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Coupled-mode theory for optical waveguides: an overview
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The coupled-mode theory (CMT) for optical waveguides is reviewed, with emphasis on the analysis of coupled
optical waveguides. A brief account of the recent development of the CMT for coupled optical waveguides is
given. Issues raised in the debates of the 1980's on the merits and shortcomings of the conventional as well as
the improved coupled-mode formulations are discussed. The conventional coupled-mode formulations are set
up in a simple, intuitive way. The rigorous CMT is established on the basis of a linear superposition of the
modes for individual waveguides. The cross-power terms appear logically as a result of modal nonorthogonal-
ity. The cross power is necessary for the self-consistency of the CMT for dissimilar waveguides. The
nonorthogonal CMT, though more complicated, yields more-accurate results than the conventional orthogonal
CMT for most practical applications. It also leads to the prediction of cross talk in directional couplers. The
conventional orthogonal CMT is, however, reliably accurate for describing the power coupling between two
weakly coupled, nearly identical waveguides. For dissimilar waveguides, a self-consistent orthogonal CMT can
be derived by a redefinition of the coupling coefficients, and it predicts the coupling length and therefore the
power exchange between the waveguides accurately if the two waveguides are far apart. Three typical coupler
configurations-the uniform, the grating-assisted, and the tapered-are examined in detail. The accuracy,
scope of validity, limitations, and extensions of the coupled-mode formulations are discussed in conjunction
with each configuration. To verify the arguments in the discussions, comparisons with the exact analytical
solutions and the rigorous numerical simulations are made.

1. INTRODUCTION

Coupled-mode theory (CMT) has been applied extensively
in guided-wave optics as a mathematical tool for the analy-
sis of electromagnetic wave propagation and interaction
with media. Because of its mathematical simplicity and
physical intuitiveness, the CMT is a fruitful approach to
an understanding of the operation of existing devices and
systems as well as in the suggestion of new concepts and
designs. The literature on the theoretical and practical
aspects of the CMT is vast; for a general review of the
principal features of the theory, one may refer to the re-
cent review paper by Haus and Huang1 and the references
therein. There are also several excellent reference books
available on the subject.2 ` The focus of this paper is pri-
marily on the coupled-mode theory for guided-wave optics,
with emphasis on optical guided-wave devices that are
based on coupled waveguides. In particular, I concentrate
on the development of the theory in the past seven years.
There have been substantial interest and research activi-
ties related to the CMT in this period, as reflected by the
large number of publications on the subject.

There are a number of different coupled-mode formula-
tions in the literature. The choice of a particular formu-
lation depends on the problems examined, on the accuracy
desired, and sometimes on the preference of the user. It
is beyond the scope of this paper to discuss all the formu-
lations. Instead, I deal with the coupled-mode formula-
tions that are based on ideal or local modes of the
individual waveguides for three typical coupler structures.
The waveguiding media are assumed to be isotropic, linear,
and lossless. The above choices of the modes and the
media may not be appropriate for some practical situ-
ations. However, the principal features of the CMT are
similar for the other formulations, as well. One of the

major topics to be discussed is the distinction and the re-
lation between the conventional orthogonal and the im-
proved nonorthogonal CMT's. Issues related to the
advantages and the disadvantages of the two theories have
been debated and are yet to be completely settled. In the
broader view, questions still remain about the accuracy
and the scope of validity of the coupled-mode theory for
the analysis of coupled optical waveguides. It is the hope
of the author that the passage of time would permit the
production of a paper that could put the topic of the
coupled-mode theory for coupled optical waveguides into
perspective. To achieve this objective, effort has been
made to give a brief and objective account of the debates
that occurred in the late 1980's and to summarize the con-
clusions that have been drawn and whatever controversial
issues remain, at least from the author's point of view.
The paper follows a systematic derivation of the coupled-
mode theory based on the modes of individual waveguides,
so that one is able to judge and appreciate the assumptions,
the approximations, and the physical meanings of the
theories presented. The assumptions and the approxima-
tions made in the formulations are explicitly stated, and
their limitations and extensions are discussed. Compari-
sons with exact analytical solutions and rigorous numeri-
cal simulations are made to support the arguments.
Issues that were debated in the literature will be com-
mented on and discussed when they are related to the
logical development.

The paper is organized as follows: a brief historical re-
view is given in Section 2, in which the key issues that
arose in the late 1980's are presented and discussed. The
coupled-mode formulations for uniform, grating-assisted,
and tapered couplers are discussed in Sections 3, 4, and 5,
respectively. Each section starts with a brief description
of the conventional CMT and its applications. The
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nonorthogonal coupled-mode equations are derived, and
their distinct features are described. The solutions of the
coupled-mode equations are then presented, and compari-
sons with the solutions of conventional CMT, the exact
analytical solutions, and the numerical simulations are
made. A brief conclusion is given in Section 6.

2. BRIEF HISTORICAL REVIEW
The heuristic coupled-mode theory was first developed by
Pierce9 and Millerl in the early 1950's. The rigorous
formulations of the coupled-mode equations were later
established by Schelkunoff1 and Haus,'2 who used a mode
expansion and a variational principle, respectively. The
initial applications of the CMT were to microwave oscilla-
tion and propagation. The CMT was introduced to
guided-wave optics by Snyder, 3 Marcuse, 4 Yariv,'5 and
Kogelnik'6 in the early 1970's. The CMT was used to
analyze mode coupling or conversion in optical wave-
guides.3 It was also used to explore novel optical guided-
wave devices.2 6 Examples of the latter category are
distributed feedback lasers17 and A coupler switches, 8

both invented by Herwig Kogelnik and his co-workers at
Bell Laboratories. The coupled-mode theory has also
been very useful in our understanding of nonlinear optical
wave propagation and interaction, such as second har-
monic generation, parametric amplification, and modula-
tion instability.78

One of the basic elements used as a building block for a
range of optical guided-wave devices is the system of
coupled waveguides. The physical models for coupled-
waveguide systems consist of two or more dielectric wave-
guides placed in close proximity. These waveguides may
be parallel to each other or may have variable separations.
They may be subject to index perturbations such as grat-
ings, tapers, nonlinearities, and loss or gain along the
waveguide axes. The index perturbations may be caused
by imperfections in material processing and device fabri-
cation; in some cases their effects may be undesirable and
should be assessed and minimized. In many cases, how-
ever, the index perturbations are created on purpose for
reflecting, switching, and modulating the light in the
waveguides.

The analysis of the coupled-waveguide systems by the
conventional CMT was based almost exclusively on the
modes of the individual, or uncoupled, waveguides. Once
these waveguide modes, i.e., their propagation constants
and field patterns, are determined, the amplitudes of the
modes in the coupled-waveguide systems are governed by
the coupled-mode equations. The solutions of the coupled-
mode equations describe wave propagation and coupling in
the coupled-waveguide system. Together with the field
distribution over the transverse cross section, the coupled-
mode analysis provides a simple and intuitive yet rigorous
description of electromagnetic wave propagation and inter-
action in a coupled-waveguide system.

A number of approximations are assumed in the formu-
lations and often in the solutions of the coupled-mode
equations. One of the assumptions for the conventional
CMT is that the waveguide modes are orthogonal to each
other. This approximation was considered to be accept-
able and was taken for granted until Hardy and Streifer 9

in 1986 suggested a modified coupled-mode formulation in

which nonorthogonality was considered. This new
nonorthogonal CMT was shown to yield more-accurate
dispersion curves and field patterns for the composite
modes (or normal modes) of the parallel coupled wave-
guides. In their original paper, Hardy and Streifer did
not establish the self-consistency of their formulations by
demonstrating the power conservation for a lossless sys-
tem. The self-consistent nonorthogonal coupled-mode
formulations for the parallel coupled-waveguide systems
were developed later by Haus and coworkers, who used a
variational principle20 ; by Chuang, who used the reciproc-
ity theorem2 '; and also by Hardy and Streifer in Ref. 22
through reformulation. There are some minor discrepan-
cies among the various formulations advanced by different
groups.2 0 2 2 These differences were examined by
Vassello23 and were shown to be subtle theoretically but of
little practical significance.

In the course of the development, criticism was raised
by Snyder and co-workers about the validity and accuracy
of the new nonorthogonal CMT. In a series of papers24 28

they showed that the nonorthogonal formulations can lead
to erroneous results for the coupling length of the TM
modes of parallel slabs when the index discontinuity is
large. Furthermore, they demonstrated that the conven-
tional orthogonal coupled-mode theory that is based on
the same waveguide modes predicts the coupling length
well for the case of a large index difference. This finding
was somewhat unexpected. In both the nonorthogonal
and the conventional orthogonal coupled-mode formula-
tions, the same trial solution, i.e., the linear superposition
of the waveguide modes, is utilized. It appears that the
nonorthogonal CMT contains fewer approximations and
should be more accurate than the conventional one, which,
as a matter of fact, can be derived from the former under
certain conditions. This paradox puzzled many re-
searchers and triggered a series of debates.2 4 '8

There were, as a matter of fact, two issues involved in
the arguments that were often confused and misinter-
preted. The first issue is related to the cross power, the
second one to the polarization effect. Since the cross-
power terms, or overlap integrals, appear naturally in the
derivation of the CMT as a result of the inherent modal
nonorthogonality, the question is whether it is necessary,
worthwhile, or even legitimate to retain them. To make
our discussion easier, let us examine the scalar CMT, in
which the field is represented by a summation of the scalar
modes of the individual waveguides.36 4' For a coupler
made of identical waveguides, the effective indices of the
symmetric and the antisymmetric normal modes can be
approximated by3 8 40'4'

N = kil- Xk12 +k1 2 - Xk11
NNeff+ 1 -X _X 2

N= + k - Xk12 k 12 - Xk11
Na = Neff+ 1- X 22 _ kx2 X

(2.1a)

(2.1b)

where Neff is the effective index of the individual guide and
X is the cross power. kij are the normalized coupling coef-
ficients and may be expressed by

1 2 2)Ti*h~ij = (n- n Tjda. (2.2)
4 f.L
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By use of a perturbation analysis and treatment of
exp(-aS) as the small parameter (a is the transverse de-
cay constant and S is half of the separation between the
two guides), it is shown that a first-order approximation
yield

2 4
'
2 5

'
3 8

N = Neff + k12 , (2.3a)

Na = Neff-k 12 (2.3b)

which is the result of the conventional CMT. Although
this analysis is legitimate, the first-order results in
Eqs. (2.3) are reliable only when the refractive-index dif-
ference is not too small and the two waveguides are suffi-
ciently far apart. In fact, when the index difference is
small and the two guides are close to each other, the cross
power X is much larger than the normalized coupling coef-
ficient k12 that is proportional to the index difference
weighted by the overlap integral. Under this circum-
stance, one should retain the cross power [or, more pre-
cisely, Xk12 in Eqs. (2.1)] to obtain accurate effective
indices. This conclusion is valid for the TE modes of slab
waveguides, as well, and is supported by examples in
Refs. 19-23, 26, 27, and 29 (see also Subsections 3.C and
3.D below).

On the other hand, the parameter describing the physics
of the power transfer between waveguides is the beat
length, which is related to the difference between the ef-
fective indices, i.e.,

A
L= A (2.4)

2(N, - Na)

where A is the wavelength. By using Eqs. (2.1), (2.2), and
(2.4), one readily derives

1-X 2 A
= ___ _____- (2.5)

k12- Xk 1j 4

from the nonorthogonal CMT. If the cross power X can
be neglected, then the coupling length reduces to

Lc = 11 (2.6)
k12 4

which is the result obtained by the conventional coupled-
mode formulation. By inspection of Eq. (2.5), one notes
that the first two terms in Eqs. (2.1) are canceled and that
they made no contribution to L,. Hence the effect that is
due to Xk12 is absent in the determination of the coupling
length. The higher-order terms X2 and Xk1j have little
effect, and hence Eq. (2.6) is highly accurate (see the dis-
cussion in Subsection 3.E below).

If the two waveguides are dissimilar, then the conven-
tional coupled-mode formulation is not self-consistent, as
pointed out by Hardy and Streifer.' 9 The expressions for
the coupling coefficients indicate that k12 k21. This is
contradictory to the power conservation of the conven-
tional CMT, which requires that k12 = k21. Under this
circumstance, the cross-power term is necessary for the
self-consistency of the CMT. To develop a self-consistent
orthogonal CMT based on the waveguide modes, the
coupling coefficients should be redefined as shown in
Section 3.D below.

Therefore, under the scalar approximation and for syn-
chronized waveguides, the nonorthogonal CMT is neces-

sary for accurate effective indices of the normal modes
when the two waveguides are strongly coupled. On the
other hand, the coupling length, and therefore the power
exchange between the waveguides, may be accurately
described by the conventional orthogonal coupled-mode
theory, and the more complicated nonorthogonal CMT
may not be necessary for weakly coupled waveguides. For
dissimilar waveguides the conventional CMT is not self-
consistent, and the nonorthogonal CMT is necessary. A
self-consistent orthogonal CMT may be established by a
new definition of the coupling coefficients. It should be
emphasized that the linear combination of the individual
waveguide modes, on which both the conventional and the
improved CMT's are based, is only an approximation to
the exact fields in the coupled waveguides. Strictly speak-
ing, both formulations are valid only for weakly coupled
waveguides, although the improved CMT is indeed more
accurate for weakly guiding waveguides under scalar
approximation.

For the vector formalisms in which the fields are repre-
sented by a summation of the vector modes of the individ-
ual waveguides, there is some inherent inconsistency in
the trial solution itself, independent of the cross-power
issue. This fundamental error was pointed out by Snyder
and co-workers2 4 25 2 ' 33 and was examined further by Haus
et al.3 5 Generally speaking, the trial solutions do not
satisfy the boundary conditions for the electric fields.
When the index discontinuities are weak, this approxima-
tion is acceptable and the coupled-mode theory that is
based on such trial solutions is reliable. Under this condi-
tion the nonorthogonal CMT is more accurate than the
conventional one, especially when the two waveguides are
closely coupled. This situation is similar to the scalar
case and is evidenced in the examples shown in Refs. 24-
35. When the index discontinuities are large, the errors
in the trial solutions will become more pronounced. Since
the same trial solutions are assumed in both the conven-
tional and the improved CMT's, one expects that neither
will be reliable in the treatment of the polarization effect
in strongly guided structures. The puzzling fact is that
Snyder and co-workers demonstrated that the conven-
tional CMT yields very accurate coupling lengths for the
TM modes of the coupled slabs even when the index differ-
ence is large, whereas the nonorthogonal CMT gives erro-
neous results. This phenomenon is explained in Refs. 33
and 35. It was found that the errors in the trial solutions
do not affect the coupling coefficient k12 but have much
more significant effects on k and, to some extent, on X
also. Consequently, the coupling length predicted by
Eq. (2.6) from the conventional CMT is more reliable than
that calculated by Eq. (2.5) from the nonorthogonal CMT.
However, this does not lead to the conclusion that the con-
ventional CMT is reliable for strongly guiding structures.
As far as the propagation constants and the field patterns
are concerned, neither the conventional nor the improved
CMT's are reliable, and more-accurate trial solutions are
needed. More discussion about the issue of improved trial
solutions is presented in Subsection 3.F below.

Despite the controversies the nonorthogonal CMT at-
tracted much attention and was applied to a range of
optical guided-wave devices that were based on coupled-
waveguide structures. Simplified scalar versions were
devised. 6 4 Formulations for multiwaveguide and multi-
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n1 4
n2 d2

n3 2s

n4 d4

n5
Fig. 1. Schematic diagram of a uniform directional coupler.

mode structures,42 47 anisotropic media,4 8 49 periodic grat-
ing structures' 0 o5 8 tapered structures, 59-66 and nonlinear
couplers6 7 were developed. Applications to various direc-
tional couplers in integrated and fiber optics68

-
80 were car-

ried out. Some experimental work by Marcatili et al.8 '
and by Syms and Peall82 was also published, and their
findings appeared to support the merit of the nonorthogo-
nal CMT.

- (31 + Kjj)aj - jK12 a2 ,
dz -JK~,,a

da= _ J8f2 + K22)a2 - jK2,a, ,
dz

(3.2a)

(3.2b)

where K12, K2,, and K1, K22 are the mutual and the self-
coupling coefficients, respectively.

Furthermore, if the coupled-waveguide system is loss-
less, then self-consistency requires that Eqs. (3.2) satisfy
the law of power conservation. Assume that the two
waveguide modes are power orthogonal. The total guided
power can be written as

P(z) = la,12 + la212. (3.3)

Note that we have normalized the mode amplitudes a, and
a2 so that their squares are equal to the powers in the
modes The law of power conservation requires that

-P(z) = 0.
dz

(3.4)

3. COUPLED-MODE THEORY FOR UNIFORM
COUPLERS

The simplest model for the coupled-waveguide system is a
directional coupler consisting of two uniform, parallel
waveguides in close proximity (Fig. 1). The transverse
cross sections of the waveguides are assumed to be arbi-
trary. If the waveguides are made of multiple layers of
step-index profile, one can obtain exact solutions to the
modal problem by using the transfer-matrix method.6

For most of the practical directional couplers made of
channel waveguides or circular fibers, however, exact ana-
lytical solutions are difficult to find. One may resort to
more-sophisticated numerical techniques for rigorous solu-
tions, but such approaches are more computation intensive
and less intuitive. The coupled-mode theory is extremely
useful in providing simple analytical solutions that give
insight into the mode-coupling process in directional
coupler devices.

A. Conventional Coupled-Mode Theory
The conventional coupled-mode theory can be derived in a
simple, intuitive way. Consider guided modes in the indi-
vidual waveguides, with the implicit time dependence
exp( jot). Denote the amplitudes of these modes by a, and
a2. When the two waveguides are infinitely far apart the
mode amplitudes will obey the equations

da,
d= -j13jaj,dz

d = _ 62a2 -

(3.1a)

(3.1b)

Because Eq. (3.4) is independent of the initial condition,
the coupling coefficients obey the following relations:

K12 = K21* = K, (3.5)

and K1, K22 have to be real.
For the uniform couplers, both the propagation con-

stants and the coupling coefficients are independent of z,
and therefore Eqs. (3.2) can be solved analytically. For
the sake of simplicity, we may take out a common phase
factor in the mode amplitudes by letting

ai(z) = a, exp( -31 + K 1 + 32 + K22Z)

Equations (3.2) are recast into

d = -jma, - jKa2,

d = +J8&2 - jKcal,

(3.6)

(3.7a)

(3.7b)

where

a=
,61 + Kl - J32 - K22

2

is the detuning or phase-mismatch factor.
write Eqs. (3.7) in a compact matrix form:

(3.8)

One may re-

d_
d A= -jHA,
dz_

(3.9)

where

Hence these waveguide modes will propagate indepen-
dently with their propagation constants , and 132.

When the two waveguides are brought into close prox-
imity, the modes will couple to each other as a result of the
interaction of the evanescent fields. Mathematically, the
spatial dependences of one mode amplitude will be modi-
fied by the existence of the other. If the coupling is weak,
then the coupled equations should be of the form

A = ,

Hf [+8

(3.10)

(3.11)

Since H is Hermitian for a lossless system, it can be diago-
nalized by a unitary matrix such that
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OtHO = B,

where B is a diagonal matrix,

B [ 6, 0 ]

and

= [cos(-/2) -sin(-q/2) 1
sin(,q/2) cos(,7/2) j

(3.12) P1 (z) = cos2 (Sz) + cos2 (*)sin2(Sz),

P2 (z) = sin2 (_q)sin 2(Sz) .

(3.24a)

(3.24b)

Maximum power transfer from guide 1 to guide 2 occurs
(3.13) at z = L, where

(3.25)

(3.14)
and is equal to

P2|max = sin2 (i) . (3.26)

where the parameter Y7 is defined by

tan(t7) = - (3.15)

The diagonal elements I,3 and a are the propagation
constants of the normal modes of the parallel coupler (i.e.,
the composite modes). To see this, one can make the
transformation

A= OW, (3.16)

It is noted that, for complete power transfer, the two
waveguide modes have to be phase matched, i.e., = 0.
According to the conventional CMT there is no cross talk
at the coupling length defined by Eq. (3.25). Conse-
quently the power-extinction ratio, defined as

E.R. Pi I2 min
P21 ma.'

(3.27)

is identically zero.

under which the coupled-mode equation (3.9) reduces to

d W = -jBW. (3.17)
dz

There is no coupling between the two modes in Eq. (3.17).
Hence W may be interpreted as the amplitude matrix for
the normal modes of the parallel waveguides with propa-
gation constants f3l and a, representing the symmetric-
like and antisymmetriclike composite modes, respectively.
Equation (3.17) can be readily integrated. The mode am-
plitudes may be expressed in terms of the transfer matrix
as

A(z) = T(z)A(0), (3.18)

where

T = o[exP(-jsz)
exp(-jPaz)lO 

or more explicitly, the matrix elements can be given by

tl = t2= COS(SZ) - j cos)sin(Sz), (3.2(

t2= tl= -j sin(-q)sin(Sz), (3.2(

where

S 3.2).

The propagation constants of the composite modes are

Ps = 130 + S, (3.2,

Pua = P0 - S, (3.2.

where

Pi1 + Kil + P2 + K22Po =2

Suppose that, at the input, only one waveguide is ex-
cited, i.e., al(0) = 1 and a2(0) = 0. The guided powers in
waveguides 1 and 2 can be given by

B. Nonorthogonal Coupled-Mode Equations
The conventional CMT for the coupled-waveguide systems
is set up in a simple and intuitive way. The formulations
are general and are expected to be valid under the weak-
coupling and the power-orthogonal assumptions. For
evaluation and assessment of these assumptions in the
heuristic coupled-mode formulation, a more rigorous and
systematic approach is necessary.

A unique feature associated with uniform (or z-invari-
ant) waveguide structure is that a variational (or, more
precisely, stationary) expression for the propagation con-
stant of the normal mode of the coupled system can serve
as a formal mathematical basis for the coupled-mode
equations.2 0 We may use either the vector 9 2 3 or the
scalar36 4 modes as trial solutions to derive the coupled-
mode equations. The more rigorous vector modes are
chosen for this paper, although the scalar modes may be
sufficient for many applications. In addition, it is sup-
posed that each waveguide in isolation supports only one
guided mode. To treat multimode waveguides or to ac-
count for the radiation modes is possible 46 48 62 but would
be more complicated and tedious. The trial solution may
be expressed in terms of a linear superposition of the
waveguide modes:

E = ai(z)ei + a2(z)e 2 ,

H = ai(z)h + a2(z)h 2 ,

(3.28a)

(3.28b)

where ei and hi are the vector waveguide modes and a,
and a2 are the corresponding mode amplitudes.

The trial solution assumed in Eqs. (3.28) is only an ap-
proximation to the electromagnetic fields in the coupled-
waveguide systems. The degree of accuracy and the
scope of validity of this approximation are yet to be veri-
fied. Nevertheless, the stationary property of the varia-
tional expression ensures that errors in the propagation
constants are not sensitive to the errors made in the trial
solution in Eqs. (3.28).20 For this reason the propagation
constants that one obtains by solving the coupled-mode
equations are expected to be of greater accuracy than the
trial solutions.

Wei-Ping Huang
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By substituting Eqs. (3.28) into the variational expres-
sion and utilizing the stationary property,20 one may ob-
tain, for the coupled-mode equations,

E Pij d= j 2 ijaj,

where

17 = P + Tij

Pij = f f[ei* x hj + ej x hi*] da

are the power marix elements and

Ki0 = 4 coeof (n 2 - n)ei* eda

(3.29)

(3.30)

(3.31)

when it is applied to the couplers made of dissimilar
waveguides. This fact was first pointed out by Hardy
and Streifer'9 and was subsequently demonstrated by
others.20 2'

C. Solutions to the Coupled-Mode Equations
Assume the normalization of Eq. (3.31) to be P, = P22 =

1, and let P12 = P2 1 = X. We may recast the coupled-
mode equations in a compact matrix form:

d_P-A = -jHA,
dz

(3.35)

where

(3.32) P= 1 X. (3.36)

are the coupling coefficients for the natural coupling be-
tween the two waveguides; n is the actual refractive-index
distribution of the coupler, and ni(x, y) is the index of the
ith guide in the absence of the other waveguides. The
derivation indicates that the coupled-mode equations
result from an optimization by the application of a varia-
tional principle. In this sense the solutions to the coupled-
mode equations represent the best-possible solutions to
the coupled-waveguide systems that are based on the trial
solutions used. In the above derivation the waveguide
systems are assumed to be lossless. A similar approach
may be applied to the lossy waveguides with some modifi-
cations to the cross power and the coupling coefficients. 2 '

For a lossless system the law of power conservation
implies that

d ai*Pijaj = 0. (3.33)

It follows from Eq. (3.29) that

Since P is positive definite and H is Hermitian, these two
matrices can be diagonalized simultaneously by a trans-
formation matrix 0 such that

OtPO = I,

OtHO = B,

(3.37a)

(3.37b)

where I is the identity matrix and B is a diagonal matrix
for the propagation constants of the composite modes.
The subscript t stands for the transpose of the matrix. 0
can be written as

0= , (3.38)

where the parameter a is related to the cross power as

sin(a) = X (3.39)

Hij = Hji* 140.0-(3.34a)

or

Pi( pj - i) = Kii - Ki*. (3.34b)

We note that, unless f3 = 3j, Kij is not equal to kji*. This
is in contrast to the conventional coupled-mode formula-
tion, which states that the coupling coefficients are sym-
metrical for the lossless systems, regardless of the
difference between the f3i. Figure 2 shows (K12 - K2l VK

in percentage as a function of the separation 2S between
the two slabs. The parameter K is the average of the two
coupling coefficients; i.e., K = (K12 + K21*)/2. The in-
dices of the waveguides are n = n3= n5= 3.200 and
n2 = 3.250. The index of the other guiding layer, n4, is
varied as n = n2 - n4 = 0.01, 0.1, and 0.2. The widths
of the two slabs are d2 = d4 = 1.0 Am. The wavelength is
A = 1.5 m. The results indicate that K12 is nearly equal
to K2, when the two waveguides are very similar. But the
difference between K and K can be as large as 100% as
the degree of the asymmetry increases. We also note that
the percentage difference does not vanish as the two
waveguides become large. In this sense there is an in-
herent inconsistency in the conventional coupled-mode
theory that is based on the individual waveguide modes

120.0-

100.0 

80.00 

60.00-

40.00-

20.00-

0.000
0.40 00 0.6000 0.8000 1.000 1.200

2S ( tm )
Fig. 2. Percentage difference between the coupling coefficients
(K12 - K21*)/2(Kl2 + K21*) as a function of the separation for TE
modes of an asymmetric slab coupler. n = n3= n5 = 3.200 and
n2= 3.250. The index n4 varies as Sn = n2- n4= 0.01, 0.1, 0.2.
The widths of the two slabs are d2= d4 X 1.0 ,m. The wave-
length is A = 1.5 ,um.
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and is defined by an equation that is the same as
Eq. (3.15) except that the effective coupling coefficient is
redefined as

K12 + K2l - X(Kll + K22) (3.40)
2(1 - x)/

The transfer matrix T(z) is calculated with Eqs. (3.19) and
(3.38) and is found to be

cos(a)cos(Sz) - j cos(-q)sin(Sz)
tl = t22= , (3.41a)

cos(a)

= -j sin(77 + a)sin(Sz) (3.41b)
cos(a)

To assess the accuracy of the coupled-mode formulations
established above, my colleagues and I calculated both the
propagation constants and the field patterns of the com-
posite modes of a parallel directional coupler. The pa-
rameters are the same as those used in Fig. 2, except that
the refractive indices n2 are chosen to be 3.25 and 3.23
for the cases of identical and dissimilar waveguides, re-
spectively. Figure 3 displays the effective indices of the
TE composite modes. It is demonstrated that the non-
orthogonal CMT (dashed curves) yields dispersion curves
in closer agreement with the exact solutions (solid curves)
than does the self-consistent orthogonal theory (dashed-
dotted curves), in particular when the two waveguides are

t2 1 = -.

.sin(q - a)sin(Sz)
i

3.240 1
(3.41c)

cos(a)

where S is defined by Eq. (3.21), with K given by Eq. (3.40).
The propagation constants of the composite modes are

given by formulas that are the same as Eqs. (3.22) except
that o3o is expressed by

131 + 32 Kll + K22 - X(K1 2 + K21)
2 + (1-X 2) (3.42)

3.235

X
a) 3.230 

.,

4)

0

I..

4)

and K is replaced by Eq. (3.40). The field patterns are
derived from Eqs. (3.16), (3.28), and (3.38):

_ cos[(-q + a)/2] sin[(-q - a)/2]
- + cos(c) cos(a)

e _ sin[(-q + a)/2]e +cos[(-q - a)/2]2

cos(a) cos(a)

D. Self-Consistent Orthogonal Coupled-Mode Theory
In comparison with the conventional orthogonal coupled-
mode theory presented in Subsection 3.A, the new entity
in the nonorthogonal coupled-mode formulation is the
overlap integral X If X is small and neglected, then the
solutions derived in Subsection 3.C are reduced formally
to those of the conventional theory in Section 3.A, with
the coupling coefficients redefined as

K
_ K12 + K21

2
(3.44)

Therefore a self-consistent orthogonal coupled-mode for-
mulation may be established by modification of the
coupling coefficients in the conventional coupled-mode
equations. The propagation constants of the composite
modes are

3 131 6+32 + K1l + 22 + [ 2 +(K 12 +k 2 1
2

(3.45a)

13a-1~ + 132 + k 1l + K22 [82 + + k~l2 1 ]2
2 [ ( 2 )]

(3.45b)

and the field patterns are

e. = cos(,q/2)el + sin(,q/2)e 2 , (3.46a)

ea = -sin(-q/2)el + cos(71/2)e 2. (3.46b)

(3.43a)

(3.43b)
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1.0 1.2

Fig. 3. Effective indices of the symmetriclike and the antisym-
metriclike composite modes of the uniform directional couplers:
(a) identical waveguides, (b) dissimilar waveguides. Solid curves,
exact solutions; dashed curves, nonorthogonal CMT; dashed-
dotted curves, orthogonal CMT. The parameters are the same as
those in Fig. 2 except that (a) n2 = 3.25 and (b) n2 = 3.23.
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E. Power Coupling between Waveguides
The most important function of the directional
to couple power from one guide to another.
power guided in the entire coupled-waveguide
defined, as usual, as

P(z) = (E X H* + E* X H) * da = Eai*(z)Pijai(z).

4 ~~~~~~~~~~~~~~~~~~~ii
(3.47)

Because of the nonorthogonality, the total guided power is
related not only to the magnitudes of the mode amplitudes
lai(z)l2 but also to the cross product of different mode am-
plitudes through the overlap integrals (the cross power).

-5 -4 -3 -2 -1

X

(a)

0 1 2 3 4 5

(gum )

-5 -4 -3 -2 -1 0 1 2 3 4 5

X ( )um)

(b)
Fig. 4. Electric-field patterns of the symmetriclike and the anti-
symmetriclike composite modes of the uniform directional
couplers made of identical waveguides shown in Fig. 3 (a). Solid
curves, exact solutions; dashed curves, nonorthogonal CMT; dot-
ted curves, orthogonal CMT; dashed-dotted curves, waveguide
modes. (a) 2S = 1.0 Atm, (b) 2S = 0.2 m.

closely coupled. The electric-field patterns for the com-
posite modes are shown in Figs. 4 and 5. The separations
between the slabs are assumed to be 2S = 1.0 and 0.2 m,
representing a weak and a strong coupled waveguide sys-
tem, respectively. In comparison with the exact solutions
(solid curves), the nonorthogonal CMT (dashed curves) is
indeed superior to the orthogonal CMT (dotted curves) for
the field patterns, too. As a matter of interest, the field
patterns of the waveguide modes (dashed-dotted curves
also were plotted). The waveguide modes become accept-
able approximations of the exact composite modes only
when the two waveguides are weakly coupled and far from
synchronism.
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Fig. 5. Electric-field patterns of the symmetriclike and the anti-
symmetriclike composite modes of the uniform directional
couplers made of dissimilar waveguides shown in Fig. 3(a). Solid
curves, exact solutions; dashed curves, nonorthogonal CMT;
dotted curves, orthogonal CMT; dashed-dotted curves, waveguide
modes. (a) 2 = 1.0 m; (b) 2S = 0.2 m.
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Pi(z) = R 2 + Ra2 + 2RsRa cos[(3,8 -Pa)z], (3.51a)

P2(z) = R.2 + Ra2 2RsRa cos[(, 8 - 1a)z] (3.51b)
I~-~ guide Pin D" I g uide 1 ^ Pout

guide 2 (11s)(a )
(11I1) (sI s),

I Ra _ (11 a) (al1)

(a) a (111) (a a)

guide 1

(3.52a)

(3.52b)

which are the excitation ratios of the waveguide mode to
the composite modes. (i I j) with i, j = 1, 2, s, a stand for
the overlap integrals between the different modes:

guide 2
I , Pout

(b)
Fig. 6. Input and output structures assumed for the guided
power in an individual waveguide: (a) Guided power in wave-
guide 1, (b) guided power in waveguide 2.

To define the guided power in an individual waveguide
in the coupled systems is somewhat tricky. Conceptually,
to measure the power in a single waveguide along z, one
should terminate the other waveguide so that the power
will be guided out through the waveguide of interest. Two
such configurations are depicted in Fig. 6. Application of
a simple mode-matching method 83 yields the amplitude of
the guided mode in the ith waveguide, expressed by

bi(z) = ai(z) + Xaj(z), (3.48)

and the guided power in that waveguide is

P1(z) = bi(z)l2 = ai(z) + Xaj(z)j 2 . (3.49)

According to Eq. (3.49), not only the mode amplitude ai
but also the mode in the other waveguide aj will contribute
to the guided power in waveguide i, a conclusion different
from that predicted by the conventional CMT. Suppose
that, at the input, only guide 1 is excited, i.e., al(O) = 1
and a2 (0) = 0. The mode amplitudes at an arbitrary po-
sition along z can be determined by the transfer matrix in
Eq. (3.38). The output powers from guides 1 and 2, re-
spectively, are given by

P, 2( +cos(q) - sin(a)sin(a + q) 12 *

P1(z) = cos 2(Sz) + L cos(a) J sin 2(Sz),

(3.50a)

P2(z) = sin2 (a)cos2(Sz) + sin2(y7)sin 2(Sz). (3.50b)

The coupling length and the maximum power transfer are
of the same form as those defined for the conventional
CMT, as is the phase-matching condition for the complete
power transfer.

The power exchange between the two waveguides can
also be viewed as a consequence of the beating of the sym-
metriclike and the antisymmetriclike composite modes
of the coupler. Suppose that the two waveguides are syn-
chronized, i.e., 8 = 0. By using a rigorous mode-matching
analysis at the input and the output, we find the output
powers from guide 1 and 2 to be

(i j) = f (ei* X hj + ej X hi*) 2da. (3.53)

At the coupling distance (i.e., half of the beat length),

7T
L, = Ps - 13a

maximum power transfer is

P2 lmax = (Rs + R.) 2 ,

where the power remaining in guide 1 is

Pl min = (R. - R.) 2 .

(3.54)

(3.55)

(3.56)

Figures 7(a) and 7(b) show the coupling lengths as func-
tions of separation for the two waveguide structures ex-
amined in Figs. 4 and 5, respectively. From Fig. 7(a) it
can be observed that the coupling length of the identical
waveguides predicted by the nonorthogonal CMT (dashed
curves) is in excellent agreement with that produced by
the self-consistent orthogonal CMT (or the conventional
CMT in this case). One can understand this by noting
that the coupling length is related to the difference be-
tween I3, and f3a (or S). The coupling length therefore is
not affected by the cross power X as much as by the indi-
vidual propagation constants shown in Fig. 2. Hence,
when the two waveguides are similar and not too closely
coupled, the simple conventional CMT gives an excellent
approximation of the power-transfer length. On the other
hand, from Fig. 7(b) it can be noted that the accuracy of
the coupling length predicted by the orthogonal CMT de-
creases as the two waveguides become dissimilar. At the
same time, a similar decrease in accuracy by the non-
orthogonal CMT can also be observed.

One consequence of the nonorthogonal CMT and the
exact normal-mode analysis is the prediction of cross talk
in the directional coupler device.83 .6 According to the
coupled-mode analysis, the extinction ratio for the output
power is equal to

(3.57)E.R.= X2,

whereas the normal mode analysis yields

E.R. = (R R
**R, + R,,

Equation (3.58) indicates that the cross talk is caused by
the unequal excitation of the two normal modes of the
coupler, an issue first raised by Chen and Wang35 and dis-
cussed further by Haus and Whitaker. 6 The extinction

(3.58)

Pin ` I
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this definition is described in Ref. 81. In reality the situ-
ations may be different from what has been assumed in
this definition, and one should be cautious in applying the
theory to the prediction of the cross talk in directional
couplers.

F. Limitations and Extensions
The accuracy and validity of the coupled-mode theory de-
scribed above depend on the trial solutions assumed in
Eqs. (3.28). Although the propagation constants of the
composite modes calculated by the CMT are stationary
values and thus are insensitive to errors in the trial solu-
tions, the field patterns are not. Generally speaking, one
restriction is that the separation between the waveguides
not be too small. The accuracies in both propagation con-
stants and field patterns deteriorate as the separation
decreases, as shown in Figs. 4 and 5. This so-called weak-
coupling limitation may be overcome to some extent by use

1.200 of a variational principle under the scalar approximation.s
Another restriction is that the index discontinuities

across different media not be too large. For the parallel
directional coupler shown in Fig. 1 the vector mode in
individual waveguide 1 satisfies the boundary conditions
only at its core-cladding interfaces. In the presence of
waveguide 2 trial solution el may not satisfy the boundary
condition at the core-cladding interfaces of guide 2, as in
the case of the TM modes in a slab coupler. Therefore the
polarization effect (or the vector nature) is considered
only partially in the vector coupled-mode formulations.
This inconsistency of the vector CMT was first pointed
out by Snyder and co-workers. 24' 25' 28 33 As a result of this
inconsistency, the polarization effects may not be properly
treated by the CMT. As shown in Refs. 25 and 28, erro-
neous results were predicted by the nonorthogonal CMT
for the power-coupling length of the TM modes when the
index discontinuity was large. One solution that is suit-
able for not-too-strongly guided waveguides is to use the
scalar formulation plus a vector correction. 4'4 Another

36.00 t
0.4000 0.6000 0.8000 1.000 1.200

2S ( m )
(b)

Fig. 7. Coupling lengths as functions of separation for the TE
modes of a slab coupler. Solid curves, exact solutions; dashed
curves, nonorthogonal CMT; dashed-dotted curves, orthogonal
CMT. (a) Identical waveguides shown in Fig. 4, (b) dissimilar
waveguides shown in Fig. 5.

ratios calculated with Eqs. (3.57) (dashed curve, coupled-
mode analysis) and (3.58) (solid curve, normal-mode analy-
sis) are depicted in Fig. 8 as a function of separation for
the TE modes of the parallel slab coupler shown in Fig. 4.

It should be emphasized that the prediction of cross talk
based on Eqs. (2.57) and (2.58) implies two separate de-
structive measurements, each with the other waveguide
truncated. Consequently the sum of the guided power in
the two individual waveguides P + P2 may not be equal to
the total input power. This is not a violation of the law of
power conservation but a reflection of the definition as-
sumed for the powers in the individual waveguides shown
in Fig. 6. An experimental setup for measuring the
guided powers in the individual waveguides according to

0. 1 500-
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Fig. 8. Power extinction ratios as functions of separation for the
TE modes of a slab coupler. Solid curve, exact solution; dashed
curve, nonorthogonal CMT. The parameters are the same as
those in Fig. 4.
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Fig. 9. (a) Percentage errors in the coupling lengths for the TM
modes of parallel slabs, (b) effective indices of the TM modes of
parallel slabs. Curves are taken from Ref. 35. 3 is the propaga-
tion constant, p is the width of the slab, and n,1 is the refractive
index of the cladding.

approach that may be applied to strongly guided wave-
guides is to introduce improved trial solutions. A modi-
fied coupled-mode formulation has been developed based
such a new trial solution, in which the previously neglected
polarization effect is considered 3 5; and the same trial solu-
tion was used by Ankiewicz et al. in conjunction with a
perturbation analysis.3 3 Significant improvement in ac-
curacy over the original trial solution was observed for the
TM modes of strongly guided waveguides. So far the im-
proved trial solutions are found only for some simple
waveguide structures; a systematic coupled-mode approach
to the strongly guided coupled waveguides is still lacking.

Figure 9(a) displays the percentage errors in the differ-
ence of the propagation constants of the normal TM modes
as functions of the ratio of core and cladding indices. The
curves are taken from Ref. 35. It is noted that the non-
orthogonal CMT is more accurate than the conventional
one when the index difference is small. On the other
hand, the nonorthogonal CMT gives erroneous results for
a large index difference, whereas the conventional theory
seems globally accurate. An improvement in the perfor-
mance of the nonorthogonal CMT with modified trial
function can be observed. The effective indices of the
even and the odd modes are also calculated by the three

theories and are plotted in Fig. 9(b). It is shown that
neither the conventional nor the nonorthogonal CMT's,
which are based on the vector modes of the individual
waveguides, are accurate when the index discontinuities
become large, whereas the modified trial functions indeed
indicate substantial improvement. 3 5

4. COUPLED-MODE FORMULATIONS FOR
GRATING-ASSISTED COUPLERS

Directional couplers made of uniform waveguides can
couple light between guides only when the waveguide
modes are phase matched or nearly so. For single-mode
waveguides, this means that the two waveguides have to
be similar, if not identical. Grating-assisted couplers, on
the other hand, may achieve power coupling between two
modes (or guides) that are originally not phase matched.
In general, directional couplers that are subject to peri-
odic index perturbations along the direction of the wave
propagation represent an important class of directional
coupler devices. Examples of grating-assisted couplers
include optical wavelength filters87 and tunable lasers,8 8

both demonstrated by Alferness and coworkers at the
AT&T Bell Laboratories. A configuration of the grating-
assisted coupler is depicted in Fig. 10. Two dissimilar
parallel waveguides are placed in close proximity. A peri-
odic index corrugation is distributed along the waveguide
axis. The role of the periodic grating is to assist the cou-
pling process for efficient power exchange between the
asynchronous waveguides.

A. Conventional Coupled-Mode Formulation
The conventional coupled-mode formulations established
in Section 3.A have no explicit assumptions about the na-
ture of the modes and the couplings between them. The
propagation constants and the coupling coefficients may
be either independent of z (ideal modes) or z varying (local
modes). For the grating-assisted couplers, the coupling
coefficients Kij are no longer independent of z but are peri-
odic functions of z. Suppose that the period of the grat-
ing is A. One can expand the coupling coefficients in
terms of Fourier series,

K = E Cm exp(-j ,z), (4.1)

where Cijm is the mth Fourier coefficient. By substitution
of Eq. (4.1) into Eqs. (3.2), one can derive a set of coupled-

nl I1
n2 d2

n3 f2h 28

n4 d4
I 

n5
Fig. 10. Schematic diagram of a grating-assisted coupler.
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mode equations:

da = _A81 + C11
0)aj - jC 12+m exp -j 2mrz)a 2 ,

(4.2a)

da2= -J( 2 + C22
0)a2 - jC2,-m exp+j- 2Ar za 2 .

(4.2b)

In the derivation of Eqs. (4.2), only phase-matching terms
are retained. Define

al = al exp(_j/3 + C1 1
0

+ p2 + C22 MV

(4.3a)

a2 = a2 exp( ji' + C11
0 + f32 + C220

A

(4.3b)

where n is the refractive index of a uniform (i.e.,
z-invariant) reference structure and the second term
represents a periodic index perturbation that is due to
the grating.

We express the unknown fields in the grating-assisted
coupler by a linear superposition of the ideal waveguide
modes, as in Eqs. (3.28). In addition to the conditions
stated in Section 2 for the uniform couplers, the perturba-
tions that are due to the index grating are assumed to be
small. The coupled-mode equations are derived from the
complex-power theorem47 and take the same form as
Eq. (3.35) except that the coupling matrix contains both
the natural coupling between the waveguides and the peri-
odic coupling that is due to the grating. One may sepa-
rate the total coupling matrix into two terms:

H=H +K, (4.7)

where Hij is defined in Eqs. (3.30)-(3.32). The matrix K
is the coupling that is due to the presence of the grating,

Then Eqs. (4.2) are reduced to Eqs. (3.7), with a net
tuning factor defined by

a1 + C1 1 - 2 - C220 Mr
2 A

and a modified coupling coefficient

iv de- K Co o eOm exp(-j- z) An2ei*. ejda. (4.8)

Since P and H are independent of z, one may diagonalize
them by using a method similar to that presented in Sub-
section 4.A. By applying Eqs. (3.16) and (3.39), one may
reduce the coupled-mode equations to

K = C12+m = - (4.5)

It is noted that only dc components in the self-coupling
coefficients contribute to the detuning factors, whereas
the coupling between the two modes depends on the
phase-matched ac components in the mutual coupling
coefficients.

The results obtained from the solutions of the conven-
tional coupled-mode equations in Section 3.A are directly
applicable to the analysis of the grating-assisted couplers.
By following similar arguments for uniform couplers, one
can readily show that complete power transfer between
the two dissimilar waveguides may still be achieved at the
coupling length determined by Eq. (4.5) if the grating
period A is chosen so as to nullify the detuning in Eq. (4.4).
These predictions are valid, however, only when the wave-
guides are far apart and very different, as shown in Sub-
section 4.C below. The power-coupling process in the
grating-assisted couplers is dictated by two distinct
coupling mechanisms: (1) the natural coupling between
two waveguides similar to that in the uniform directional
couplers and (2) the periodic coupling that is due to the
grating perturbations. The approximate CMT analysis
considers only the coupling that is due to the gratings and
therefore may not be sufficient when the two waveguides
are not far from synchronism and are not far apart.

d W = -jBW - jLW,
dz (4.9)

where W and B are the matrices for the amplitudes and
the propagation constants, respectively, of the composite
modes of the uniform coupler.

L = Ot KO (4.10)

is the coupling matrix between the composite modes that
are due to the index grating. By using Eqs. (3.38) and
(3.43), one can readily derive the following expressions for
the coupling coefficients:

1 2~
Lij= -CUEE& xp-J z fAn'ei* eja

4-~ Af
(4.11)

where i, j = s, a for the symmetriclike and the antisym-
metriclike modes, which can be expressed as a linear
combination in terms of the waveguide modes, as in
Eqs. (3.43). If the coupler is lossless, then the power con-
servation requires that the coupling matrix be Hermitian,
i.e., that

Lsa = La*. (4.12)

B. Nonorthogonal Coupled-Mode Formulation
For the grating-assisted couplers the refractive index may
be expressed as

n(X, y, z) = 2(x, y) + An2(x, y) -j Z) i

n n + An I~F. exp( .2Az

Equations (4.9) and (4.11) take forms identical to those ob-
tained directly from a trial solution that is based on the
linear superposition of the exact composite modes of the
parallel coupler.909 2 The only difference is that the com-
posite modes here are represented by a linear combination
of the waveguide modes, an approximation that is valid
if the two waveguides are not very closely coupled or
strongly guided.
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C. Solutions to the Coupled-Mode Equations
In comparison with the coupled-mode formulations for the
waveguide modes, Eq. (4.7) contains only the coupling that
is due to the grating perturbation. In fact Eq. (4.9) is
identical to the conventional coupled-mode equations (3.2)
and hence may be solved in a manner similar to that given
in Subsection 4.A. Without loss of generality we assume
that the grating is of rectangular shape and is used to
match the first-order spatial harmonics (i.e., m = ±1).
We derive a transfer matrix that links the amplitudes for
the composite modes between two positions along z:

W(z) = Tw(z)W(0), (4.13)

where

t11w = [cos(Qz) - j cos(0)sin(Qz)]exp[-j(7T/A)z],

t12 W = sin(+)sin(Qz)exp[-j(ir/A)z],

t2 lw = -sin()sin(Qz)exp[ j(r/A)z],

t22w = [cos(Qz) + j cos(G/)sin(Qz)]exp[j(7r/A)z],

where

(4.14a)

(4.14b)

(4.14c)

(4.14d)

grating periods are quite different when the two wave-
guides are close, and Eq. (4.20) is valid only if the separa-
tion is very large. For the sake of comparison, we also
plotted the calculated grating period that is based on the
exact composite modes (solid curve). It can be seen that
the nonorthogonal CMT indeed produces very accurate re-
sults for the grating period.

Under the phase-matching condition [Eqs. (4-19)], the
transfer matrix becomes

TW [Cos(Kwz)exp[-j(r/A)z] sin(Kwz)exp[-j(T/A)z]
sin(Kwz)exp[+j(ir/A)z] -cos(Kwz)exp[+j(r/A)z] 

(4.21)

At the input and the output the amplitudes of the com-
posite modes should be related to those of the waveguide
modes so that the power exchange between the waveguides
may be examined. Assume that the coupling length is
equal to an integer number of grating periods, i.e., that

L = NA. (4.22)

Q = (8w + KW2)"2 ,

tan(G) = Kw/8w,

5w= (s - 1a)/2 - ir/A

with

(4.15) The transfer matrix for the amplitudes of the waveguide
modes is

(4.16)

(4.17)

TA = OTWO1

1 [cos(KwL, - a) sin(KwL,)
cos(a) l sin(KwL,) cos(KwL, + a)J

(4.23)

being the detuning factor and

KW = 2 WEof An2es* eada

being the coupling coefficient.
The phase-matching condition w = 0

mum grating period,

Aw= 1T/(P35 -,Ba).

Suppose that, at the input, only guide 1 is excited. The
guided powers in guides 1 and 2, respectively, are given by

(4.18)

yields the opti-

18.00

(4.19)

Furthermore, if the two waveguides are highly dissimilar
and weakly coupled, the natural coupling between the two
waveguides may be neglected, so that Eq. (4.19) reduces to

AA = V/(fBi - /82), (4.20)

._1which is the result from application of the conventional
CMT presented in Subsection 4.A.

Comparisons between the two phase-matching condi-
tions in Eqs. (4.19) and (4.20) are made for a grating-
assisted coupler consisting of slab waveguides. The
parameters are nj = 1.0, n2 = 3.3, n3 = 3.2, n4 = 3.5, and
n5 = 3.0; d2 = 1.0 gm, d4 = 0.3 ,m, and 2s = 0.6 ,um.
The wavelength is A = 1.5 Am. The grating is placed
along the core-cladding interface of the upper slab (see
Fig. 10). Figure 11 illustrates the grating periods pre-
dicted by the two different phase-matching conditions
(dashed curve, Aw; dashed-dotted line, AA) as functions of
the waveguide separation. The phase-matching grating
period that is based on the predicted composite modes by
Eq. (4.19) increases as the separation becomes larger,
whereas the one based on the waveguide modes given in
Eq. (4.20) is independent of the separation. These two

17.00

16.00

15.00

14.00

P1 (LC) = COS2(KwL.),

P2(LC) = sin
2

(KwL0 - a).

0.6000 0.8000 1.000

2S ( um )
Fig. 11. Phase-matching periods as functions of separation for
the TE modes of a slab coupler. Parameters: nli = 1.0,
n2 = 3.3, n3 = 3.2, n4 = 3.5, and n5 = 3.0; d2 = 1.0 ,um, d4 =

0.3 ,um, 2S = 0.6 Am. A = 1.5 ,m. Solid curve, exact; dashed
curve, nonorthogonal CMT; dashed-dotted curve, conventional
orthogonal CMT.
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Fig. 12. Power exchange as a function of z. Solid curves,
finite-difference BPM; dashed curves, nonorthogonal CMT.
(a) 2h = 0.1 m, (b)2h = 0.2 m. The parameters are the same
as those in Fig. 11.

The complete power transfer occurs at

Lmax /2 + (4.25)
Kw

which is different from the prediction of the conventional
CMT. According the nonorthogonal CMT, the maximum
power-transfer length is related to the coupling between
the composite modes as well as to the cross power between
the two guides. Zero cross talk may also be achieved at a
different coupling length,

Lmin = 7l/(
2 Kw). (4.26)

Similar results have been obtained by application of a
multiple-scale analysis5" for a sinusoidal grating and of a
transfer matrix for a rectangular grating.5 2

The power coupling in the grating-assisted coupler is
calculated by use of the nonorthogonal coupled-mode for-
mulations developed above; the results are shown in
Fig. 12 by solid curves. The same structure as that used

in Fig. 11 is assumed. The separation between the two
slabs is 2s = 0.6 Aim. The height of the grating is 2h =
0.1 Am and 2h = 0.2 gm in Figs. 12(a) and 12(b), respec-
tively. The two distinct coupling scales are clearly
illustrated in both cases. The slow scale, which dictates
the overall power coupling, is determined by the coupling
of the grating. The two coupling lengths for the maxi-
mum power transfer and the minimum cross talk are also
shown. The fast scale is due to the natural coupling be-
tween the two parallel uniform waveguides. The period
of the fast oscillation is equal to A, and its magnitude is
related to the strength of the natural coupling between
the two waveguides. If the two waveguides are far from
synchronism and are far apart, then the natural coupling
may be ignored. In this limit the conventional CMT dis-
cussed in Subsection 3.A applies. To assess the accuracy
of the coupled-mode theory, I simulated the same struc-
ture by using a beam-propagation method8 9 (BPM, dashed
curves). Better agreement between the two methods is
observed for the case depicted in Fig. 12(a) than for the
case depicted in Fig. 12(b). When the grating perturba-
tion is strong the trial solutions in the CMT are no longer
accurate, resulting in larger errors. In addition the ra-
diation loss becomes more pronounced as the grating
height increases, which is illustrated in the BPM simula-
tions; this effect is absent in the coupled-mode analysis.
Nevertheless, the principal features of the grating-
assisted couplers revealed by the CMT are verified by the
BPM simulations. Although the simple conventional CMT
is not reliable for the grating-assisted coupler, as shown in
Refs. 50 and 90, a modified self-consistent orthogonal
CMT was shown to yield accurate results when the two
waveguides were not strongly coupled.9 Instead of using
Eq. (4.5) for the coupling and Eqs. (3.24) for the power ex-
change, one may use the self-consistent orthogonal CMT
developed in Eq. (3.4) to obtain the expressions for the
composite modes, i.e., Eqs. (3.45) and (3.46). Then one
may utilize the formulations developed in Subsection 4.C
to obtain expressions for the composite modes, i.e.,
Eqs. (3.45) and (3.46), and apply the formulations devel-
oped in Subsection 4.C for the grating-assisted couplers.
Under this circumstance the only difference between the
nonorthogonal and the orthogonal theories results from
the differences in the propagation constants and the field
patterns of the composite modes, which have been dis-
cussed in great detail in Subsection 3.D. The difference
in the propagation constants will affect the accuracy of
the phase-matching grating period in Eq. (4.19), whereas
the difference in the field patterns may cause errors in the
coupling lengths, as can be seen from Eqs. (4.18), (4.25),
and (4.26).

E. Limitations and Extensions
As in the case of the uniform couplers, the accuracy and
validity of the coupled-mode analysis for the grating-
assisted couplers are determined by the accuracy and
validity of the trial solutions assumed in Eqs. (3.28).
First, the separation between the waveguides cannot be
too small. To overcome this limitation, one may use the
exact composite modes of the parallel waveguides as the
basis for the trial solutions.90'92 Second, the grating per-
turbation, for example, the grating height, must be small.
In our trial solutions the ideal modes are used so that the
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Fig. 13. Schematic diagram of a tapered coupler.

mode profiles will not change along z. Furthermore, the
index differences among different media must be small.
This problem may be partially solved by use of the com-
posite modes, but the index discontinuities associated
with the grating perturbation should still be small.9 3

Finally, the radiation caused by the grating has been ig-
nored in the above CMT analysis. The radiation loss may
be included in the analysis by consideration of the coupling
between the guided and the radiation modes.9 4 Recently
a transfer-matrix method (TMM) based on the local com-
posite modes was applied to the grating-assisted cou-
plers.9 5 It was demonstrated that the TMM is capable of
simulating grating-assisted couplers that have strong
natural coupling and grating perturbations; it can treat
the polarization in a strongly guided structure properly; it
can estimate the power attenuation that is due to the ra-
diation loss. If only the guided modes are employed in the
analysis, the TMM usually overestimates the loss that is
due to the radiation modes, because of the omission of the
radiative power that is coupled back to the guided modes.
This problem can be solved by inclusion of the radiation
modes.9 6 In general the TMM appears to be superior to
the CMT that is based on the ideal modes. An improved
formulation achieved by use of the local normal modes as
the trial solutions is expected to overcome the shortcom-
ings of the CMT that is based on the ideal modes,97 but it
is yet to be demonstrated for the grating-assisted couplers.

5. COUPLED-MODE FORMULATIONS OF
TAPERED COUPLERS

Tapered couplers or nonparallel waveguides are used in
optical directional couplers for the purpose of reducing
cross talk,8 6 improving fabrication tolerance, increasing
bandwidth,9 8 and suppressing filter sidelobes.99 Since the
overall performance of the couplers, including transmis-
sion, cross talk, and extinction ratio, is often critically
affected by the characteristics of the tapered or the non-
parallel sections, it is important to undertake a rigorous
analysis of the power exchange between the tapered and
the nonparallel waveguide structures.

A typical tapered coupler consists of two or more tapered
or nonparallel waveguides. The taper may be caused by
the variation of the refractive index or the geometric

shape of the waveguides and can be characterized by a
refractive index n(x, y, z) that varies with x, y, and z.
Figure 13 shows a tapered coupler made of two nonparallel
straight waveguides separating at an angle . Because of
the longitudinal nonuniformity a rigorous analysis of the
tapered optical couplers is difficult. In the coupled-mode
theory the fields in the tapered coupler are represented
approximately as a linear superposition of the local modes.
The local modes are the normal modes of the uniform
waveguide structures defined at each point along the
z axis, as depicted in Fig. 14. The local modes are not
solutions of the Maxwell's equations for the tapered struc-
tures; rather, they are modal solutions of the local uniform
waveguides with z-varying parameters.

A. Conventional Coupled-Mode Formulations
One can readily extend the conventional coupled-mode
equations to the tapered couplers by making the propaga-
tion constants and the coupling coefficients functions of z.
To solve the coupled-mode equations with z-varying coeffi-
cients requires numerical integrations. One important
case in which an analytical solution can be obtained is that
in which the two waveguides are synchronized throughout
the entire coupling region. By applying Eq. (3.16) to
Eq. (3.9) with 5 = 0 and

(5.1)= [1/ i1//2

we derive a transfer matrix for the mode amplitudes:

Cos (f Kdz')

-j sin ( Kdz)

-j sin (fo Kdz')

cos(fz Kdz')

(5.2)

Therefore complete power exchange between the two
waveguides can still be achieved, and the coupling length

i x
Modes with wave-front tilt i Local modes

X/ /

'i. )~~- - -- --

A n,~~- -----

id JA . ~~~~~~~~~~~~~~~z

Fig. 14. Illustration of the local modes used in the coupled-mode
formulations.
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is determined by

fJ KdZ = -
2 (5.3)

B. Nonorthogonal Coupled-Mode Formulations
The rigorous coupled-mode formulations can be derived by
assuming that the total electromagnetic fields in the
tapered couplers can be expressed as a linear superposi-
tion of the two local modes of the individual waveguides
defined at z:

E(x,y,z) = a,(z)el(x,y; z) + a2(z)e2 (x,y; ),

H(x, y, z) = al(z)hl(x, y; z) + a2 (z)h 2(x, y; z). (5.4)

Expansion (5.4) is a good approximation if local guided
modes exist in the entire coupling region and the two
waveguides are not very closely coupled or strongly guided.
We also assume that the taper varies slowly so that the
coupling to the radiation modes or the effect of wavefront
tilt may be neglected.

The coupled-mode equations governing the evolution of
expansion coefficients al(z) and a2 (z) can be derived by
substitution of Eqs. (5.4) into Maxwell's equations.6 3 In
matrix form the equations are written as

d
Pd A = -jHA - FA, (5.5)

where Hij and Pij are of the same forms as those defined in
Eqs. (3.29)-(3.31). For the tapered couplers they become
z dependent. In addition a new coupling term appears in
the coupled-mode equations:

Fi = ei* x dz + dz x hi* - da, (5.6)

representing the additional coupling caused by the taper.
It has been shown that Fij are essential for the self-
consistency of the nonorthogonal coupled-mode equations
[Eqs. (5.5)].63 Even for a very slow taper, Fij should not be
neglected; otherwise the law of power conservation will be
violated. It is also shown below that a self-consistent
adiabatic approximation for slowly tapered couplers
may be introduced in conjunction with the orthogonal
coupled-mode formulation that is based on the local
composite modes.

The coupled-mode equations for the orthogonal local
composite modes can be derived from Eqs. (5.5) by the
same linear transformation as given in Eqs. (3.16) and
(3.37). In matrix form, Eqs. (5.5) are reduced to

dz dW= - jBW - NW, (5.7)

where the local composite modes are given in terms of the
linear superposition of the local waveguide modes that are
determined by Eqs. (3.43). The coupling coefficients are
obtained as

N = M+P-M + M+FM.
dz

(5.8)

By imposing the condition for the power conservation, one
can easily prove that the coupling coefficients are anti-

symmetric, i.e., that

Nsa = -Nas*, (5.9)

and that the diagonal elements N,, = Naa = 0. This result
is to be expected: since the coupling matrix in Eqs. (5.7)
is real, its diagonal elements must be zero; otherwise the
power would be lost or generated, and thus the law of
power conservation would be violated. It is also evident
that the additional coupling terms Fij are essential for
ensuring the self-consistency of the coupled-mode
formulation.

The orthogonal coupled-mode equations [Eqs. (5.7)] can
also be derived from Maxwell's equations when the fields
in the tapered couplers are represented by the linear
superposition of the exact local composite modes.63"00"0'
The coupling coefficients result solely from the tapering
effect and are given by

4 a (esX + X h5 *) * da, (5.10)

where e5, h5, and ea, h5 are the fields of the local composite
modes. By using the linear transformations (3.16) and
(3.43), one may readily derive Eq. (5.10) from Eq. (5.8).
Evaluation of the coupling coefficients between the local
composite modes with use of Eq. (5.8) or Eq. (5.10) is
cumbersome. An alternative expression for the coupling
coefficient may be derived 3 :

1 0 an 2
Nsa f=a ae,* eada. (5.11)

Note that the coupling between the local composite modes
is proportional to the rate of change in the refractive index
along z. If the taper is very slow then the coupling be-
tween the local composite modes may be neglected, and a
self-consistent coupled-mode formulation under the adia-
batic approximation is obtained. In general, however, the
coupling that is due to taper should be considered, and its
effect on the power exchange between the guides should
be carefully examined.

C. Power Exchange in the Tapered Couplers
For the synchronous couplers in which the local modes of
the waveguides have the same propagation constants, there
is no coupling between the local composite modes; i.e.,
Nsa = 0. Thus Eqs. (5.7) can be integrated to yield exact
solutions.6 0 Assuming that a(0) = 1 and a2(0) = 0, the
mode amplitudes at z may be expressed as

I [i_-X(0)/ [i + X(0) 112 (1 \
a,(z) = 2 [ - X(z)J + + X(Z) 2cosl ,)

+.1 1_ X(0) 11/2 1+ X(0) 1/2 1

2 L- X(z)1 L1 + (Z) 2sn -

(5.12a)

if i X(0)/ I + X(0) 1/21 (1
a2(z) = il~1 - X(z)] + + X(Z) 2cos

1 r - X(0) 11/2 _ [1 + X(0) 1/21(1 \

2 - - X(z) 1 + X(z) 2siny2 +

(5.12b)
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where

= (f° 13adz' (5.13)

and [38, Pa are the propagation constants of the symmetric
and the antisymmetric local composite modes and are
given by Eqs. (3.45) and (3.46).

When the waveguides are not synchronous, exact ana-
lytical solutions are known only for certain cases in which
some special relations among I,3, P,, and Na hold.6 '97 In
general the coupled-mode equations may be solved by use
of a numerical technique. The amplitudes of the wave-
guide modes are obtained by means of linear transforma-
tion (3.16) and the power in guides 1 and 2 by Eq. (3.49).
If the two guides are very far apart at z = L, the cross
power X may be neglected, so that

(5.13a)

(5.13b)

P2 (L) I lal(L)12,

P2(L) la2(L)12.

lel waveguides may become important and should be
considered.

A self-consistent coupled-mode formulation that ac-
counts for the wavefront-tilt effect was proposed re-
cently.656 6 In the new formulation the trial solutions are
a linear superposition of the normal modes, instead of the
local modes, in the tilted individual waveguides. The
wavefront-tilt effect also occurs at the input and the out-
put where the transition from the parallel to the nonparal-
lel sections (or vice-versa) occurs. The wavefront tilt is
caused by the change of waveguide axes and can be ana-

0)

(0

0

0S
0

Therefore the cross talk between the two guides may be
greatly reduced by introduction of the tapered section in
the output port of the directional couplers. 6

To examine the power coupling in a tapered coupler, my
colleagues and I studied a coupler made of two straight
step-index slab waveguides separating at an angle 20 (see
Fig. 13). The input conditions are assumed to be al(O) =
1 and a2 (0) = 0. The parameters of the waveguides are
nj = n2 = 3.1, no = 3.0, w, = 0.8 Am, and W2 0.6 ,um.
The initial separation between the slabs is xoj 0.55 m
and X02 = -0.45 gm. The wavelength is A 1.5 ,um.
Figures 15(a) and 15(b) show the guided power in guide 1
as a function of the propagation distance for two tilt
angles, 0 = 0.10 and 0 = 0.5°, respectively. The solid
curves represent the solutions that include the tapering
effect, the dashed curves the solutions under adiabatic
approximation, and the dotted curves the solutions that
simply neglect Fij. When the tilt angle is small, the adia-
batic solutions appear to be accurate. As the angle in-
creases [as in Fig. 15(b)], the tapering effect becomes
important, and the adiabatic solutions are no longer ade-
quate. The solutions that ignore Fij are not correct even
when the tilt angle is small. A closer examination reveals
that the solutions in fact do not obey the law of power con-
servation and thereby are not self-consistent.
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03Q.
D. Limitations and Extensions
Almost all the limitations of the nonorthogonal coupled-
mode formulations stated for the uniform and the grating-
assisted couplers apply to the tapered couplers. Similarly,
some of the problems associated with these limitations
may be solved by the methods suggested for the former
two types. An additional restriction of the CMT for
tapered couplers is that the tapering rate has to be slow so
that the wavefront-tilt effect caused by the nonparallel
waveguide structures can be ignored. For the tapered
coupler shown in Fig. 13 the wave front of the guided mode
of each waveguide is perpendicular to its own axis, while
the wave front of the local modes (local waveguide modes
or composite modes) is perpendicular to z. When the tilt
angle is small the local-mode approximation is acceptable.
For large tilt angles the wavefront-tilt effect in nonparal-

0.800-

0.700-

0.600

on o I-
0.000 1.00 2.00 3.00 4.00 5.00

Distonce (um) (X10 2 )

(b)
Fig. 15. Guided power in guide 1 as a function of propagation
distance L. The parameters are n1 = n2 = 3.1, no = 3.0, W, =
0.8 ,um, and W2 = 0.6 Am. x0l = 0.55 ,um, and X02 = 0.45 ,m.
The wavelength is A = 1.5 Am. (a) 0 = 0.10, (b) 0 = 0.5°. Solid
curves, nonorthogonal CMT with tapering effect; dashed curves,
nonorthogonal CMT that neglects Na; dotted curves, nonorthogo-
nal CMT that neglects F1 2.
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Fig. 16. Output power from guide 1 as a function of tilt angle.
The parameters are the same as those in Fig. 14 except that
W2 = w = 0.8 m, x = X02 = 0.7 m. The propagation dis-
tance is L = 200 sum. Solid curve, nonorthogonal CMT that
considers the wavefront-tilt effect; dashed-dotted curve,
nonorthogonal CMT based on the local waveguide modes; dashed
curve, finite-difference BPM.

lyzed by the mode matching at the interfaces. 6 5
Figure 16

shows the output power in guide 1 at L 200 tum as a
function of tilt angle . It can be seen that the coupled-
mode formulation that is based on the local waveguide
modes can yield a reliable prediction only for a tilt angle
less than 1, whereas the improved CMT that includes
the wavefront-tilt effect is in excellent agreement with the
finite-difference BPM simulation up to 5 Therefore the
improved theory should be used for large tilt angles.

6. CONCLUSIONS

The coupled-mode formulations for the optical coupled-
waveguide systems are reviewed. The conventional
coupled-mode formulations are set up in a simple, heuristic
way and are applied to the analysis of both uniform and
nonuniform structures. The rigorous coupled-mode for-
mulations are established by use of a linear superposition
of the modes of the individual waveguides as a trial solu-
tion to Maxwell's equations. The cross-power terms,
which were ignored in the conventional CMT, show up
naturally in the rigorous CMT as a result of the nonorthog-
onality between the waveguide modes. The cross power
is necessary for the self-consistency of the coupled-mode
formulations when the coupled waveguides are not phase
matched. It also leads to the prediction of the cross talk
in the directional couplers. A self-consistent orthogonal
coupled-mode formulation can be derived from the
nonorthogonal CMT if one neglects the cross power, but
the coupling coefficients are redefined as the average of
the two mutual coupling coefficients. This self-consistent
orthogonal CMT is simpler than the improved nonorthogo-
nal CMT and is reliably accurate for describing the power
exchange between waveguides that are weakly coupled. A
more appropriate approach to orthogonalizing the CMT
that is based on the waveguide modes is to apply a linear
transformation that simultaneously diagonalizes the
power and the natural coupling matrices. The resultant
orthogonal CMT is equivalent to the coupled-mode formu-
lations based on the ideal or the local composite modes,

except that the composite modes are approximated by a
linear superposition of the modes of the individual wave-
guides or waveguide modes.

Three typical coupler configurations-the uniform
coupler, the grating-assisted coupler, and the tapered
coupler-are analyzed in detail. For the uniform coupler
discussed in Section 2 the nonorthogonal coupled-mode
equations are diagonalized by the linear transformation,
and the composite modes are the normal modes of the
system. The power exchange between the waveguides
may be treated either by coupling between the waveguide
modes or by beating between the composite modes. It is
shown that the nonorthogonal CMT in general yields
highly accurate dispersion relations and field patterns if
the separation between the waveguides is not too small
and the index discontinuities over the cross section are
not too large. Extensions of the CMT for the analysis of
strongly coupled or guided waveguides are also discussed.

In the grating-assisted coupler two different coupling
mechanisms exist for the waveguide modes: the natural
coupling between the two waveguides and the periodic
coupling that is due to the grating. After the linear trans-
formation the coupled-mode equations for the composite
modes contain the coupling that is due to the periodic
gratings only and may be solved approximately under a
quasi-phase-matching condition. The optimum grating
period is determined by the phase-matching condition of
the composite modes other than that of the waveguide
modes. The power coupling exhibits two distinct scales
that are due to the two coupling mechanisms.

The coupled-mode equations for the tapered coupler are
established on the basis of the local waveguide modes. It
is noted that not only do the power and the natural cou-
pling matrices become dependent on z but also an addi-
tional coupling term appears that is due to the taper. This
extra coupling is essential for the self-consistency of the
CMT and may not be ignored, even under the adiabatic
condition. The nonorthogonal CMT can be orthogonal-
ized by the linear transformation, and the orthogonal
CMT that is based on the local composite modes contains
only the coupling that is due to the taper. If the taper is
slow the tapering effect may be neglected and an approxi-
mate solution may be obtained. In general the tapering
effect should be considered, and the coupled-mode
equations have to be solved numerically. One of the
major shortcomings of the CMT that is based on the local
modes is that the wavefront-tilt effect is ignored. This
wavefront-tilt effect may be considered by use of an im-
proved coupled-mode formulation.

Several limitations of the coupled-mode theory for the
analysis of optical coupled-waveguide systems are pointed
out, and some of the existing approaches to overcoming
these restrictions are mentioned. In general, one can al-
ways use a complete set of the modes as a trial solution.
The coupled-mode equations derived are an infinite num-
ber of coupled ordinary differential equations and may be
subsequently solved numerically. From this point of view
the coupled-mode theory may be considered a rigorous nu-
merical method. Nevertheless, one should bear in mind
that the appealing characteristic of the CMT for optical
guided waves lies in its simplicity and intuitiveness.
Typical longitudinal dimensions of optical waveguides are
usually much larger than the waveguide wavelengths of
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optical signals. The interactions between the optical
waves and the guiding media generally are weak. As a
result the couplings between optical guided waves per
wavelength are weak. For any significant interactions to
occur, the phase-matching conditions between the inter-
acting waves must be satisfied. A precise description of
this resonant coupling phenomenon is indeed the essence
of the coupled-mode theory.
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