ASYMMETRIC SLABS 269 

Thus, superposition of  these  two  modes  cannot lead to 
complete  exchange  of  power  among  the  two  slab  wave- 
guides.  But  when  the  two  compound  modes  are  coupled 
by the diffraction grating, they do  interchange  their  power 
with resultant power  exchange  among  the slabs of the  di- 
rectional coupler. 

Use of the  compound  modes of the  two slabs compli- 
cates  the  mathematical  description  of the directional cou- 
pler,  preventing us from  obtaining  closed-form  analytical 
expressions  for  the  coupling coefficients. Since  the  two 
compound  modes  resemble the modes  of the individual 
slab  waveguides,  it  is  tempting to replace  them  with  these 
more easily computed  modes.  This  approximation  leads 
to mathematical  expressions in closed form  for  the  cou- 
pling coefficients. These  approximations often yield the 
correct  order  of  magnitude of the  coupling coefficients but 
they are not adequate  for  precise predictions of  the be- 
havior  of  the  directional  coupler. A comparison  of  the ex- 
act  and  approximate  coupling coefficients is the principal 
contribution of  this  paper. 

COUPLED WAVE EQUATIONS FOR THE GRATING 
COUPLER 

Since  we  are  only  interested  in  the interaction of two 
guided  modes  with  mode  amplitudes al  and a2 and  prop- 
agation constants p, and p2, we  use  the  following set of 
coupled equations to  describe  the  directional  coupler [6] 

The  coupling coefficient x is defined as 

E = 2Kf ( z )  
with [5] 

In  these  equations, Zl and z2 are  the  electric vectors of 
the  mode fields that  are  coupled  together. In the  case of 
the  directional  coupler they are  the  modes of the com- 
pound  structure  in  the  absence  of  the  grating; they were 
defined and  discussed  in [ 11. If the grating is positioned 
as shown  in Fig. 1, n4 and n3 are  the  refractive  index val- 
ues of the  core of  the  lower  slab  and  of  the  medium be- 
tween  the  two  slabs. P is  the  (unit) power  carried by each 
mode field. This  is  just  a constant normalizing  the fields 
and is assumed the  same  for  both  modes.  The light is as- 
sumed to be monochromatic  with  angular  frequency w; eo 
is the  electric permittivity of vacuum.  The integral ex- 
tends over  the  transverse  dimension of the  grating  and  the 
function f ( z )  describes  the  deformation  of  the  core 

boundary  of  the  slab  that  constitutes the grating. Accord- 
ing to Fig. 1 ,f ( z )  is a  step  function.  However,  when  the 
step function  is  expressed  as  a  Fourier  series  of sinusoidal 
functions,  only  one  of  the  Fourier  components, usually 
the  fundamental  component,  takes part in the  interaction 
of the  two  waves [6 ] .  Thus,  we express f ( z )  as  the  fun- 
damental  component  of  its  Fourier  transform 

with  grating  depth Dgr. The propagation  constants PI and 
p2 appearing in the  coupled  wave  equations may have  op- 
posite signs  permitting  mode  coupling in opposite  direc- 
tions if the  grating  period is sufficiently short. 

The  wave  amplitudes a l  and a2 are rapidly varying 
functions of z .  This rapid z-variation can  be  removed  by 
introducing slowly  varying  amplitudes A ,  and A, 

a .  = ~ . e - ' @ j z ,  j = 1, 2. 
J J  (7) 

Substitution of (4), ( 6 ) ,  and (7) into (2) and (3 )  results in 

dA2 i ( 2 ? r / A ) z  + e - i ( 2 ~ / A ) z  - = i - D,,KA,(e 
dz ) e i ip2 -p ' ) z*  

lr 

(9) 

The product of the  exponential  function  exp ( +i( p2 - 
p1)  z )  with  the  two  terms of the  exponential  expansion  of 
the cosine function results in  two different expressions. If 
(1) holds, the first expression  becomes  a constant (unity), 
while  the  second  expression is a rapidly varying  function 
that oscillates  with  a  spatial  frequency 2 ( 2 n / A ) .  When 
integrating the differential equation, this second  term 
makes  a negligible contribution.  Thus,  we may write  the 
system  of  coupled  wave  equations in the  form 

dA 1 - = iKA2 
dz 

dA2 - = iKAl 
dz 

with 

2 K = - DgrK. (12) 
7r 

Equations ( 3 ,  and (10)-(12) provide  the  mathematical 
tools for  the  description of the grating-assisted directional 
coupler.  The  electric field components of the  compound 
modes  and the  eigenvalue  equation  for  computing  the 
propagation  constants PI  and P2 are given in [ 11. Unfor- 
tunately,  these  equations  are so cumbersome  as to make 
it impractical to write  down  closed-form  expressions  for 
the coupling coefficient. Instead, it is  simpler to compute 
numerical values for K and study its properties by com- 
puting values  for specific examples. 
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APPROXIMATE  COUPLING  COEFFICIENT 
We remarked in  the  introduction (and shall show later) 

that the compound modes of the structure  consisting of 
the  two  slabs  closely  resemble the modes of each  slab 
taken in  isolation.  This obserqtion m_akes it  attractive  to 
approximate the mode fields E ,  and E2 appearing in ( 5 )  
by the modes  of  the isolated slabs.  The mode field expres- 
sions are given in [6] and the eigenvalue  equation  in [l] 
and [GI. Straightforward  calculations  yield the following 
approximate  expression for  the coupling coefficient of TE 

The  approximate  coupling coefficients (13) and (14) are 
useful for computing  order-of-magnitude  estimates, but 
we shall show that they are not very accurate. 

EXAMPLES AND NUMERICAL RESULTS 
To  illustrate  the results of the theory we  consider  two 

examples. In  the first case,  we assume that the directional 
coupler  consists  of  two  dissimilar slabs.  The upper slab 
(as defined in Fig. 1) has a core width dz  = 1 pm and a 
core  refractive  index of n2 = 3.3.  The  lower slab has a 

modes 

As usual,  the coupling coefficient for  TM modes  is  much  more complicated 

with 

and 

The symbols p2 and P4 indicate  propagation  constants 
of modes belonging to  the  slabs  with core index n2 and 
n4, respectively. With the free  space  propagation  constant 
k = 27r / X ( X = vacuum length) we define the parame- 
ters appearing in  (13)-( 15) as follows 

K ;  = n : k 2  - ,6; K ;  = n i k 2  - P i  

7; = - n l k  7; = - n 5 k  

yz3 = 6; - n i k 2  y i 3  = 0: - n:k2. (17) 

As written, the coupling coefficients belong to a grating 
on  the  lower  slab,  as shown in Fig.  1, with core index n4. 
If, instead, the grating is placed on  the upper slab,  the 
following  transformation of indices  must be made 

2 2  2 2  

1 + 5 ,  2 - 4 ,  3 + 3 ,  

4 - 2 ,  5 + 1 .  (18) 

For  asymmetric slabs,  the  value of the coupling coef- 
ficient depends strongly on  whether  the  grating is placed 
on the  upper or lower  slab. 

core width of d4 = 0.3 pm and a core refractive  index of 
n4 = 3.5.  The refractive  index of the medium  above  the 
upper  slab is assumed  to  be air with nl = 1.  The refractive 
index of the medium between the two  slabs is n3 = 3.2. 
Finally, the index of the medium below the  lower  slab has 
the  refractive  index n5 = 3.  The vacuum wavelength is 
assumed  to  be X = 1.5  pm. 

Fig. 2(a)-(d) shows the E ,  component of the  electric 
field  of the lowest  order TE compound  modes of the  di- 
rectional coupler as solid lines  for  several  values of the 
spacing 2S3 between  the two  slabs.  The corresponding 
pictures for  the HJ, component of compound TM modes 
look quite  similar. The dotted  lines  indicate the corre- 
sponding  mode fields of the isolated slabs that would exist 
in the absence of the opposite slab.  The boundaries of the 
slab  cores are indicated by the upwards pointing arrows. 
This figure shows clearly how closely the compound 
modes resemble the mode fields of the individual, isolated 
slabs for  large slab  spacing.  As  the slabs move  closer  to- 
gether  the  mode fields depart  more  and  more  from  the 
modes of the  isolated slabs. This  departure  is particularly 
significant at  the  core boundaries of the  slab  opposite  the 
field maximum because,  for a grating  coupler, it  is the 
value of the product of  the  electric field strengths at the 
position of the grating  that  determines the coupling 
strength.  Obviously, the field values of the compound and 
isolated slab modes  at this critical point can be completely 
different. 

The grating is located  either on the lower  slab,  as shown 
in Fig. 1, or in a corresponding position on  the  upper slab. 
The  length L required for  total  exchange of power be- 
tween the slabs  is inversely proportional  to  the  coupling 
coefficient K appearing in the coupled wave equations (10) 
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Fig. 2. (a)-(d) The  electric E, component  of  the  two  compound  modes of 

lowest  order  for  four  different  slab  core  spacings.  The  physical  param- 
eters  used  for  these  calculations  are  spelled  out in the  text. 
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Fig. 3. Power  exchange  length L in  millimeters  as a function of slab  core 

spacing  for:  (a) TE modes  and  (b)  TM  modes.  The  solid  curves  represent 
the  exact  results  based  on  compound  modes,  the  dotted  curves  are  ap- 
proximations  obtained by replacing  the  compound  modes  with  the  modes 
of that  individual  slabs. 

Fig.  3(a)  shows  the  power  exchange  lengths L for TE 
modes  for  a  square  grating of depth D,, = 0.1 pm as  func- 
tions of  the  spacing 2S3 between the  slab  cores.  Fig. 3(b) 
shows  the  corresponding results for  TM  modes.  The solid 
lines in both figures were  computed by substituting  the 
fields of the compound  modes  into ( 5 ) .  The  dotted curves 
were  obtained by using the  approximate  coupling coeffi- 
cients (13) and (14). For TE modes (Fig.  3(a))  the  ap- 
proximate  power  exchange length is roughly 1.5 times as 
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Fig. 4.  The  grating  period A as a function of slab  core  spacing  for TE and 
TM mode  coupling. 

large  as the exact value. For TM modes (Fig. 3(b)) the 
discrepancy  between  the  exact theory and  the  approxi- 
mation is much  larger. In spite  of  the  large  discrepancy, 
the approximate  formulas  for  the  coupling coefficients are 
useful in  two  ways.  They  often yield order-of-magnitude 
estimates and they give  an indication how the  coupling 
coefficient K depends  on  grating  depth  and slab core  spac- 
ing. 

If significant cross coupling is to  occur,  the grating con- 
dition (1) must  be satisfied. Since this condition holds  for 
the  compound  modes, it is a  function  of  the  spacing  be- 
tween  the slab cores as shown  in Fig. .4. For  the  approx- 
imate  modes, (1) yields a  value that is independent of the 
core  spacing  and is  equal to the  limits  shown in Fig. 4 for 
large  core  spacing. 

Looking at the  compound  mode fields in Fig.  2 we see 
that one of them crosses the horizontal axis near  the  core 
boundary  of  the  opposite slab. If this  zero crossing should 
occur right at  the  core  boundary that is carrying the grat- 
ing,  the coupling efficiency would suffer significantly. To 
illustrate this point we  look  at  another  example. Now  we 
assume  that  the  refractive  index distributions are  more 
nearly symmetricai: nl = n3 = n5 = 3.2.  The  two slabs 
also have  equal  width d2 = d4 = 1 pm.  However  the re- 
fractive indices of the slab cores  are  different, n2 = 3.25 
and n4 = 3.23. The  wavelength is still X = 1.5 pm. 

Fig. 5(a)-(d) shows  the Ey components  of  the  com- 
pound TE modes as functions of the  slab  spacing 2S3. The 
most  significaat difference between this figure and  Fig. 
2(a)-(d) is the  fact that the  zero crossing of one of the 
compound  modes  now  occurs  very  near  one of the core 
boundaries.  The  consequence of this  fact  becomes  dra- 
matically apparent in Fig.  6(a)  and  (b),which corresponds 
to Fig.  3(a)  and  (b).  The  power  exchange length for  a 
grating-assisted coupler  whose grating is  located  on  the 
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Fig. 5 .  (a)-(dj  This  figure  is  similar to Fig. 2 for different  slab  parameters. 

boundary  of the core  of the upper  slab  (where  the zero 
crossing of the field occurs)  is  very much larger in this 
case. In fact, at one point it reaches infinite values, be- 
cause  the zero crossing of  the field at the grating is located 
such that the integral in (5)  vanishes. In this case, the 
discrepancy  between the exact and  approximate theories 
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Fig.  6.  (a), (b) This  figure  is  similar  to  Fig. 3 for different  slab  parameters. 

is enormous  for gratings located on  the  upper  slab  core. 
For  a grating on  the  lower  slab  nothing  unusual  happens 
and  the  discrepancy  between  exact  and  approximate  the- 
ory is no worse  than in Fig.  3(a).  Fig. 6(b) shows that 
TM mode  coupling  displays  very  much  the  same  behav- 
ior. 

The  grating  period  as  a function of length for this sec- 
ond  example is shown in Fig. 7. Since  the refractive index 
differences are very much  smaller in this second  case ( n1 
= n3 in this case  while n3 - nl = 2.2 in the first example) 
the  TM modes are very  similar  to  the TE modes. 

70 I I I I 
0 5  I O  1 5  2 0  
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Fig.  7.  This  figure  is  similar  for  Fig.  4  for  different  slab  parameters. 

CONCLUSIONS 
The  description of a grating-assisted slab  directional 

coupler  requires  the  use of the  compound  modes  of the 
combined  slabs.  Since  this  description  does not lend itself 
to the derivation of simple  formulas, we derived  approx- 
imate  analytical  expressions  for  the  coupling coefficients 
by approximating  the  compound  modes by the  modes of 
the individual,  isolated  slabs.  Comparison of the  exact 
and  approximate results shows  that  the  approximation 
yields only an  order-of-magnitude  estimate. In particular, 
it can  happen  that the compound  modes  have  zeros at the 
,position of the  coupling  grating.  When  that  happens  the 
grating coupler is ineffectual and  the  approximate theory 
yields completely  misleading  results.  Thus it is advisable 
to look at the  shape of the  compound  modes to  judge if 
they resemble  the  approximate  modes sufficiently closely 
to  justify  the  use of the  approximate  formulas  for  the  cou- 
pling coefficients. 
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