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A Coupled  Mode  Formulation by Reciprocity  and  a 
Variational  Principle 

SHUN-LIEN  CHUANG, MEMBER,  IEEE 

Abstruct-A coupled mode formulation for parallel dielectric wave- 
guides is presented via two methods: a reciprocity theorem and a vari- 
ational principle. In the first method, a generalized reciprocity relation 
for two  sets of field solutions (E“’ ,  H“’)  and (E”’, H”’) satisfying Max- 
well’s equations and the boundary conditions in two different media 
dl)(x, y )  and d2)(x, y ) ,  respectively, is derived. Based on the generalized 
reciprocity theorem, we then formulate the coupled mode equations. 
The second method using a variational principle is also presented for 
a general waveguide system which can be lossy. The results of the vari- 
ational principle can also be shown to be identical to those from the 
reciprocity theorem. The exact relations governing the “conventional” 
and the new coupling Coefficients are derived. It  is shown analytically 
that our formulation satisfies the reciprocity theorem and power con- 
servation exactly, while the conventional theory violates the power con- 
servation and reciprocity theorem by as much as 55 percent and the 
Hardy-Streifer theory by 0.033 percent, for example. 

T 
I. INTRODUCTION 

HE COUPLED mode theory has been very useful in 
the fields of integrated optics,  semiconductor  laser  ar- 

rays or microstrip  coupled  transmission  lines.  A  “con- 
ventional”  coupled  mode theory usually makes use of a 
perturbation theory to  calculate  the  coupling coefficients 
[ 11 , [Z]. It has been recognized that  a  simple  power con- 
servation  argument  for  the powers in individual wave- 
guides  leads  to  the  fact  that  the  two  coupling coefficients 
Kab and Kba are complex  conjugate of each  other, which 
is generally not true if the  guides  are not identical [3]. A 
more rigorous approach  has been recently proposed and 
very good numerical  results  have also been presented [3]- 
[SI. However,  there is still  considerable ambiguity about 
the reciprocity and  the  power  conservation in the coupled 
mode theory.  One knows that  both  the reciprocity relation 
and  the  power  conservation are the  two basic laws which 
must be obeyed  and they are usually used in electromag- 
netics as necessary conditions  to  check  the numerical ac- 
curacy [6] ,  171 of the  results.  The reciprocity relation is 
applied to  the fileds and is applicable  to  a lossy medium. 
Thus, most results derived  from the reciprocity relations 
do not contain any complex  conjugate  quantities. If the 
medium is lossless,  the  complex  conjugate of the permit- 
tivity E* equals  to E itself,  one then applies  the  conjugate 
fields to  the reciprocity relation. On the  other  hand, the 
power  conservation  deals with the  power  and, thus, the 
complex conjugate  quantities  are usually used. 
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The goal of this paper is  to  present new coupled mode 
equations and  analytical  relations  for  the  coupling coeffi- 
cients which follow the reciprocity theorem in a’general 
lossy medium, and then the  power  conservation  law  if  the 
medium becomes lossless.  This new formulation  removes 
the slight discrepancies of the  power Conservation en- 
countered in  a previous theory presented in [3],  [5]. The 
analytical relation governing  the  coupling’coefficients Kab 
and Kba is derived from  a  reciprocity  relation  for  the fields 
instead of the  power  conservation  law  for  the  intensity. 
Thus, it is also applicable  to any lossy (or gain) wave- 
guide system. 

The  general reciprocity relation and  the  derivation of 
the new coupled  mode  equations are presented in Section 
II-A.  A  variational  principle  for  a  general  lossy or lossless 
medium is presented in Section  II-B  while  a  previous 
method is limited  to  a  lossless  system  [8].  We show that 
our  formulation using the  variational  principle  is  identical 
to that of the formulation based on the  reciprocity  rela- 
tion.  In  Section 111, we  derive  the  relation  between  the 
coupling coefficients and the  propagation  constants used 
in  the  coupled-mode  equations.  Note  that  this  derivation 
is independent of the  procedure in which one  calculates 
those coupling coefficients and  the  propagation  constants. 
We  also show that  the  coupling coefficients and the  prop- 
agation constants  derived in Section  II-A  and  Section 
II-B for  the coupled mode  equations  do  satisfy  the  reci- 
procity relation analytically. For  a  lossless  case,  the power 
conservation relation  is  derived  from  the reciprocity re- 
lation  also.  Finally,  we  present  some  numerical results 
and compare them with those of the  previous  theories.  It 
is also demonstrated that an  error  of 55 percent in the 
power conservation using a previous theory [Z] can occur 
unless the  overlap  integrals C,, are  taken  into  account 
properly. An error of 0.033  percent  occurs using the 
Hardy-Streifer theory [3]-[5]. It  is noted that  the Hardy- 
Streifer  theory, the theory of Haus et al. [8], and  the 
present one  give  numerical  results  almost  indistinguisha- 
ble on the  plots of propagation constants  and  coupling 
coefficients  for  the  examples  considered so far, although 
slight differences exist  among  the  three  theories. 

11. FORMULATION 

A .  Coupled Mode Theory from a  Generalized 
Reciprocity Theorem 

In this section,  we  present  a  “generalized” reciprocity 
theorem for  two  sets of solutions ( E ( ’ ) ,  H “ ) )  and ( E ( 2 ) ,  
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H'2))  to Maxwell's  equations  in two media E ( ' )  and re- 
spectively. Based on the  generalized reciprocity theorem, 
we show by choosing various E ( ' )  and d 2 ) ,  and their  cor- 
responding field solutions,  two  exact relations for  the  con- 
ventional coupling coefficients Kab and Kba for  two  wave- 
guides a and b can be derived in  Cases A1 and A2. We 
then derive  the  coupled-mode  equations  in  Cases A3 and 
A4. A different approach using the  variational  principle 
for waveguide systems will be  presented in Section II-B, 
and identical results of the two approaches  are also illus- 
trated. 

1. A Generalized  Reciprocity  Theorem for Two Media 
&')(x, y )  and d2)(x, y): Consider  the first two  Maxwell's 
equations  in  a  medium €(')(x, y) 

v x E(' )  = iwpH( ' )  (14 

v x H(')  = -iwpE(')  ( 1b) 

where the fields (E( ' ) ,  H'") satisfy all  the  Maxwell's  equa- 
tions and the boundary conditions  in  the medium E(~)(x, 
y). For a different medium d2)(x, y )  , the fields (E'2', H'2') 
satisfy a  similar set of equations  and  also  the boundary 
conditions in e(2) .  Following  similar procedures for  the 
Lorentz reciprocity theorem, we obtain 

v . (E"' x H(2' - E"' x H'") 

- - i o ( p  - e(l))@l) . p ,  (2) 

If we apply the above relation to an infinitesimal section 
Az of a  cylindrical  geometry which is translational  in- 
variant in  the z direction,  we  obtain 

= i o  11 (E'~)(X, y )  - &')(x, y))E'" E(') dx dy 

(3) 

where the divergence theorem has been used. A similar 
equation using the  polarization  vector  has  been derived 
before [ 11. However,  our  interpretation using d 2 )  and 
instead of the polarization  vector is slightly different and 
will be shown to be very useful.  We note that the  above 
relations are exact as  long as the fields ( E ( ' ) ,  H"') satisfy 
the Maxwell equations and all  the boundary conditions  in 
the medium dl)(x, y )  and (E'2) ,  H'2))  in the medium d2)(x, 
y), respectively. The above reciprocity relation  is  appli- 
cable to any two  reciprocal media and  is  exact, while most 
reciprocity relations are  applied  to only one reciprocal 
medium with a polarization vector  introduced and ap- 
proximated using a  perturbation  approach.  The  advantage 
of using the  above  exact relation will be shown  in  the next 
few cases when applied to a  coupled-waveguide  system. 
The  time  convention  exp (- i u t )  will be adopted in this 
paper. 

Case AI: We choose first 

Fig. 1. Schematic  diagrams for various  media  under  consideration: (a) 
da)(x, y) with a single waveguide a .  (b) E@)(x, y) with a single  waveguide 
b. (c) € ( X ,  y) with  both  waveguides a and b. 

where da' (x ,  y) is a  single waveguide a as shown in Fig. 
1  (a), and we choose  the  solutions to be a guided mode 
propagating in  the +z direction 

E'') = y )  e @ a z  = (El"' + @a)) e iPaz  (5a) 

~ ( 1 )  = H(4+(x, y) eiPaz = (HI") + 2~:)) e iPaz  . (5b) 
We then choose 

and 

(74 

~ ( 2 )  = H @ - (  x, y )  e-iPbz = (-@J) + 2H$l) e- iB6z  

(7b) 

which are  the guided modes propagating in the -z  direc- 
tion for  another  waveguide b as  shown in Fig. l(b). Sub- 
stituting the  above  two  sets of solutions  into  the reciproc- 
ity relation (3), we obtain 

- 
Kba - x a b  = $ ( c a b  -k Cba)(Pb - P a )  (8) 
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where 
-m 

where 

--m 

(9) 
m 

1 PI- 

-0a 

and 

which are defined almost identically to  those used in [3] 
except  a  constant  factor of 4. The  choice of the back- 
ground €(X, y )  is not unique (in general).  Here, it is cho- 
sen  to be the  coupled  waveguide  system  (Fig. l(c))  for 
convenience.  One notes that Epq’s are  the  “conventional” 
coupling coefficients except  for  the z components in the 
last term of the  integrand [2]. Note  that  Equation (8) is 
an  exact  relation as long as  the field solutions  for  each 
waveguide system E(‘)(x, y )  and y )  are  exact. For a 
slab waveguide structure,  the  exact solutions are known 
and the identity (8) can  also be proved analytically since 
all  the  quantities &, and E,, can  be  derived.  That proof 
is mathematically laborious  but  straightforward, and will 
not be  shown  here.  Equation (8) is also a very useful re- 
lation in  checking  the  numerical  accuracies of the  “cou- 
pling coefficients” in  the  computer  program. One sees 
clearly that in general z when f l b  + 6,. Equation 
(8) shows the  precise  relation  that  the difference between 
the coupling coefficients is  equal to the difference between 
the two propagation constants multiplied by the  average 
of the  overlap  integrals cab and Cbu. In the  limit of ex- 
tremely weak coupling Cub, cb, << 1 ,  we  have z b a  = 
Kub,  which is  the reciprocity relation under  the very weak 
coupling condition  in  a  conventional  analysis. 

Case A2: We choose 

P ( x ,  y )  = €‘“!(X, y )  (12) 
E(’) = E(“)+(& y )  e i P o z  (13d 
H(’)  = H ( 4 + ( x ,  y)  e iaaZ (13b) 

and 

and 

Note from (9): 
- K = K t  - EZ 

P4 

- 
P4 P4 * (17c) 

(If only TE modes are  excited, we have ELp) = 0, p = a ,  
b; thus, X&, = 0. Equations (8) and (16) will lead to cb, fl, 

K:b and K;, can also  be derived from (8) and  (16). In the 
following cases,  we apply the reciprocity relation to  the 
coupled wavegude medium €(x,  y )  as  shown  in  Fig. l(c), 
and derive the new coupled mode  equations. 

- = c&@h) In  general, relations between i& and Xi,, or 

Case A3: We choose 

€ ( ‘ ) ( X ,  Y )  = 4x7 YI (18) 

and 

E!” = a(z) E?)+(x,  y )  + b(z) Elb)+(x ,  y )  (19a) 

Hi” = a(z) H?)+ (x,  y )  + b(z) Hib)+ (x, y) (19b) 

for  the  transverse  components.  The  above  relations  are 
just the modal expansions in terms of the  two guided 
modes in waveguides a and b. We  also  note  that  the  above 
expansion is only an  approximate set of solutions to  the 
Maxwell equations in the coupled-waveguide medium €(X, 

y )  and the radiation mode has  been  neglected. Both wave- 
guides a and b are  assumed  to support only a  single TE 
(or TM) mode. The extension  to  a  multiple  mode wave- 
guide is straightforward by including  a  summation  over 
all  the guided modes in  each  waveguide. The longitudinal 
components of the fields follow  from  Maxwell’s  equa- 
tions for  the waveguides 

,(a) &b) 
E!) = a(z) - E?)@,  y )  + b(z) - Eib)(x,  y) (20a) 

E E 

H p  = a(z)H$’ (x, y )  + b(z)HLb’ (x, y ) .  (20b) 

A derivation of the  above  two  components in (20a) and 
(20b) is given  in Appendix A.  A  similar  relation  has been 
given for  the z-component of  the  polarization  vector in 
[l], and used in [3]-[5]. The factors e(“)/€ and  in 
(20a)  have been ignored  in [8]. We  think they should be 
kept for  consistency with the  Maxwell  equations as shown 
in Appendix A. 

For  the  second  set of solutions,  we  choose  the medium 
for  a single waveguide a 

€(2)(x, y) = €(“)(X, y )  (21) 
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and  the  guided  mode solutions in the -z  direction 
E(2) = y) e - i 6 a Z  (224 
H(2' = H("'-(x, y) e-uLz* (22b) 

. We obtain from (3) 

where 

(24 1 
To  keep  the  same  convention as in Kpq, the order p ,  4 for 
the definition of Kp? is reversed from that in [3], and for 
later  use. It is 'stralghtfonvard to show that Kpq satisfies 
the same relation (8) as Kpq by observing that 

where the second  term is symmetrical when  we exchange 
p and q. Thus. 

- K P9 - R 4p = K P4 - KP = $ (C,, + CqP)(pP - 6,) (26) 
- 

which are exact relations. 
Case A4: We choose 

Y) = 4x7 Y >  

and (E:') ,  and (@I, H:')) to  be the same  as in the 
first set of solutions (19)-(20) in Case  A3. We use  for the 
second set of 'solutions 

y) = y) (27) 

(284 ~ ( 2 )  = y) e- i6bZ 

~ ( 2 )  = @b)-(x 3 r) e-iPbZ (28b) 

We obtain again  from (3) 

c a b  f c b a  da(z) db(z) 
2 dz dz 

f -  

= i ( o b  cab + + R u b )  a(Z) + i ( P b  + Ebb) b(z). 
2 

(29) 

2. Coupled Mode  Equations: Based  on  the results in 
Cases  A3  and A4, we obtain the coupled  mode equations 

where  the  matrix  elements  for  and S are 

where 

= Kpq + q q o q  (32b) 
and  where C,, and K p q  are defined in (10) and (24), re- 
- spectively, and (26) has  been  used in (32). We note that 
C11 = c22 = C11 = C2, = 1 , and  the  matrix c is  sym- 
metric. The  matrix S,, is obviously  symmetric following 
(32). 

Let 

We invert the matrix  and obtain the coupled  mode 
equations 

where 

where the first form in each equation is to  compare with 
that in [3], and the second  form  is simplified after  making 
use of (26) or (32b). One  should know that although the 
matrices c and S are  both  symmetric, C-',S is not sym- 
metric in general. That  is, Kab # Kba, unless we have  two 
identical waveguides.  This  does not violate the reciproc- 
ity theorem or the power conservation law as will be pre- 
sented rigorously later. 

B. Coupled Mode  Theory  From a Variational  Principle 
Applicable to a  Lossy  Medium 

Variational principle has  been  widely  used to study the 
resonators, the  waveguides or scattering from objects [9] , 
[ 101. A general variational formula  for  the  propagation 
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constant y of the coupled  waveguide  system €(x ,  y )  can  to be (Appendix  A): 
be derived from  two oppositely traveling modes of the 
system 

V, x E +  - iu,uHf = -iyt  X E +  (35a) Hk = a f H ? ) *  + (42b) 

V, X H+ + ioeE" = -iy2 x H +  where a:, a: are,  in  general, independent of a; and a;. 
(35b) The variational formula can  be put in a quotient of two 

V, X E- - iwpH- = i y i  X E- (36a) quadratic forms 

V, X H -  + iweE-  = iy2 X H-. (36b) Qpqa;a,f 
= P.4 

Dot multiplying (35a) by H- and (35b) by E -, and  add- P. 9 

ing the  results,  we  obtain 

(43) C Cp4aiaq+. 

N 
D 

- - -  - (37) 

where N and  D  denote,  respectively, the numerator  and 
the denominator in (37). A similar  form  to (37) has been  where p ,  q = 1 ,  2 or a,  b in a two-waveguide  system. 
derived in [8], [lo]-[12], except that we  keep H-, E', The matrix elements Ep4 are defined as  (31).  The  deriva- 
etc., in the  denominator  which will be  shown  to  be nec- tion of the matrix  elements Qp,'s is  more  complicated  and 
essary in the following case. is given by 

formula  for the propagation  constant y by taking the first Qp4 = s s [uA€(q)F$)- . 1 

variation in y, 67, from the  trial fields 

It is straightforward to  show that (37) is a variational 

E' = E t  + 6E' (384 - f l  E@)- . 2 x HF)+ 

H* = H$ + 6H* (38b) 

where E$ and H$ are  assumed to be the exact solutions. 

4 ,  

- PqH(P)- . 2 x E?)' 

That  is, using (35) and (36) for E& H$and yo, one finds + iH',)- - V, X (y A 8 )  EL4)+)] ah dy (44) 
1 

[6N - yo6D] = 0 
DO where various relations such  as  those in Appendix A have 

(39) been used. Using  some  vector identity and integration by 
parts for the last  term in (44): 

where No and Do are  the expressions in (37) evaluated 
using E$ and H$. Thus any deviations of  first order in 
6E * and 6H * only result in errors of  second order  (6E *)* 
and (6H*)* in y. 

We  choose  the trial functions to be E$,)- a!x dy. (45) 

E,? U T E ? ) '  + a;  

the +z direction.  Here the subscript 1 refers to a, or 
waveguide a ,  and 2 forb for  convenience. We also choose 

c,, + c 

for  the transverse components of the fields propagating in 
the -z direction.  The longitudinal components  are  found  Thus it is clear that Qp4 is identical to Sp4. 

r .  
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The propagation constant y of the  supermode  is  deter- 
mined from  the  variational  formula  (37). We thus  take the 
partial derivative with respect to a i  regarding the ampli- 
tudes of the  positive  traveling waves a: to be independent 
of a; 

and obtain 

where we have made use of (43) again. 
Noting that 

d 
- -+ i y  
dz 

for the system mode,  we  obtain  the coupled-mode equa- 
tion 

which is identical to the coupled-mode equation (30) de- 
rived in Section 11-A since Q = S. If one takes partial 
derivative with respect to a; in (47), one  obtains identical 
results as (49) since both c and Q are  symmetric. 

111. RECIPROCITY AND POWER CONSERVATION 
Almost all  the previous theories use the  power  conser- 

vation to find the relation between the  two coupling coef- 
ficients Kab and Kba. That would lead to erroneous results 
since Kab # K:a, in general, if two waveguides are not 
identical. An approximate theory from a more rigorous 
approach indicates some clue to the reciprocity relation 
by a power conservation  argument  but the results still 
contain some small discrepancies [3].  The explanation 
given in [3] was that they are  due to the neglect of the 
radiation modes.  In this section,  we show that reciprocal 
relations can indeed be satisfied analytically and  the  pre- 
cise  analytical  relation of Kab to Kba can  be  obtained, and 
the radiation field can be ignored from  the  beginning.  The 
relation derived  here should be obeyed  and  our coupled 
mode theory does satisfy this  analytical relation. 

A .  Reciprocity  Relations 
Let us apply the reciprocity relation (2) to the  two 

waveguide system described by €(X, y )  (Fig. 2 ) .  We 
choose €(')(x, y) = d2)(x, y )  = E(X,  y ) ,  and the  two sets 
of solutions 

E:" = a("(z) Ep)+(x ,  y )  + b"'(z) Ejb)+(x, y )  (50a) 

Hi" = a'"(z) H y ) + ( x ,  y )  + b"'(z) Hlb)'(x, y )  (50b) 

and 

E(') = d 2 ) ( z )  Ej"'-(x, y )  + b'2)(z) E ( b ) - ( ~ ,  y) (51a) 

Hi2' = a"'(z) Hj"'-(x, y) f b"'(z) Hib)-(x,  y) (51b) 

z z - 1  2 2:o r Z  

Fig. 2. Two  parallel  dielectric waveguides applied to the reciprocity re- 
lation. The surfaces S, and S, are norinal to the &direction.  The  side 
surface S, expands to infinity.  The two sets of solutiosn used are: 1) 
u( ' ) ( - l )  = 0, b'"(-l) = V,, ~ " ' ( 0 )  = equation  (55a), b'"(0) = equation 
(55b). 2) u")(-l) = equation  (60a), b(*)(-l) = equation (60b), a(*)(O) 
= u,, b'Z'(0) = 0. 

for the  transverse components where the radiation mode 
has been neglected. 

The volume of integration is chosen  to be bound by S , ,  
S2, and S, as shown in Fig. 2. Using the divergence theo- 
rem and the  fact  that  the  surface integral on the  side Sd 
goes to zero  because of the  radiation  condition, we obtain 

j j (Ejl' x Hj2) - Ej2' x f p )  * ẑ  dx dy 
z= -1 

s1 

= 5 (E? x ~ 1 ~ )  - ~ 1 ~ )  x Hf' ) )  ẑ  dx dy (52) 
z = o  
s2 

which leads to 

a("(0) d2'(0) + cab ; cba [a('j(O) b'2'(0) + a'2'(0) b(1)(0)] 

+ b'"(0) b'2'(o) 

+ a'"( - 2 )  b'"( -Z)] + b"'( - I )  b'2'( -I). 

(53) 

We next consider  these  two  sets of solutions to be  the 
coupled mode  equations with two boundary conditions 
satisfied respectively. One starts at z = - 2  with the 
boundary conditions 
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and  the solutions of the mode  amplitudes  when propagat- 
ing to z = 0 are 

u(’)(o) = Voi - sin $lei+’ (554 
Kab 
$ 

where 

The next set of solutions are  the  propagating  modes in 
the -z  direction with the boundary conditions 

(2) 
a‘2’(o) = u, (594 

b”’(0) = 0 (59b) 

and the solutions when the mode  propagates  to z = - I  
are 

a(’)( - Z )  = U, cos $Z - i - sin $Z] e’$’ (60a) 

P ( - z )  = U, - sin $Lei”. @Ob) 

Substituting these field amplitudes  (54), ( 5 3 ,  (59), and 
(60) into  the reciprocal relation (53),  we obtain immedi- 
ately the relation 

[ A 
$ 

&a 

$ 

Kba - Kab = + cba> (6 1) 

which is the reciprocal relation that must be  obeyed. Note 
that the above relation is exact and there is no  complex 
conjugate operation involved  here.  It is applicable to lossy 
as well as  lossless  systems.  Each quantity in (61) can be 
complex in general.  Using  our theory as derived in Sec- 
tion 11, the quantities given by (34a)-(34d) do  indeed sat- 
isfy the  above reciprocal relation (61) analytically! The 
proof is straightforward by substitutions and  making  use 
of (26) for &,a and Rub. Interestingly,  the  above relation 
(61) is of the  same  form  as (26) except that the  propaga- 
tion constants are the modified  and Y b  instead of 0, and 
f i b  for individual waveguides. 

E.  Power Conservations 

We  choose the first set of solutions to  be 

Ej”(x, y )  = a(z) E$)+@, y )  + b(z) E l b ) + ( x ,  y )  (62a) 

Hj”(x, y )  = a(z) HP)+(x,  y )  + b(z) H l b ’ + ( x ,  y )  (62b) 

for €(‘)(x,  y )  = €(x ,  y ) .  
For the second  set of solutions,  we  choose &’)(x, y )  = 

€*(x, y).  Since the medium is lossless, E* = E ,  the com- 

t- ‘3+ 

(C) 

Fig. 3 .  (a) (b) (c) An illustrative example  to show the  two  coupled wave- 
guides under  consideration.  There  also  exists an external  perturbation 
between the  two waveguides. 

plex conjugate fields are also  solutions.  We  choose 

E$%$, y )  = a*(z) Ey)’(x,  y )  + b*(z) Elb)-*-(x,  y )  

(634 

H$”(x, y )  = a*(z) HP”(x, y )  + b*(z) Hjb)’(x, y )  

(63b) 
making  use of the z-inversion symmetry also. Substituting 
(62) and (63) into (52), we obtain 

P(z = - 1 )  = P(z = 0) (644 

where 

P(Z) = 142) l 2  + p(z)12 

+ (cab c b a )  Re (a(Z) b*(Z)) (64b) 

turns out to be  the  power guided  by  the  two  waveguides, 
where  we  have  used relations such  as 

cab = 1 2 1 1 Elb’ X HP’ * .f & dy 

= 1 2 11 Elb) x Hj“)* . 2 & dy (65) 

for a  lossless  system  assuming  one  chooses Et and H, to 
be  real,  which is possible [13]. We note that  since the 
distance E between  the  two surfaces SI and S2 is arbitrary, 
(64a) leads to the fact that P(z) should  be constant inde- 
pendent of z ,  which is also  obvious  from  the  power  con- 
servation point of view.  Using  the  boundary conditions 
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0006 r 

0001 I I I I I .IO .I2 .I 4 16 . I  8 20 
I 

WAVEGUIDE THICKNESS (pm) 

(b) 

Fig. 4.  The propagation  constants for the  coupled  waveguides in Fig. 3: 
(a)  the  real  parts, and (b) the  imaginary  parts of the  propagation  constants 
( 1 / p n )  are  plotted  versus  the  thickness  (pm) of waveguide b.  The exact 
solution  (solid  line),  our  results  (dashed  line),  and  the  results  using 131 
(dotted  line)  are  almost  on  top of each  other.  The  crosses  are results 
using [2]. 

that a(0) = 0 and b(0) = Vo, we find [3] Thus the  “power conservation violation factor” for ex- 
citation in waveguide b at z = 0 

constant. (66) Fb -+a = 2 [(Kab - K b a )  + A ( c a b  f Cba)]  (67) Kab 

I I ,  
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COEFFICIENTS 
COUPLING 

( i / p m )  

1 3 r  

07 I- 

I I I I I 
12 14 .I6 .I 8 .20 

WAVEGUIDE THICKNESS (,urn) 

COEFFICIENTS 
COUPLING 

(I(um) 

,0004 r 
0003 1 

WAVEGUIDE  THICKNESS (pm) 

(b) 

Fig. 5 .  (a)  The real parts, and (b) the imaginary parts of the  coupling  coef- 
ficients Kab and Kba for the  waveguide  system in Fig. 3 are  plotted versus 
the thickness  (pm) of waveguide b. Our  results  (dashed  lines) and the 
results using [3] (dotted lines)  are on top of each  other.  The  crosses  are 
the results using [2 ] .  

should  be  zero.  One sees clearly that this condition has tor F is an indication of the  power conservation and  the 
been derived in the previous section using the reciprocity reciprocity relation. It can be used for the final numerical 
theorem  which  is  more general for lossy as well as loss-  check of the consistency of the  theory.  Similarly,  for an 
less cases. In deriving (67),  one  needs  to restrict every initial excitation in waveguide a at z = 0, one  can define 
quantity in (67) to  be real for  a  lossless  medium.  Our new another factor 
formulation presented in the  previous sections does  sat- 
isfy exactly these reciprocity conditions and  power con- 
servation, since  the  factor F is zero if we substitute all Fu+ b = - Kbu [ (Kbu  - Kub)  - -k Cbu)]  (68) 
quantities in (34a)-(34d) into (67) and  use (26). The fac- $2 
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POWER  CONSERVATION 
VIOLATION,.F~CTOR (%) 

I x ,,, I: 

- . IO I I 1 I 
.IO .I2 , I4 .I6 .I8 .20 

WAVEGUIDE  THICKNESS (prn) t4 

Fig. 6 .  The power  conservation  violator  factors Fb-a and for the 
three  methods; our results  (dashed  line),  the  results  using [3] (dotted 
lines) are shown  using  the  left scale.  The results  using [2] (crosses) are 
shown  using  the righcscale. 

to check the numerical accuracy. The numerical results of 
these  two  factors in (67) and (68) using various methods 
will be presented in the next section. 

IV.  NUMERICAL  RESULTS AND DISCUSSIONS 

In this section, we consider  an  example from [3].  The 
coupled mode equations (33a)  and (33b) with the expres- 
sions in (34a)-(34d) are used in the numerical calcula- 
tions in this paper.  The  refractive  index profile is shown 
in Fig. 3 where an external perturbation between the two 
planar  waveguides  also  exists. We choose  the  index vari- 
ation to  be  along  the x direction,  and  for TE polarized 
waves,  the  electric field has only the  y-component. The 
refractive indices are n l  = n5 = Re (n3) = 3.4, n2 = n4 
= 3.6 and an  additional  loss  exists between two  guides 
such that ni - n: = il.  299 X lo-’. The  other parameters 
are t2 = 0.15 pm, t3 = 0.4  pm, h = 0.8  pm, and t4 varies 
from 0.1 pm to  0.2 pm. The  numerical results using an 
exact root-searching approach  have  also been shown  as 
the solid lines in Fig. 4(a) and 4(b) for  the real and imag- 
inary parts of the propagation constants. (In [3],  the  “ex- 
act” numerical method  combines  a root searching ap- 
proach assuming a lossless system  to find the real parts of 
the propagation constants, and a perturbational approach 
for  the imaginary parts when the loss is added.  The final 
“exact” results in [3] are indeed very good compared with 
our  exact  root  searching  approach.)  The results of the the- 
ory in this  paper  are shown as  the dashed lines, and the 
results using that in [3] are shown as  the dotted lines.  We 
see clearly that all three methods agree very well with 
each other.  The results of  a  conventional method [2] are 
also shown as  the  crosses which deviate more from the 
exact solutions especially for  the imaginary parts of the 
propagation constants. 

In Fig. 5(a) and 5(b) we compare both the real and the 
imaginary parts of the  coupling coefficients using our 
method and the methods in [2] and [3]. It is clear  that  our 
results do  agree very well with those using the method in 
[3]  with a different approach, which has been checked with 
the “exact” numerical results  presented in [3].  We note 
that our results satisfy the reciprocity and power conser- 
vation analytically and,  thus,  the  factors Fb+a and F,+b 
in (67) and (68)  are  zero while the F‘s of the method in 
[3] still contain a small discrepancy which is around 0.033 
percent at a maximum value  at t4 = 0.1 pm, and  the F’s 
of the method in [2] yield a maximum power discrepancy 
of 55 percent at t4 = 0.1 pm (instead of only about 20 
percent as claimed in [3]). Detailed calculations of the 
two power  conservation violation factors  are shown in 
Fig.  6 (assuming the  lossless  case, i.e., Im [n3 - n l ]  = 
0)  where Fb +, and F, + b for the method in [3] are shown 
(the dotted lines) in  the  left  scale.  The results are within 
0.033  percent.  The results using [2] (crosses) show in the 
right scale  that Fa+b for excitation in waveguide a has an 
error of power conservation of 21 percent at t4 = 0.1 pm, 
and Fb+, for  excitation in waveguide b has  a value of 55 
percent. Our results (the dashed line)  for Fb +, and Fa + b  

are  always  zero or within the round off errors  in  the  com- 
puter, and the  power  conservation is indeed satisfied. 

One should also note that the relations using the reci- 
procity and power  conservation laws are necessary con- 
ditions, not sufficient conditions,  for  the accuracy of the 
numerical results [7]. They usually serve as checks, not 
direct proofs, of the numerical solutions to the Maxwell 
equations. 

2 2  

V.  CONCLUSIONS 
A new coupled mode formulation  has  been described 

via two methods: a generalized reciprocity relation and a 
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variational principle. Both give  the  same  results.  Exact 
analytical relations governing  the  coupling coefficients 
Kab and Rba (also Kab and Kba) and  the propagation con- 
stants of individual  waveguide & and &, (ya and j / b )  are 
derived.  These  relations  are used to show that  our for- 
mulation does  satisfy the reciprocity theorem and the 
power conservation  analytically. Numerical results com- 
pared with the  exact  solutions  and  a previous method [3] 
which contains  a  slight  discrepancy  show  that  our new 
formulation should be very useful and  self-consistent. We 
hope this paper  will  also clarify the reciprocity relation 
for the coupled  waveguides. 

APPENDIX A 
DERIVATION OF (20a) AND (20b) 

For  the guided modes,  we  have 
0, x E @ ) +  - iWpH(a)+ = -ip,f x E@)+ (All 

V, X H(a)+ + iwE@)E@)+ = - i P , f  X H@)+ (A2) 

and a  similar  set of equations  for d b ) ,  E(b)+,  H(b)+, and 
f i b .  For  the  coupled-waveguide  medium,  we  have 

V, X E - iwpH = -iyf X E (‘43) 

V, X H + iweE = -iyi X H. 644) 
Breaking the  equation  into  the  transverse and longitudinal 
components, we have 

1 1 
E, = - V, X Ht = - (a(z)V, X Hj“” 

- iwE -1WE 

+ b(z)V, X Hlb’+) 

which is (20a) in  the  text. A similar procedure can be 
applied to Hz and  leads  to  (20b). 
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