
IEEE  JOURNAL OF QUANTUM  ELECTRONICS, VOL. QE-23, NO. 5 ,  MAY 1987 499 

Application of the  Strongly  Coupled-Mode Theory to 
Integrated  Optical  Devices 

Abstract-A theory for strongly coupled waveguides is discussed and 
applied to two- and three-waveguide couplers and optical wavelength 
filters. This theory makes use of an exact analytical relation governing 
the coupling coefficients and the overlap integrals. It removes almost 
all of the constraints imposed by a simpler and approximate coupled- 
mode theory  by Marcatili. It also satisfies the energy conservation and 
the reciprocity theorem self-consistently . We show  very good numeri- 
cal results with the overlap integral as large as 49 percent. The appli- 
cations to electrooptical modulators, power dividers, power transfer 
devices, and optical filters are all presented with numerical results. 

T 
I. INTRODUCTION 

HE  applications of the  coupled-mode theory in inte- 
grated optical  devices,  such  as waveguide couplers 

[1]-[3], laser  arrays [4], [5],  and  optical filters [6]-[8], 
have  been  well  known.  However, theoretical improve- 
ments for strongly coupled waveguides have only been 
attempted very recently [9]-[14]. A  simple and approxi- 
mate version of coupled-mode  equations  for  parallel  di- 
electric waveguides has also been presented by Marcatili 
[15] to  account  for the asymmetric properties of wave- 
guides using a newly found relation between the coupling 
coefficients and  the  overlap integral of two-coupled wave- 
guides. A few conditions are assumed in that  paper: 

1) A  scalar  formulation of the fields is  considered. 
2) The refractive  index  perturbation is very small such 

that  second-order  terms can be ignored. 

n2 = n:[ 1 + &(x, y )  i- &(X, y ) ]  
2 

n i [ l  + 2 A a ( X ,  y )  + 2Ab(x, Y ) ]  (1) 
Thus  the new relation between the  two coupling coeffi- 
cients in [15] is only approximate. 

3) The  overlap  integral c is assumed  to  be small 
(weakly coupling) and is not included in the coupled-mode 
equations because  the  coupled-mode equations in [ 151 are 
almost the  same  as  those  for  the  conventional theory [2] 
without including  the  overlap integrals in the  four cou- 
pling parameters, ya, yb, Kab, and Kba. 

In this paper,  we apply the theory developed in [9]-[14] 
and show that  all  the  above conditions are not required. 
It is shown that an  exact  analytical relation governing the 
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coupling coefficients, the  overlap  integrals,  and  the prop- 
agation constants derived in [ 131 using a  generalized  re- 
ciprocity theorem can be  combined with the  formulation 
of Marcatili and will give very good numerical results 
even  for strongly coupled waveguides. It has been pointed 
out in [9] that  the  four  parameters ya, Tb, Kab and Kba 

should include  the  overlap  integrals to obtain  correct 
propagation constants of the  supermodes.  Since only pa, 
Pb of individual waveguides and Kab, Kba of the  conven- 
tional coupling coefficients are used in the coupled-mode 
equations in [15], that theory will not yield  accurate nu- 
merical results and may violate energy conservation sig- 
nificantly [9], [13] unless  the  overlap  integral c << 1, 
which is assumed  in [ 151. 

In Section 11, we briefly review the strongly coupled- 
mode equations derived in [9]-[ 111, [ 131, and [ 141, their 
orthogonality relation,  and  an  exact relation between the 
coupling coefficients Kab and Kba. We also show that  this 
exact relation can also  be derived from 'power conserva- 
tion or reciprocity relation for  a lossless medium. In Sec- 
tion 111, we  consider  the two-coupled waveguides corn- 
bining the  strong coupling of mode  equations  and  the 
formulation of [15], and  illustrate the electrooptic effect. 
We then study the  three waveguide couplers  as  power 
transfer devices  and  power  dividers.  Previous  studies  in 
[ 161 and [ 171 assume  all  three  guides  have  the  same re- 
fractive  indexes, and a direct numerical  approach for  the 
multilayered structure is taken.  In  Section IV,, the cross- 
talk problems for both two- and  three-coupled  waveguides 
are investigated. Numerical results are  presented  and 
compared with those  in [18] and [19]. In Section V,  the 
application of the coupled-mode theory to the  optical 
wavelength filters is studied and  the theoretical results are 
compared with the  experimental results in  [8].  Finally,  we 
give conclusions in Section VI. 

11. THEORY OF STRONGLY  COUPLED  WAVEGUIDES 

Three very similar  formulations of strongly coupled 
waveguides have been presented in [9], [12], [13]. The 
formulation by Haus et al. [12] is limited  to  the  lossless 
system and has a small difference in the z-component of 
the  electric field for  the  trial  functions in the variational 
approach.  The  formulation of Hardy-Streifer [9] does not 
satisfy energy conservation  and  the reciprocity theorem 
and  still  contains  a small error, while the theory of [13] 
(which was derived in  a much simpler way) satisfies these 
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laws analytically.  Independently,  a reformulation of [9] 
has been made [20] recently and is identical to that of [ 131 
after  the modifications. The coupled-mode equation in 
[ 131 ? [ 141 and its properties are summarized below. 

A .  Strongly  Coupled-Mode  Equation 

[1317  [1417 [201  by 
The coupled-mode equation in vector form is given 

- d  
C -  U ( Z )  = Q ~ ( z )  

dz 

or 

d 
dZ 
- .(z) = M u ( z )  

where 

where the vector a ( z )  has each element a,(z)  given by 
the electric field amplitude  for  the  transverse component 
of the mode in waveguide p ,  and  the matrix elements cpq 
and Kpq are defined in Appendix A. The matrix B is a 
diagonal matrix with the diagonal elements given by P I ,  

of all  other  waveguides.  It should be noted that 1) the  two 
matrices c and Q are symmetric [ 131, [ 141 ? [20] and that 
is very important to prove the orthogonality property of 
the  supermodes, and 2) the matrix M is not necessarily 
symmetric in  general. 

6'27 ' ' , PN of each individual waveguide in the  absence 

B. Orthogonality of the  Supermodes 
The supermodes of the multiwaveguide system satisfy 

the orthogonality relation [14] for symmetric matrices c 
and Q in (2) 

. ( i ) T C U ( i )  = 0 for y i  # y j  

where a(' ( d j ) )  is  the  eigenvector of the supermode with 
the propagation constant y i  ( y j  ), and the superscript T de- 
notes the  transpose of the matrix or vector. 

( 6 )  

C.  Reciprocity  Condition 
To satisfy the reciprocity relation?  one finds that [14] 

- 
C M  = ( m y ,  (7 

i.e., the matrix Q must be symmetric which is true as de- 
rived in [14]. For two-coupled waveguides 

r 1 

L 

Equations (7) and (8) give 

Kab - Kba = ( T u  - yb)? (9)  
where C = El,  = ( C I 2  + C 2 1 )  / 2  (see Appendix A).  The 

lossless systems. If the system is lossless,  one may also 
have  a slightly different formulation  as presented in [ 121, 
[ 141 using field quantities involving complex conjugates. 

D. Power  Conservation 
If the multiwaveguide system is  lossless,  one can 

choose the  transverse field components E, and H, to be 
real functions and find that E, and Hz are purely imaginary 
and Cp4 and Kpq are real [14]. The total power guided by 
the multiwaveguide system is 

P ( z )  = + R e  55 Et X H: . Zdxdy 

= a + ( z ) c a ( z )  (10) 

where the superscript + denotes  the conjugate and trans- 
pose of the vector a ( z ) ,  and one has chosen Et4)  and 
H i p )  to be real.  Thus using the fact that c and Q are real 
matrices, one finds that  the condition d P ( z )   / d z  = 0 also 
leads  to Q = QT or CM = ( C L W ) ~ ,  which is the same as 
the reciprocity condition in (7). Actually, condition (7) is 
very general  since it is applicable to both lossy and loss- 
less cases.  A  similar  formulation  (for  a lossless medium) 
leads to  the  fact that Q is Hermitian provided one uses 
complex conjugate quantities with cpq and cpq matrices as 
defined in [ 141. The Hermitian matrix becomes obviously 
symmetric when it is real. Another derivation of the loss- 
less condition for two-coupled waveguides is shown in 
Appendix B, which also leads to (9) when ya, yb ,  Kab, Kba 
are real. 

- - 

111. Two- AND THREE-COUPLED  WAVEGUIDES AND 

IMPROVEMENT OF MARCATILI'S THEORY 

In this section,  we present a combination of the vector 
formulation for strongly coupled waveguides and Marca- 
tili's theory which assumes two weakly coupled wave- 
guides.  We also discuss  the applications to three coupled 
waveguides used as  either power transfer devices trans- 
ferring power from one  outer  guide  to another or  as power 
dividers.  The  electrooptic effects when these devices are 
used as modulators are  discussed. 

A. Two Coupled Waveguides 

with the coupled-mode equations 
I )  Improvement of Marcatili's  Formulation: We start 

da 
- = iy,a + iKubb 
dz 

db 
- = iybb + iKb,b 
dz 

above  formulation is true in general for  both lossy and 
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Kba = (K21 - K11C12)/(1 - c?2) (12d)  The solutions (16a) and  (16b) can be written as 

where the subscript 1 refers to waveguide a or 1, and 2 
refers to waveguide b or  2, whichever  is  convenient. 

One notes that  in  the theory of Marcatili [ 151 , 1) E,, is 
assumed to be zero  in  the  above  four  parameters,  2) Kl l  
and K22 are  ignored, and 3) K12 and K2, are defined only 
for  scalar fields (pure TE case).  Thus,  that  formulation is 
almost the  same as that for  the conventional theory [2] 
and will lead to significant errors if C12 becomes larger 
than,  say, 10 percent ( Cll and C2, are normalized to be 
1) .[9],  [13].  One notes that an exact relation holds be- 
tween the  conventional  coupling coefficients [ 131 

Kl2 - K21 = (P1 - 02) (13) 
Cl2 + c21 

while a  similar relation found in [15] is only approximate 
since  the  derivations  there  have  assumed  the refractive in- 
dex variation Aa (x, y ) and Ab (x, y ) << 1 (which is  a 
good practical approximation). Using this  relation,  one 
can show that the  following relation is true using (12), 
(13) and Z = El, = C21: 

Kab - Kbu = ( Y a  - Y b l Z  (14) 
which is precisely the reciprocity condition,  and it is the 
same  as  the  power  conservation condition for  a lossless 
case  (Appendix B). We define the asynchronism factor 
[15] in terms of the more correct parameters ya, Y b ,  KUb, 
and Kba in (12a)-(12d). 

Y b  - Y a  
= 2JKabKbn' 

(15) 

Given the initial excitation at z = 0 of a two-coupled 
waveguide, a ( 0 )  = 1 ,  b ( 0 )  = 0, we  obtain  [9], [13] 

b(Z)  = - sin $I e@' 
iKb, * 

where 

A=-- -  Y b  - Y a  
2 

It is easy to show also 

or 

. 

( 20b 1 
The  output  power P, in waveguide a when waveguide b 
terminates at z = 1 is obtained using 

&(x, y ,  z = I). a(Z)  E;"(x, y )  + b(Z)  Ejb ' (x ,  y )  

(21a) 

= c u f )  E p y x ,  y )  n = l  (21b) 

03 

H , ( x ,  y ,  z = I )  = a(Z)  Hla'(x,  y )  + b(1)  Hjb'(x,  y )  

1 

t (x ,  Y )  ( 22b ) 
m 

- - v F )  
n = l  

where the  expansion in (21a) or (22a) is in terms of in- 
dividual waveguide modes and in (21b) or (22b) is in 
terms of all  the  guided and radiation modes of waveguide 
a alone  since they form  a  complete  set [9]. Multiplying 
(21) by Hi") and integrating over  the  cross  section,  one 
obtains 

.(a) 1 = 4 )  + C12b(l). (23) 
Similarly,  one finds 

( 1 6 4  .(a) 1 = 4 )  + C21bW (24) 
These boundary conditions at z = 0 and z = I follow very 

( 16b) closely those in [15]. The guided power due  to  the  first 
mode PI in waveguide a is, thus, 

( 1 7 4  
* sin2 [JKnbKha1(1 + 62)1/2] (25) 

using (20),  (23),  and  (24).  A  similar  procedure  for  the 
output power in waveguide b when waveguide a is ter- 
minated at z = I leads to 

(18) Pi = Re [ ( C z 1 a  + b)(Cf2a* + b*)]  

(19) (26) 
These results are very similar to those  in [15] except the 
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Fig.  1. (a) The asynchronism 6 is  plotted  versus  the  refractive index dif- 
ference of two-coupled waveguides, An = n, - nb, which is propor- 
tional to  the  applied voltag? V .  (b) The  overlap  integrals C,, (dashed 
line), Cz, (dotted line) and C = ( C, ,  + C 2 , ) / 2  (solid line) are shown. 

(c) The  coupling coefficients Kub, Kba and a are plotted versus An. 
(d) The  output  powers in guide a ,  Pa (solid curve), and  in guide b ,  Pb 
(dashed curve), are plotted versus An.  The parameters are do = db = 2 
pm, waveguide  edge-to-edge  separation 1 = 1.9 pm, wavelength X = 
1.06 pm. n, = 2.2 + An/2 ,  nb = 2.2 - An/2.  The outside  refractive 
index no = 2.19.  The  coupler length 1 = 0.5811 mm. 

parameters are defined in  terms of the more accurate pa- 
rameters y,, Y b ,  Kub, and Kba. 

2) Numerical  Results for Two Strongly Coupled Wave- 
guides: In  Fig.  l(a)-(d),  we show numerical results for 
two coupled Ti-diffused LiNb03 channel waveguides 
modeled as two-coupled slab waveguides (which is pos- 
sible using the effective index method [ 111) with the re- 
fractive index in waveguide a ,  n, = 2.2 + An/2 ,  the 
effective refractive index in waveguide b,  nb = 2.2 - 
An /2,  where the  refractive index difference 

is proportional to  the externally applied voltage I/' across 
the two waveguides. The refractive index  outside  the two 
waveguides is assumed to  be  constant, no = 2.19. The 
waveguide dimensions are d, = db = 2  pm; the edge-to- 
edge separation t = 1.9  pm. The wavelength X is 1.06 
pm. In Fig.  1  (a), the  asynchronism 6 is plotted versus the 
refractive index difference. We  see clearly that I 6 I is lin- 
early proportional to I An I .  The overlap integrals C,, 
(dashed line) and C21 (dotted line) with their arithmetic 
average C (solid line)  are shown in Fig. l(b), where they 
vary between 0.168 at An = 0 to around 0.178 which do 
not satisfy the condition in [ 151 for weak coupling ( c 5 
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0.1 ). The  numerical results for the propagation constants 
are calculated with more  than  7 digits of accuracy,  and 
the energy conservation law [14] is also  checked  to  be 
valid with errors always less than lop7. (In [14],  two en- 
ergy conservation violation factors have  been defined and 
are  used  to  check  the  numerical  accuracy of the results.) 
Fig.  l(b) differs slightly from the qualitative drawing of 
[15] with a  range of variation in the  overlap integrals 
around  (0.178-0.168) /0.168 = 6.0 percent. The cou- 
pling coefficients Kab, Kba, and JKabKba are  shown in Fig. 
l(c), which  agree well with  the qualitative results of [ 151. 
The output powers Pa (solid curve) and P b  (dashed curve) 
are  shown in Fig. l(c). They  do  agree  very well with the 
qualitative drawing of [ 151. One notes that the minimum 
of Pa does not occur right at A n  = 0 (where P b  = 1 .O ) 
due to the crosstalk problems  which are discussed in Sec- 
tion IV.  The  power Pa actually goes to almost  zero (Pa = 
0.0005 1 = 33 dB)  at  An = -0.0002, where P b  reduces 
to  0.9723.  The asymmetry of Pa and the symmetric prop- 
erties of P b  versus A n  or the applied voltage agree very 
well with  what  has  been presented in [ 151. However,  our 
numerical  approach provides very  good  numerical results 
even for the strongly coupled  case  with C > 0.1, while 
the theory of [ 151, although taking into  account the asym- 
metry properties of coupled  waveguides,  is limited to 
weak  coupling cases. 

B. Three-Coupled Waveguides 
Let us consider  a  symmetric  case  for  which the two 

outer  waveguides  are  identical. Solutions for this case 
have  been obtained in [lo], [ 111, and [ 141 and will not be 
derived here. 

1)  Power Transfer Devices:  When  used  as  power 
transfer devices, the three-coupled waveguides  are as- 
sumed  to  have an initial excitation at z = 0 

r 11 
(28) 

and the input power PIN is easily found  to  be 1. 
The solutions at position z are  found  to  be [lo], [ 111 

and 

= mll + m13 + m22 ( 3 0 )  
and the three propagation constants of the supermodes are 

+ + *  
Y1 = - 2 

4 - *  
Y3 = 2 

where  the  matrix  elements my have  been derived in [lo], 
[ll], and [14]. 

The output power in waveguide 1 at z = 1, where  wave- 
guides 2  and  3  terminate,  is 

Pout,, = Re { [a l ( l )  + C12a2(1) + C13a3(1)] 

* [ a ~ ( l )  + C21a2(1) + C31%(1)]*}  (32) 
following a  similar  procedure  as in (21)-(26). The output 
power  at  waveguide  3  when  waveguides 1 and  2 terminate 
at z = 1 is 

= Re { [c31al(l) + c32a2(1) + a3(1] 

When  applying (32) and (33) to  a  power  transfer  device, 
one may  need to  assume I C13 I and I C31 I are small since 
waveguides 1 and  3  are not terminated. 

2) Power Dividers: When  used  as  power  dividers, the 
three-coupled waveguides  have  an initial excitation at z 
= o  

and the input power P I N  can  be  found 
tions at position z are [lo], [ 141 

(34) 

to be 1. The solu- 

One finds the output powers in waveguide 1 and  3  to  be 
equal using (35) in (32) or (33) since  the  two  outer guides 
are identical. 

3) Numerical Results for  Power Transfer Devices and 
Power Dividers: The three-coupled waveguides consid- 
ered here are  assumed  to  be  symmetric  with respect to  the 
center guide.  We  assume the dimensions of the three 
waveguides to be dl = d2 = d3 = 2 pm.  The edge-to- 
edge separation of two  nearby  waveguides t = 1.9  pm. 
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The wavelength X is  1.06  pm.  The refractive  indexes  are 
assumed to be 

( 3 6 4  

A n  
n2 = 2.2 - - 

2 

where the refractive index difference between either  one 
of the  outer guides and the  center  guide A n  = n1 - n2 is 
proportional to the  applied  voltage V.  We first plot the 
unnormalized asynchronism 2y2 - yl  - y3 versus the 
refractive index difference A n .  One sees clearly at A n  = 
0 the  fact that all  three  guides  are  identical does not imply 
the synchronism condition 

272 - Y1 - 7 3  = 0 (37) 
is met. At A n  = 0 ,  we find 

7 1  = 13.0172261 

y2 = 13.0138696 

y3 = 13.0094738 

and 

272 - 7 1  - 7 3  = 0.0010393. 

Choosing the  coupling length 1 to be fixed at Lco = 2 a  / rl/o 
where 

$o = (yl - y3) at A n  = 0 (38) 

we  find the output powers P,,,, (solid curve)  and Pout,3 
(dashed curve) as shown in  Fig. 2(b) when the wave- 
guides are used as  power  transfer  devices.  Peak power 
transfer from  guide 1 to guide 3 actually does not occur 
at A n  = 0 as  can  be seen from Fig.  2(b).  This  is  due to 
the crosstalk problem when the synchronism condition is 
not met.  It  occurs actually at  2y2 - y1 - y3 = 0 ,  Le., 
when A n  z -0.00023.  The  crosstalks  are calculated in 
Section IV. When used as power  dividers,  the  three-cou- 
pled waveguides are assumed to  have  a coupling length I 
= 7~ / rl/o = La /2. The  output powers in  guides 1 and 3 
versus the refractive index difference A n  are shown in Fig. 
2(c). Maximum output power does  occur  at A n  = 0 for 
the  power  dividers. 

In Figs. 3(a) and (b),  we show the output powers Po,,, 
and Pout,3 versus the coupling distance I normalized to LC 
= 2 n / ( y ,  - y3) for A n  = 0 (LC = Lco in this case). 
Since  the  synchronism condition is not met, P,,,, does 
not go to zero  due to the crosstalk problems. Both P,,,, 
and Pout,3 do not show periodic behaviors  for the power 
transfer devices that  have been discussed in [lo],   [ l l] ,  
although only  the magnitudes of I ul( I )  1 ,  I u2( I )  I or 
I a3( I ) I instead of powers are presented there.  This non- 
periodic behavior is due  to  the asynchronism (2y2 - y1 
- y3 # 0) of the  three supermodes. When this condition 
is met (it occurs at A n  = -0.00023 ), P,,,, and Pout,3 do 
show periodic behaviors as  shown in Fig.  4(a), where LC 
= 2 a / (  y1 - y3) is evaluated at that A n  # 0. However, 

0.02.- 
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I N D E X  DIFFERENCE 

POWERS 
OUTPUT 

0 . 6 t  

0.4 1 i -‘OUT.3 

REFRACTIVE  INDEX  DIFFERENCE 

(b) 

POWERS 
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I * ‘OUT.3 

I 
-0.004 - 0 002 0.0 0.002 0.004 

REFRACTIVE  INDEX  DIFFERENCE 

(C) 
Fig.  2.  (a)  The asynchronism 27,  - y, - y3 of three-coupled waveguides 

are plotted versus the refractive index difference A n  = n,  - n2,  which 
is proportional to the applied voltage. The parameters are all similar to 
those in  Fig. 1. d ,  = d2 = d3 = 2 pm. t = 1.9 pm, X = 1.06 pm, n ,  
= n3 = 2.2 + A n / 2 ,  n2 = 2.2 - A n / 2 .  LC, = 0.8105 mm. (b) The 
output powers POUT, , (solid curve) and (dashed curve)  are shown 
for  the power transfer devices with input power P,, = 1 in waveguide 
1. (c)  The output powers POUT,, = POUT.3 are plotted versus A n  when 
the three-waveguide coupler in (a) is used as a power divider. 
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OUTPUT 

I .o - 

I - 1 4  
PIN=I- -‘OUT. I 

-‘OUT.3 

0.0 0.5 I .o 1.5 2.0 2.5 3.0 

LENGTH ,!/LC 

(b) 
Fig. 3. (a)  The  output  powers POUT,, (solid  curve)  and  (dashed 

curve)  are  plotted  versus  the  coupling  distance I normalized  to LC for  a 
power  transfer  device.  The  same  parameters  from  Fig.  2  are  used  except 
that A n  is fixed to be  zero  and 1 is varying.  (b)  The  output  powers POUT, , 
= PoUT,,are plotted  versus  the  normalized  distance Z/L, when the  three 
coupled waveguide’s in  Fig.  2(c)  are  used  as  power  dividers. ( A n  = 0, 
I is varying  here. ) 

(a) 
1.0- 

k - L 4  
P,N=I--TPOUT.I 

-‘OUT.3 

0.0 0.5 I .o I .5 2.0 2.5 3.0 

LENGTH L/L, 

(b) 
Fig. 4. (a)  The  output  powers POUT,, (solid  curve) and POUT,, (dashed 

curve)  are  plotted  versus  the  normalized  coupling  distance 1 / L C  for  the 
case A n  = 0.00023 where 27, - y, - y3 = 0. (b) Similar  conditions 
hold  as  (a)  except  that  the  device is used as  a power  divider. 

the  output powers for  the  power  dividers  always show pe- 
riodic functions because of the symmetry of the  excitation 
and the  waveguide  structure (only two  of  the  three super- 
modes, y1 and y3, are  excited).  It is easy to see from (35) 
that  the output powers will be  periodic functions of the 
distance I for both Fig. 3(b) (2y2 - y1 - y3 # 0) and 
Fig. 4(b) (27 ,  - y1 - y3 = 0). 

IV. CROSSTALK PROBLEMS 
Crosstalk  problems  have been investigated recently for 

two-coupled waveguides [ 181 and three-coupled wave- 
guides [19] using either  the  conventional coupled-mode 
theory or direct numerical approach for  the propagation 
constants. We apply the strongly coupled mode  equations 
here to investigate  the  crosstalk  problems. 

A. Crosstalks in Two-Coupled  Waveguides 

chooses the coupling length 1 such that 
In  the  design of two-coupled waveguides,  one usually 

$2 = n?r/2, n = odd integer (39) 

and b (1 ) is maximum, a ( 2  ) = 0 provided that A = 0, 
i.e., two waveguides  are  identical.  One finds immediately 
that  the  output  power in waveguide b is maximum.  How- 
ever,  the  output power in waveguide a is not zero  because 
there  is still an overlap of fields between modes in wave- 
guides a and b.  This  crosstalk  power  is easily obtained by 
setting 6 = 0 in (25) as  a  conservative  estimation [18] 

Extinction ratio = Pa( 6 = 0) = C12 C,, = E:, (40) 

since C12 = Czl  when two waveguides are  identical.  The 
formula (40) only provides a conservative estimation since 
it assumes waveguide a continues. In  reality,  guides a and 
b may start  to  separate  at z = 2 gradually.  Thus, (40) is 
only an  approximation [ 181. 

This result showing that  the  crosstalk is proportional to 
the square of the  overlap integral agrees with that  ob- 
tained in [ 181. However,  our numerical calculations show 
that  for two-coupled GaAs waveguides with the dimen- 
sions d, = db = 2 pm, the  edge-to-edge  separation t = 
1.9 pm, the  refractive  indexes n, = nb = 3.44, and the 
outside  refractive  index no = 3.436, the  crosstalk is - 10 
dB, which is close to - 12.6  dB of [ 181 but not identical. 
We believe  our number is more  accurate  since  we  have 
calculated the propagation constants P1 and P2 up  to 7 dig- 
its (after the  decimal point) of accuracy;  the  power  con- 
servation and the  exact  analytical relations are  all  checked 
so that  the  errors  are  always  less than The  studies 
of crosstalks in  [18], [19] assume  identical waveguides 
and the  refractive  indexes  are fixed ( An = 0). One finds 
using Fig.  l(d) that  the  crosstalk P ,  can actually be given 
by (25).  At A n  = -0.0002,  the extinction ratio  goes  to 
zero! Thus  a very good extinction  ratio  can  be obtained 
with a slight asymmetry introduced in the  two  waveguides 
with An # 0. 

B. Crosstalks in Three-Coupled  Waveguides 
Three-coupled waveguides have  been introduced to de- 

crease  the  crosstalks  when used as  power  transfer  devices 
from one  outer waveguide to another. 

However,  the  synchronism condition 

272 - Y1 - Y3 = 0 

needs to  be satisfied; otherwise,  the  crosstalks may be 
proportional to  the  overlap  integrals C12 and C23 of the 
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PROPAGATION 
CONSTANTS 
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Theory 

I N T E G R A L S  
OVERLAP 

2 0 . 3 6 1  I I I I I I I -, 
0.9 1.4  1.9 2.4 2.9 3.4  3.9 4.4 
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LENGTH (mrn) 
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OUTPUT 
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i ,t 
0.9 I .4 1.9 2.4 2.9 3.4 3.9 4.4 

WAVEGUIDE  SEPARATION ( p m )  WAVEGUIDE  SEPARATION (prn) 

(C) ( 4  
Fig. 5 .  (a)  The propagation constants of the three supermodes using the 

strongly coupled-mode theory (dotted lines)  are compared with the  exact 
numerical calculations (solid lines).  The waveguide edge-to-edge sepa- 
ration t i s  varied.  The  parameters  are dl = d2 = d3 = 2 pm, n ,  = n2 = 
n3 = 3.44, no = 3.436. X = 1.06 pm. (b) The  overlap integrals C 1 2 (  = 
Cz1 ) and CI3 ( = C31) are plotted versus the wavelength edge-to-edge 
separation t .  (c) The  coupling  distance LC = 2 ~ / ( 7 ,  - y3) is illus- 
trated.  (d)  The  output power POUT,, (dashed line) in the guide  3 and the 
extinction ratio POUT, (solid line)  due to crosstalk are  shown. 

two nearby modes instead of the  two  outer guided modes 
C 1 3 .  When used as  power  transfer  devices,  one  chooses 

= 2 d Y l  - 7 3 )  = Wll/ (41) 

or an integral multiple of 1 such that u2 ( I  ) = 0. We find 
the  extinction ratio to be  (using sin $1 = 0) 

Extinction ratio ( = Po,,, ) 

= sin2 1 

= sin2 2 7 2  - 71 - Y 3  ~ 

2 ( Y l  - Y 3 )  1 
+ Cf3 cos2 [ 2Y2 - Y1 - y3 x] (42) 

2 ( Y l  - 7 3 )  

and similarly,  the  output  power 

Pout ,3  = cos2 2 7 2  - Y1 - Y3 I 2 ( Y l  - 7 3 )  1 
+ c:, sin2 2 7 2  - Y1 - Y 3  ?r 

2 ( Y l  - 73)  
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This analytical result for  crosstalks is useful  since it ex- 
plains clearly the  following. 

1) If the  synchronism  condition  is met 

272 - Y1 - Y3 = 0 

Extinction ratio = CT3 

which is  expected. 
2) If the synchronism condition is not met, the first term 

will contribute,  and it will be proportional to  the  square 
of its argument if the  synchronism condition is only  ap- 
proximately met.  For  this  case, we show directly numer- 
ical results instead of using the  approximate  analysis in 

In  Fig.  5(a)-(d),  we  illustrate  the numerical results for 
a three-coupled waveguide used as  a power transfer de- 
vice. The waveguide widths are dl = d2 = d3 = 2 pm, 
the refractive indexes are n1 = n2 = n3 = 3.44, and the 
outside refractive index no = 3.436 [ 191. The wavelength 
h is  1.06  pm.  The  waveguides’ edge-to-edge separations 
t are varied between 0.9 pm  (near  cutoff) to 4.4  pm.  In 
Fig.  5(a),  the propagation constants of the  three super- 
modes using the strongly coupled-mode theory are plotted 
and compared with those  calculated  exactly  from solving 
the multilayered (slab) structure  numerically.  One finds 
very good agreement.  A  small discrepancy occurs  for y3 
when that  mode is close to cutoff near t = 0.9  pm. The 
overlap integrals C12 (solid curve) and C13 (dashed curve) 
are plotted in Fig.  5(b)  where CI2 is as  large  as 0.49,  i.e., 
coupling is indeed very strong. (C13 = 0.125 at t = 0.9 
pm is also  large). The coupling length LC = 2 n / ( y ,  - 
y3) is plotted in Fig.  5(c) versus the waveguide separation 
t. One finds the  extinction ratio Po,,, due to crosstalks as 
shown in  Fig.  5(d)  decays  as  the waveguide separation t 
is increased.  This has been discussed in [19] for a fixed 
separation t = 1.9  pm using a different approach.  Our 
result, at that separation, gives Pout,1 = 0.1082 = -9.66 
dB which is actually higher  than - 12 dB given in [19] 
where the  overlap integral between the  two  outer  guides 
C13 ( = 0.0435) has  been  ignored. The results here should 
be more accurate  since the exact propagation constants 
yl ,  y2, and y3 at t = 1.9 pm  are calculated accurately up 
to  7 digits after  the  decimal point and  are also confirmed 
by the strongly coupled-mode  theory.  Taking  the ratio of 
the  extinction  ratio Po,,, to the  square of the overlap in- 
tegral, CT2, one finds Pout,1 /CT2 = 0.78 at t = 0.9  pm; 
1.08 at t = 1.9  pm;  1.42 at t = 2.9  pm, and 1.75 at t = 
3.9  pm.  Thus  one may only say that  the extinction ratio 
is roughly proportional to  the  square of the  overlap  inte- 
gral C12. The proportional constant estimated in [19] is = 
a 2 / 2  = 4.9 for weak coupling and 4.9/3 = 1.63 for 
strong coupling. The latter seems to agree  better with our 
results since  the  coupling  is pretty strong  here.  Thus  the 
factor P / 2 is not appropriate for the  example presented 
in [ 191. The strongly coupled-mode theory should be  ap- 
plied when numerical accuracy  is  essential. 

~ 9 1 .  

POWERS 
OUTPUT 

WAVELENGTH  (MICRON) 

Fig. 6. The  output powers of two coupled InxGal-,As,P,-,-InP wave- 
guides used as an optical wavelength filter.  The input power is assumed 
to be 1 in waveguide b. The theoretical results for output powers at 
waveguide a, P, (solid curve), at waveguide b, Pb (dashed curve), are 
compared with the  experimental  data  (circles)  for Pa. 

V. OPTICAL WAVELENGTH  FILTERS 
Optical wavelength filters using waveguide couplers 

have been reported for Ti : LiNb03 and InGaAsP-InP ma- 
terials.  The Inl -,GaxAs,P1 -,-InP material  system is es- 
pecially interesting  because of its  applications at 1.3  or 
1.55  pm wavelength and its potential for optoelectronic 
integrated circuits.  The  experiment reported in [8] has 
two-coupled waveguides:  one has a  narrower guide width 
d, = 0.42  pm, but a  larger  refractive  index n, (obtained 
following [21]) with y,  = 0.127;  the  other has the  guide 
width db = 0.91 pm and Y b  = 0.078 (nb is also obtained 
following [2 11 ). The  Ga  mole  fraction x, (or xb) depends 
on the As mole fraction y,  (or y b )  for  lattice matching 
[21]. The input power is assumed  to  be 1 in waveguide 
b. The results of a direct numerical approach  have been 
shown in [8] and compared with the  experimental  data. 
We  have applied the strongly coupled-mode theory using 
(25) and (26)  (exchanging a and b since  the input is in 
guide b instead of in a )  and  compared  our theoretical re- 
sults with the  experimental results in  Fig.  6. The agree- 
ment is very similar  to that in  [8].  The  parameters re- 
ported in [8] used for  the theoretical calculations  are 
within the measurement accuracy. No detailed  explana- 
tions are  given  for  the  small discrepancy between the re- 
sults for  the theory and  the  experiment. We think the pos- 
sible reasons may be 1) there is still  some difference 
between the  theoretical model in 1211 and the experimen- 
tal values for  the  refractive  index,  and 2) the  losses in the 
waveguides are not .taken into  account.  However,  the 
comparison shown in Fig.  6  does show very good results. 

VI. CONCLUSIONS 
A strongly coupled-mode theory [9]-[ 1 11, [ 131, [ 141 has 

been presented and  combined with the theory of Marcatili 
[15] for  the two-coupled waveguide  case.  The applica- 
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tions to two- and  three-waveguide  couplers, including 
power transfer devices and  power  dividers,  have been in- 
vestigated. This coupled-mode theory is applicable to very 
general cases  for parallel dielectric waveguides with 
strong coupling and modes of general polarizations. It also 
accounts for  the asymmetry of the waveguides and satis- 
fies the energy conservation  law and the reciprocity theo- 
rem self-consistently [ 131, [ 141. The  crosstalk problems 
in two- and three-coupled waveguides and their  applica- 
tions as optical wavelength filters have also been inves- 
tigated and compared with the experimental data [8]. 

APPENDIX A 

The Matrix  Elements  Cpq, Cpq, Kpq, Kpq and  the Field 
Expressions 

- 

I )  Matrix  Elements f o r  the  Overlap  Integrals: 
03 

C P9 = 1 2 l X Hip) 2 dx  dy ( A l )  
--m 

- 

c p q  = ; ( C p q  + C@J 
- 

= c,. (A2) 

2) Matrix  Elements for  the Coupling  Coeficients: 
“Conventional” coupling coefficients 

= 5 i &(q)[EJP)  . Ef(q) - E(P)E(4) z 2 I h d Y  

(A3) 

(A4) & ( q )  = €(X, Y )  - E(q)(x ,  Y )  

where € ( X ,  y )  is  the permittivity function of the multi- 
waveguide system and E ( ~ ) ( X ,  y )  is the permittivity func- 
tion of a  single waveguide q.  

New Kpq used in (4) of this paper [ 131, [ 141: 

K = I &(q)[EjP) . j$q) 
pq 4 

,(P) 
- - EIP)Ehq)] dx dy. (A5 1 

E 

3) The  Field  Expressions for  the Supermode: The 
transverse components are 

The longitudinal components are 
E (P) 

E, = a p ( z )  - E I P ) ( x ,   y )  
P E 

APPENDIX B 
A Formal  Treatment of Two-Coupled  Waveguides for a 
Lossless  System 

form in general: 
The  coupled-mode equations are assumed to be of the 

d 
- a ( z )  = i y ,a ( z )  + iK,b(z) 
dz (B1) 

d 
- b ( z )  = i ybb ( z )  + iKbua(z) 
dz (B2) 

where we  have assumed for  the  transverse fields 

E,  = a ( z )  El“’ + b ( z )  Eib)  033 1 
H~ = a ( z )  H I “ ’  + b ( z )  ~ 1 ~ ’  034) 

and the transverse components E:“) ,  E:b), HI“) and Hib)  
are all real.  Thus,  one finds that yu, yb, Kub, and Kba are 
all real. Power conservation leads to 

d d l  
dz  dz 2 

0 = - P ( z )  = - - R e  11 E, X H: * L d x d y  

d 
dz 

= -Re [aa* + ab*Czl + ba*GT2 + bb*] 
- - 

= - d [aa* + (ab* + ba*)E + bb*] 
dz 

where we have used (Bl), (B2),  the  fact  that FI2, ?21 are 
real, and 

Since both a and b are  arbitrary,  we conclude that  the 
coefficients in front of ab* and ba* are  zero and obtain 

Kab - Kbu = ( T u  - Y b ) z  037) 
which is  the  general  lossless condition that the  four pa- 
rameters in the coupled-mode equations (Bl) and  (B2) 
must satisfy. 
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