ECE 350 Lecture Notes

2. Review of Vector Analysis

A vector \mathbf{A} can be written as

$$
\begin{equation*}
\mathbf{A}=\hat{x} A_{x}+\hat{y} A_{y}+\hat{z} A_{z} \tag{1}
\end{equation*}
$$

Similarly, a vector B can be written as

$$
\begin{equation*}
\mathbf{B}=\hat{x} B_{x}+\hat{y} B_{y}+\hat{z} B_{z} \tag{2}
\end{equation*}
$$

In the above, $\hat{x}, \hat{y}, \hat{z}$ are unit vectors pointing in the x, y, z directions respectively. A_{x}, A_{y} and A_{z} are the components of the vector \mathbf{A} in the x, y, z directions respectively. The same statement applies to B_{x}, B_{y}, and B_{z}.

Addition

$$
\begin{equation*}
\mathbf{A}+\mathbf{B}=\hat{x}\left(A_{x}+B_{x}\right)+\hat{y}\left(A_{y}+B_{y}\right)+\hat{z}\left(A_{z}+B_{z}\right) \tag{3}
\end{equation*}
$$

Multiplication

(a) Dot Product (scalar product)

$$
\begin{array}{rlrl}
\mathbf{A} \cdot \mathbf{B} & =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}, \\
\mathbf{A} \cdot \mathbf{B} & =\mathbf{B} \cdot \mathbf{A}, & & \text { commutative property } \\
\mathbf{A} \cdot(\mathbf{B}+\mathbf{C}) & =\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}, & & \text { distributive property } \\
\mathbf{A} \cdot \mathbf{B} & =|\mathbf{A}||\mathbf{B}| \cos \theta . & & \tag{7}
\end{array}
$$

In (7), θ is the angle between vectors \mathbf{A} and \mathbf{B}.
(b) Cross Product (vector product)

$$
\begin{align*}
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|= & \hat{x}\left(A_{y} B_{z}-A_{z} B_{y}\right)+\hat{y}\left(A_{z} B_{x}-A_{x} B_{z}\right) \\
& +\hat{z}\left(A_{x} B_{y}-A_{y} B_{x}\right) \tag{8}
\end{align*}
$$

$$
\begin{equation*}
\mathbf{A} \times \mathbf{B}=\hat{u}|\mathbf{A}||\mathbf{B}| \sin \theta \tag{9}
\end{equation*}
$$

where \hat{u} is a unit vector obtained from \mathbf{A} and \mathbf{B} via the right hand rule.
$\mathbf{A} \times(\mathbf{B}+\mathbf{C})=\mathbf{A} \times \mathbf{B}+\mathbf{A} \times \mathbf{C}, \quad$ distributive property
$\mathbf{A} \times(\mathbf{B} \times \mathbf{C}) \neq(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}, \quad$ non-associative property
$\mathbf{A} \times \mathbf{B}=-\mathbf{B} \times \mathbf{A}, \quad$ anti-commutative property

Vector Derivatives

$$
\begin{align*}
\text { Del } \quad \nabla= & \hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z}, \tag{13}\\
\text { Gradient } \quad \nabla \phi= & \hat{x} \frac{\partial}{\partial x} \phi+\hat{y} \frac{\partial}{\partial y} \phi+\hat{z} \frac{\partial}{\partial z} \phi, \tag{14}\\
\text { Divergent } \quad \nabla \cdot \mathbf{A}= & \frac{\partial}{\partial x} A_{x}+\frac{\partial}{\partial y} A_{y}+\frac{\partial}{\partial z} A_{z}, \tag{15}\\
\text { Curl } \quad \nabla \times \mathbf{A}= & \left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right| \\
= & \hat{x}\left(\frac{\partial}{\partial y} A_{z}-\frac{\partial}{\partial z} A_{y}\right)+\hat{y}\left(\frac{\partial}{\partial z} A_{x}-\frac{\partial}{\partial x} A_{z}\right) \\
& +\hat{z}\left(\frac{\partial}{\partial x} A_{y}-\frac{\partial}{\partial y} A_{z}\right) . \tag{16}
\end{align*}
$$

Divergence Theorem

$$
\begin{equation*}
\oint_{V} \nabla \cdot \mathbf{A} d V=\oint_{S} \mathbf{A} \cdot \hat{n} d S . \tag{17}
\end{equation*}
$$

Stokes Theorem

$$
\begin{equation*}
\oint_{S}(\nabla \times \mathbf{A}) \cdot \hat{n} d S=\oint_{C} \mathbf{A} \cdot d \mathbf{l} . \tag{18}
\end{equation*}
$$

Some Useful Vector Identities

$$
\begin{align*}
& \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b}), \tag{19}\\
& \mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{b}(\mathbf{a} \cdot \mathbf{c})-\mathbf{c}(\mathbf{a} \cdot \mathbf{b}), \tag{20}\\
& \mathbf{a} \times \mathbf{a}=0, \tag{21}\\
& \mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0, \tag{22}\\
& \nabla \times(\nabla \phi)=0, \tag{23}\\
& \nabla \cdot(\nabla \times \mathbf{A})=0, \tag{24}\\
& \nabla \cdot(\psi \mathbf{A})=\mathbf{A} \cdot \nabla \psi+\psi \nabla \cdot \mathbf{A}, \tag{25}\\
& \nabla \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot \nabla \times \mathbf{A}-\mathbf{A} \cdot \nabla \times \mathbf{B}, \tag{26}\\
& \nabla \times \nabla \times \mathbf{A}=\nabla(\nabla \cdot \mathbf{A})-\nabla \cdot \nabla \mathbf{A}, \tag{27}\\
& \nabla^{2}=\nabla \cdot \nabla=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} . \tag{28}
\end{align*}
$$

