W.C.Chew

ECE 350 Lecture Notes

4. Using Phasor Techniques to Solve Maxwell's Equations

For a time-harmonic (simple harmonic) signal, Maxwell's Equations can be easily solved using phasor techniques. For example, if we let

$$
\begin{align*}
\mathbf{H} & =\Re e\left[\tilde{\mathbf{H}} e^{j \omega t}\right], \tag{1}\\
\mathbf{E} & =\Re e\left[\tilde{\mathbf{E}} e^{j \omega t}\right], \tag{2}
\end{align*}
$$

and substituting into (3.1), we have

$$
\begin{equation*}
\Re e\left[\nabla \times \tilde{\mathbf{H}} e^{j \omega t}\right]=\Re e\left[\frac{\partial}{\partial t} \epsilon \tilde{\mathbf{E}} e^{j \omega t}\right] . \tag{3}
\end{equation*}
$$

We could replace $\frac{\partial}{\partial t}$ by $j \omega$ since the signal is time harmonic. Furthermore, we can remove the $\Re e$ operator and obtain

$$
\begin{equation*}
\nabla \times \tilde{\mathbf{H}} e^{j \omega t}=j \omega \epsilon \tilde{\mathbf{E}} e^{j \omega t} \tag{4}
\end{equation*}
$$

where $e^{j \omega t}$ cancels out on both sides.
Equation (4) implies Equation (3). Also, any time dependence cancels out in the problem. Hence,

$$
\begin{equation*}
\nabla \times \tilde{\mathbf{H}}=j \omega \epsilon \tilde{\mathbf{E}} \tag{5}
\end{equation*}
$$

Similarly,

$$
\begin{gather*}
\nabla \times \tilde{\mathbf{E}}=-j \omega \mu \tilde{\mathbf{H}} \tag{6}\\
\nabla \cdot \mu \tilde{\mathbf{H}}=0 \tag{7}\\
\nabla \cdot \epsilon \tilde{\mathbf{E}}=0 \tag{8}
\end{gather*}
$$

Taking the curl of (6) and substituting (5) into it, we have

$$
\begin{equation*}
\nabla \times \nabla \times \tilde{\mathbf{E}}=-j \omega \mu \nabla \times \tilde{\mathbf{H}}=\omega^{2} \mu \epsilon \tilde{\mathbf{E}} \tag{9}
\end{equation*}
$$

Again, making use of the identity $\nabla \times \nabla \times \tilde{\mathbf{E}}=\nabla(\nabla \cdot \tilde{\mathbf{E}})-\nabla^{2} \tilde{\mathbf{E}}$, and $\nabla \cdot \tilde{\mathbf{E}}=0$, we have

$$
\begin{equation*}
\nabla^{2} \tilde{\mathbf{E}}=-\omega^{2} \mu \epsilon \tilde{\mathbf{E}} \tag{10}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\nabla^{2} \tilde{\mathbf{H}}=-\omega^{2} \mu \epsilon \tilde{\mathbf{H}} \tag{11}
\end{equation*}
$$

These are the Helmholtz's wave equations.

Lossy Medium (Conductive Medium)

Phasor technique is particularly appropriate for solving Maxwell's equations in a lossy medium. In a lossy medium, Equation (3.1) becomes

$$
\begin{equation*}
\nabla \times \mathbf{H}=\epsilon \frac{\partial \mathbf{E}}{\partial t}+\mathbf{J}, \tag{12}
\end{equation*}
$$

where \mathbf{J} is the induced currents in the medium, and hence,

$$
\begin{equation*}
\mathbf{J}=\sigma \mathbf{E} \tag{13}
\end{equation*}
$$

Applying phasor technique to (12), we have

$$
\begin{align*}
\nabla \times \tilde{\mathbf{H}} & =j \omega \epsilon \tilde{\mathbf{E}}+\sigma \tilde{\mathbf{E}} \\
& =j \omega\left(\epsilon-j \frac{\sigma}{\omega}\right) \tilde{\mathbf{E}} . \tag{14}
\end{align*}
$$

We can define the quantity

$$
\begin{equation*}
\tilde{\epsilon}=\epsilon-j \frac{\sigma}{\omega} \tag{15}
\end{equation*}
$$

to be the complex permittivity of the medium, and (14) becomes

$$
\begin{equation*}
\nabla \times \tilde{\mathbf{H}}=j \omega \tilde{\epsilon} \tilde{\mathbf{E}} \tag{16}
\end{equation*}
$$

Notice that the only difference between (16) and (5) is the complex permittivity versus the real permittivity. If one goes about deriving the Helmholtz wave equations for a lossy medium, the results are

$$
\begin{align*}
\nabla^{2} \tilde{\mathbf{E}} & =-\omega^{2} \mu \tilde{\epsilon} \tilde{\mathbf{E}} \tag{17}\\
\nabla^{2} \tilde{\mathbf{H}} & =-\omega^{2} \mu \tilde{\epsilon} \tilde{\mathbf{H}} \tag{18}
\end{align*}
$$

Hence, a lossy medium is easily treated using phasor technique by replacing a real permittivity with a complex permittivity.

If we restrict ourselves to one dimension, Equation (17), for instance, becomes of the form

$$
\begin{equation*}
\frac{d^{2}}{d z^{2}} \tilde{E}_{x}(z)-\gamma^{2} \tilde{E}_{x}(z)=0 \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=j \omega \sqrt{\mu \tilde{\epsilon}}=j \omega \sqrt{\mu\left(\epsilon-j \frac{\sigma}{\omega}\right)}=\alpha+j \beta \tag{20}
\end{equation*}
$$

The general solution to (19) is of the form

$$
\begin{equation*}
\tilde{E}_{x}(z)=C_{1} e^{-\gamma z}+C_{2} e^{+\gamma z} \tag{21}
\end{equation*}
$$

In real space time,

$$
\begin{align*}
E_{x}(z, t) & =\Re e\left[\tilde{E}_{x}(z) e^{j \omega t}\right] \\
& =\Re e\left[C_{1} e^{-\gamma z} e^{j \omega t}\right]+\Re e\left[C_{2} e^{\gamma z} e^{j \omega t}\right] \tag{23}
\end{align*}
$$

If $C_{1}=\left|C_{1}\right| e^{j \phi_{1}}, \quad C_{2}=\left|C_{2}\right| e^{j \phi_{2}}, \quad \gamma=\alpha+j \beta, \quad$ then

$$
\begin{equation*}
E_{x}(z, t)=\left|C_{1}\right| \cos \left(\omega t-\beta z+\phi_{1}\right) e^{-\alpha z}+\left|C_{2}\right| \cos \left(\omega t+\beta z+\phi_{2}\right) e^{\alpha z} \tag{24}
\end{equation*}
$$

Note that one of the solutions in (24) is decaying with z while another solution is growing with z. The function $\cos (\omega t \pm \beta z+\phi)$ can be written as $\cos [\pm \beta(z \pm$ $\left.\left.\frac{\omega}{\beta} t\right)+\phi\right]$. Hence, it moves with a velocity

$$
\begin{equation*}
v=\frac{\omega}{\beta} . \tag{25}
\end{equation*}
$$

Depending on its sign, it moves either in the positive or negative z direction. In the above, γ is the propagation constant, α is the attenuation constant while β is the phase constant.

Intrinsic Impedance

The intrinsic impedance can be easily derived also in the phasor world. The phasor representation of Equation (3.23) is

$$
\begin{equation*}
\frac{d}{d z} \tilde{E}_{x}=-j \omega \mu \tilde{H}_{y} \tag{26}
\end{equation*}
$$

A corresponding one for \tilde{H}_{y} is

$$
\begin{equation*}
\frac{d}{d z} \tilde{H}_{y}=-j \omega \epsilon \tilde{E}_{x} \tag{27}
\end{equation*}
$$

If we now let $\tilde{E}_{x}=E_{0} e^{-\gamma z}, \tilde{H}_{y}=H_{0} e^{-\gamma z}$, and using them in (26) yields

$$
\begin{equation*}
-\gamma E_{0} e^{-\gamma z}=-j \omega \mu H_{0} e^{-\gamma z} . \tag{28}
\end{equation*}
$$

The above implies that

$$
\begin{equation*}
\eta=\frac{E_{0}}{H_{0}}=\frac{j \omega \mu}{\gamma}=\sqrt{\frac{\mu}{\epsilon}} . \tag{29}
\end{equation*}
$$

For a lossy medium, we replace ϵ by the complex permittivity and the intrinsic impedance becomes

$$
\begin{equation*}
\eta=\sqrt{\frac{\mu}{\tilde{\epsilon}}}=\sqrt{\frac{\mu}{\epsilon-j \frac{\sigma}{\omega}}}=\sqrt{\frac{j \omega \mu}{\sigma+j \omega \mu}} \tag{30}
\end{equation*}
$$

The above is obviously a complex number.

