Block Diagram of the AVR Architecture

<

Data Bus 8-bit
y
Program Status
Flash = <t
Program Counter and Control
Memory
Interrupt
2 32x8 < Unit
Instruction General
Register Purpose A SPI
< Registrers < Unit
Instruction Watchdog
Decoder o 4 A N Timer
)] c \/
= L7
wl w
lv & 2 ALU P Analog
Control Lines 3 2 Comparator
< 5
13 @
@ =
= 5
o = < [/O Module1
Data < /0 Module 2
SRAM [* He
& /O Module n
EEPROM -«
IO Lines i

SREG — AVR Status Register
The AVR Status Register — SREG - is defined as:

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) | 1 ‘ T | H ‘ E] | v | N | z | c | SREG
Read/Write RW RW RW RW RW RW RAW RW

Initial Value 0 0 0 0 0 0 0 0

+ Bit 7 —I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control
is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the inter-
rupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an
interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set
and cleared by the application with the SEI and CLI instructions, as described in the instruction set reference.

+ Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the oper-
ated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be
copied into a bit in a register in the Register File by the BLD instruction.

+ Bit 5 — H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful in BCD arithmetic.
See the “Instruction Set Description” for detailed information.

» Bit4-S:SignBit,S=N®@V
The S-bit is always an exclusive or between the Negative Flag N and the Two's Complement Overflow Flag V. See
the “Instruction Set Description” for detailed information.

* Bit 3-V: Two's Complement Overflow Flag

The Two's Complement Overflow Flag V supports two's complement arithmetic. See the “Instruction Set Descrip-
tion” for detailed information.

* Bit 2 — N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

s Bit1-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

+ Bit0 - C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

Figure 7-2. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R 0x01
Rz 0x02
R13 0xoD
General Ri4 0x0E
Purpose R15 0x0F
Working R16 0x10
Registers R17 ox11
R26 Ox1A X-register Low Byte
R27 0x1B X-register High Byte
R28 o1C Y-register Low Byte
Rzg ox1D Y-register High Byte
R30 0x1E Z-register Low Byte
R31 oxiF Z-register High Byte

The X-register, Y-register, and Z-register
The registers R26...R31 have some added functions to their general purpose usage. These registers are 16-bit
address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are
defined as described in Figure 7-3.

Figure 7-3. The X-, Y-, and Z-registers

15 XH XL 0
X-ragister 17 [K [|

R27 (0x1B) R26 (0x1A)

15 YH YL 0
Y.-ragister 17 [K [|

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0
Z-register 17 0 | i 0 |

Rat (0x1F) R30 (0x1E)

In the different addressing modes these address registers have functions as fixed displacement, automatic incre-
ment, and automatic decrement (see the instruction set reference for details).

SPH and SPL - Stack Pointer High and Stack Pointer Low Register

Bit 15 14 13 12 11 10 9 8
0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SPs SPH
0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPo SPL
7 -] 5 4 3 2 1 0
Read/Write RW RW RAW RAW RW RW RW RW
RW RW RAW RAW RW RW RW RW
Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEMND RAMEMND

Program Memory Map ATmega88A, ATmega88PA, ATmega168A, ATmega168PA, ATmega328 and
ATmega328P

Program Memory

0x0000

Application Flash Section

—————

Boot Flash Section
OxOFFF/0x1FFF/0x3FFF

Data Memory Map

Data Memory

32 Registers 0x0000 - O0x001F
64 1/O Registers 0x0020 - 0x005F
160 Ext I/0 Req. 0x0060 - 0x00FF
0x0100
Internal SRAM
(512/1024/1024/2048 x 8)
0x02FF/0x04FF/0x4FF/0x08FF

Instruction Set Nomenclature

Status Register (SREG)

SREG:

Status Register

Carry Flag

Zero Flag

Negative Flag

Two's complement overflow indicator

N & V, For signed tests

Half Carry Flag

Transfer bit used by BLD and BST instructions
Global Interrupt Enable/Disable Flag

Registers and Operands

Rd:
Rr:
R:
K:

Destination (and source) register in the Register File
Source register in the Register File

Result after instruction is executed

Constant data

Constant address

Bit in the Register File or [/O Register (3-bit)

Bit in the Status Register (3-bit)

Indirect Address Register

(X=R27:R26, Y=R29:R28 and Z=R31:R30)

/O location address

Displacement for direct addressing (6-bit)

I/O Registers

RAMPX, RAMPY, RAMPZ

Registers concatenated with the X-, Y-, and Z-registers enabling indirect addressing of the whole data space on MCUs with
more than 64K bytes data space, and constant data feich on MCUs with more than 64K bytes program space.

RAMPD

Register concatenated with the Z-register enabling direct addressing of the whole data space on MCUs with more than 64K
bytes data space.

EIND

Register concatenated with the Z-register enabling indirect jump and call to the whole program space on MCUs with more
than 64K words (128K bytes) program space.

Stack

STACK: Stack for return address and pushed registers
SP: Stack Pointer to STACK

Flags

= Flag affected by instruction

0: Flag cleared by instruction

1: Flag set by instruction

- Flag not affected by instruction

The Program and Data Addressing Modes

The AVR Enhanced RISC microcontroller supports powerful and efficient addressing modes for access to the Program
memory (Flash) and Data memory (SRAM, Register file, /O Memory, and Extended I/O Memory). This section describes
the various addressing modes supported by the AVR architecture. In the following figures, OP means the operation code
part of the instruction word. To simplify, not all figures show the exact location of the addressing bits. To generalize, the
abstract terms RAMEND and FLASHEND have been used to represent the highest location in data and program space,
respectively.

Note: Not all addressing modes are present in all devices. Refer to the device spesific instruction summary.
Register Direct, Single Register Rd

Figure 1. Direct Single Register Addressing
REGISTER FILE

31

The operand is contained in register d (Rd).
Register Direct, Two Registers Rd and Rr

Figure 2. Direct Register Addressing, Two Registers
REGISTER FILE

31

Operands are contained in register r (Rr) and d (Rd). The result is stored in register d (Rd).

1/0 Direct

Figure 3. I/O Direct Addressing
/0 MEMORY

63

Operand address is contained in 6 bits of the instruction word. n is the destination or source register address.

Note: Some complex AVR Microcontrollers have more peripheral units than can be supported within the 64 locations reserved in the
opcode for /O direct addressing. The extended /O memory from address 64 to 255 can only be reached by data addressing,
not IO addressing.

Data Direct

Figure 4. Direct Data Addressing

Data Space
31 2019 16 0x0000

oP Rr/Rd

Data Address

RAMEND

A 16-bit Data Address is contained in the 16 LSBs of a two-word instruction. Rd/Rr specify the destination or source
register.

Data Indirect with Displacement

Figure 5. Data Indirect with Displacement

Data Space

0x0000

Y OR Z - REGISTER

15 10 65 0
IOP ‘ Rr/Rd | q

RAMEND

Operand address is the result of the Y- or Z-register contents added to the address contained in 6 bits of the instruction
word. Rd/Rr specify the destination or source register.

Data Indirect

Figure 6. Data Indirect Addressing

Data Space

0x0000
15 0

X, Y OR Z - REGISTER I_

RAMEND

Operand address is the contents of the X-, Y-, or the Z-register. In AVR devices without SRAM, Data Indirect Addressing is

called Register Indirect Addressing. Register Indirect Addressing is a subset of Data Indirect Addressing since the data
space form Q to 31 is the Register File.

Data Indirect with Pre-decrement

Figure 7. Data Indirect Addressing with Pre-decrement

Data Space

0x0000
15

> X, Y OR Z - REGISTER

RAMEND

The X,- Y-, or the Z-register is decremented before the operation. Operand address is the decremented contents of the X-,
Y-, or the Z-register.

Data Indirect with Post-increment

Figure 8. Data Indirect Addressing with Post-increment

Data Space

0x0000
15 0

)I X, Y OR Z - REGISTER '

RAMEND

The X-, Y-, or the Z-register is incremented after the operation. Operand address is the content of the X-, Y-, or the Z-regis-
ter prior to incrementing.

Program Memory Constant Addressing using the LPM, ELPM, and SPM Instructions

Figure 9. Program Memory Constant Addressing
PROGRAM MEMORY

0x0000

Z-REGISTER

LsB T T

FLASHEND

Constant byte address is specified by the Z-register contents. The 15 MSBs select word address. For LPM, the LSB selects
low byte if cleared (LSB = 0) or high byte if set (LSB = 1). For SPM, the LSB should be cleared. If ELPM is used, the
RAMPZ Register is used to extend the Z-register.

Program Memory with Post-increment using the LPM Z+ and ELPM Z+ Instruction

Figure 10. Program Memory Addressing with Post-increment
PROGRAM MEMORY

0x0000

Z=REGISTER

LsB T T

(=)

FLASHEND

Constant byte address is specified by the Z-register contents. The 15 MSBs select word address. The LSB selects low byte
if cleared (LSB = 0) or high byte if set (LSB = 1). If ELPM Z+ is used, the RAMPZ Register is used to extend the Z-register.

Direct Program Addressing, JMP and CALL

Figure 11. Direct Program Memory Addressing

PROGRAM MEMORY
1 1 0x0000

oP 6 MSB

16 LSB

PC I—)

FLASHEND
Program execution continues at the address immediate in the instruction word.
Indirect Program Addressing, IJMP and ICALL
Figure 12. Indirect Program Memory Addressing
PROGRAM MEMORY
0x0000
15 0
| Z - REGISTER
15 0
| PO |
FLASHEND

Program execution continues at address contained by the Z-register (i.e., the PC is loaded with the contents of the Z-
register).

Relative Program Addressing, RJMP and RCALL

Figure 13. Relative Program Memory Addressing
PROGRAM MEMORY

0x0000
15 0
- = —
. 4
[t
Y
15 12 1 0
Lo | k |
I FLASHEND

Program execution continues at address PC + k + 1. The relative address k is from -2048 to 2047.

Instruction Set Summary

#Clocks
Mnemeonics Operands | Description Operation Flags #Clocks XMEGA
Arithmetic and Logic Instructions
ADD Rd. Rr Add without Carry Rd «— Rd+RAr ZCNV.SH 1
ADC Rd. Rr Add with Carry Rd « Rd+Rr+C ZCNV.SH 1
ADIWM Rd. K Add Immediate to Word Rd « Rd+1:Rd+K ZCNV.S 2
sSUB Rd, Rr Subtract without Carry Rd «— Rd-Rr ZCNVSH 1
SuBl Rd. K Subtract Immeadiate Rd «— Rd-K ZCNVSH 1
SBC Rd. Rr Subtract with Carry Rd «— Rd-Rr-C ZCNV.SH 1
SBCI Rd, K Subtract Immeadiate with Carry Rd «— Rd-K-C ZCMNVSH 1
sSBIwMm Rd, K Subtract Immediate from Word Rd+1:Rd « RAd+1:Rd-K ZCMNVS 2
AND Rd. Rr Logical AND Rd «— RdeRr ZNV.S 1
ANDI Rd. K Logical AND with Immaeadiate Rd «— Rd+K ZNVS 1
OR Rd. Rr Logical OR Rd «— RdvRr ZNV,S 1
ORI Rd, K Logical OR with Immediate Rd «— RdvK ZNVS 1
ECR Rd. Rr Exclusive OR Rd «— Rd@Rr ZNV.S 1
COM Rd One’s Complement Rd «— $FF-Rd ZCNVS 1
NEG Rd Two's Complement Rd « $00-Rd ZCNV.SH 1
SBR Rd.K Set Bit(s) in Register Rd «— RAVK ZNV,S 1
CBR Rd.K Clear Bit(s) in Register RBd « Rde($FFh-K) ZNVS 1
INC Rd Incremeant Rd «— Rd+1 ZNV,S 1
DEC Rd Decrement Rd «— Rd-1 ZNVS 1
TST Rd Test for Zero or Minus Ad « RdeRd ZNVS 1
CLR Rd Clear Register Rd «— RdId&Rd ZNV.S 1
SER Rd Set Register Rd <« %FF None 1
MuL™ Rd.Rr Multiply Unsigned R1:R0 « RdxAruy) ZC 2
MuLs" Rd,Rr Multiply Signed R1:R0 « RdxRr(SS) ZC 2
MULSUM Rd.Rr Multiply Signed with Unsigned R1:R0 « RdxPRAr{su) ZC 2
FMuL™ Rd,Rr Fractional Multiply Unsigned R1:R0 « RdxRr<<t (UU) ZC 2
FMULS(Rd,Rr Fractional Multiply Signed R1:R0 « RdxRre<1 (88) ZC
FMULSU Rd.Rr Fractional Multiply Signed with Unsigned R1:R0 <« RdXHRre<1(5U) ZC 2
DES K Data Encryption if (H = 0) then R15:R0 Encrypt(R15:R0, K) 1/2
else if (H=1) then R15:R0 Decrypt(R15:R0, K)
Branch Instructions
RJMP [Relative Jump PC « PC+k+1 None 2
JIMPT Indirect Jump to (Z) PC(15:0) « Z, None 2
PC{21:16) «— 0
EIJMP(T) Extended Indirect Jump to (Z) PC(15:0) « Z, None 2
PC{21:16) «— EIND
Jmpit k Jump PC « Kk None 3

#Clocks

Mnemonics Operands Description Operation Flags #Clocks XMEGA

RCALL K Relative Call Subroutine PC « PC+k+1 None 37436 2/3®

IcALL™ Indirect Call to (2) PC(15:0) « Z, None 3741 2/ 38
PC(21:18) « 0

EICALLIM Extended Indirect Call to (Z) PC(15:0) « Z, None 4@ 3@
PC{21:16) « EIND

CALL™ K call Subroutine PC « k None 4753 3/49

RET Subroutine Return PC « STACK None 475

RETI Interrupt Return PC « STACK | 4/53

CPSE Rd,Rr Compare, Skip if Equal if(Rd=RrNPC « PC+20r3 None 1/2/3

CP Rd,Rr Compare Rd - Rr ZCNV,SH 1

CPC Rd.Rr Compare with Carry Rd-Rr-C ZCNV,SH 1

CPI Rd.K Compare with Immediate Rd - K ZCNV,SH 1

SBRC Rr. b Skip if Bit in Register Cleared if (Rr(b) = 0) PC «— PC+2o0r3 None 1/273

SBRS Rr. b Skip if Bit in Register Set if (Rr(b)=1) PC «— PC+2o0r3 None 1/273

SBIC Ab Skip if Bit in I/O Register Cleared f{VOAR)=0)PC « PC+2o0r3 None 1/2/3 2/3/4

SBIS ADb Skip if Bit in 'O Register Set If ('O(AL)=1)PC « PC+2o0r3 MNone 1/2/3 2/3/4

BRBS s, k Branch if Status Flag Set if (SREG(s)=1)thenPC +« PC+K+1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s)=0)thenPC « PC+K+1 None 1/2

BREQ [3 Branch if Equal if(Z=1)thenPC « PC+k+1 None 1/2

BRNE Branch if Not Equal if (Z=0)thenPC « PC+k+1 None 1/

BRCS k Branch if Carry Set it (C=1)then PC — PC+k+1 MNone 1/2

BRCC [Branch if Carry Cleared if(C=0)thenPC « PC+K+1 None 1/2

BRSH [Branch if Same or Higher if(C=0)thenPC « PC+K+1 None 1/2

BRLO [Branch if Lower if(C=1)thenPC « PC+K+1 None 1/2

BRMI [Branch if Minus if(N=1)thenPC « PC+K+1 None 1/2

BRPL [Branch if Plus if(N=0)thenPC « PC+K+1 None 1/2

BRGE [Branch if Greater or Equal, Signed if(N&V=0)thenPC « PC+K+1 None 1/2

BRLT K Branch if Less Than, Signed it (N&V=1)thenPC « PC+K+1 None 1/2

BRHS K Branch If Half Carry Flag Set f(H=1)thenPC « PC+K+1 None 1/2

BRHC K Branch If Half Carry Flag Cleared f(H=0)thenPC « PC+K+1 None 1/2

BRTS k Branch if T Flag Set if (T=1)thenPC +« PC+k+1 None 1/2

BRTC k Branch if T Flag Cleared if (T=0)thenPC « PC+k+1 None 1/2

BRVS k Branch if Overflow Flag is Set if(V=1)thenPC « PC+k+1 None 1/2

BRVC k Branch if Overflow Flag is Cleared if(V=0)thenPC « PC+k+1 None 1/2

BRIE K Branch if Interrupt Enabled if (I=1)then PC «— PC+k+1 MNone 1/2

BRID K Branch if Interrupt Disabled if (I =0) then PC — PC+k+1 MNone 1/2

Data Transfer Instructions

MoV Rd, Rr Copy Reqister Rd «— Rr MNone 1

MoV Rd, Rr Copy Register Pair Rd+1:Rd « Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd « K None 1

LD Rd, k Load Direct from data space Rd « (K MNone 1Ey28 21304

LD® Rd, X Load Indirect Rd « (X None 1EI9E 13104

#Clocks

Mnemonics Operands | Description Operation Flags #Clocks XMEGA
LD Rd, X+ Load Indirect and Post-Increment Rd « (X None 26 14304
X o« X+1
LD Rd, -X Load Indirect and Pre-Decrement XeX-1, « X-1 None 2330 21314
Rd « (X) — (X
LD® Rd, ¥ Load Indirect Rd (YY) « (Y) None 162 1(31)
LD Rd, Y+ Load Indirect and Post-Increment Rd « (Y} None 26 134
Y — Y+1
LD Rd, -Y Load Indirect and Pre-Decrement Y e Y-1 None 2036 2134
Rd «— (Y)
LDD™ Rd, Y+q Load Indirect with Displacement Rd « (Y+q) None 28 2
LD®@ Rd, Z Load Indirect Rl « (2) None 1628 16104
LD® Rd, Z+ Load Indirect and Post-Increment Rd [¥4) None 28 11304
z ZH
LD Rd, -Z Load Indirect and Pre-Decrement Z « Z-1, None 263 2034
Rd «— (Z)
LDDM Rd, Z+q Load Indirect with Displacement Rd « (Z+q) None 26 2134
sTs!" K, Rr Store Direct 1o Data Space (k) <« Rd None 1E23 2@
ST X, Rr Store Indirect (X) « Ar None 1628 163
ST X+, Rr Store Indirect and Post-Increment (X} <« R None 1628 16
X — X+1
ST -X, Rr Store Indirect and Pre-Decrement X e X1, None 26 23
(X} <« Rr
sT® Y, Rr Store Indirect (Y) <« Rr None 1623 1@
ST Y+, Rr Store Indirect and Post-Increment (Y) « R None 1628 163
Y oo Y+1
ST -Y, Rr Store Indirect and Pra-Decrement Y o« Y-1, None 26 213
(Y} <« Ar
sTD!" Y+q, Ar Store Indirect with Displacemeant (Y+q « Rr None 28 263
ST Z.Rr Store Indirect (Z) « RAr None 1628 1@
ST Z+. Rr Store Indirect and Post-Increment (2) Rr None 16l 163
z Z+1
sT® -Z Rr Store Indirect and Pre-Decrement Z e Z-1 None 28 23
STDI Z+q,Rr Store Indirect with Displacement (Z+q) <« ARr None 26 23
LPMiThi2) Load Program Memory R0 « (2) None 3 3
LPMTHE) Rd, Z Load Program Meamory Rd « (2) None 3 3
LPMTH2) Rd, Z+ Load Program Memory and Post- Rd « (2) None 3 3
Incremeant Z o« Z+1
ELPM Extended Load Program Memory R0 <« (RAMPZ:Z) None 3
ELPMM Rd, Z Extended Load Program Memaory Rd <« (RAMPZ:Z) None 3
ELPM™ Rd, Z+ Extended Load Program Memory and Rd « (RAMPZ:Z), None 3
Post-Increment Z «— Z+1
spm Store Program Memory (RAMPZ:Z) « R1:RD None - -
sPM™ Z+ Stare Program Memory and Post- (RAMPZ:Z) « R1:RO, None - -
Increment by 2 Z <« Z+2
IN Rd, A In From 17O Location Rd « VO[A) None 1
ouT A, Rr Out To I/ Location IFO(A) Rr MNoneg 1
PUSH!" Rr Push Register on Stack STACK « Rr Mone 2 1@
POPI! Rd Pop Register from Stack Rd « STACK None 2 213

#Clocks
Mnemonics Operands | Description Operation Flags #Clocks XMEGA
XCH Z Rd Exchange Z) « Rd None 1
Rd — (2
LAS Z Rd Load and Set Z) < RdviZ) None 1
Rd « ()
LAC Z. Rd Load and Clear (Z) « ($FF-Rd)«(2) None 1
Rd « (Z)
LAT Z.Rd Load and Toggle Z) « Rd=®(2 None 1
Rd « ()
Bit and Bit-test Instructions
LsL Rd Logical Shift Left Rdin+1) « Rd(n), ZCNVH 1
Rdi0) « O,
C « Rd7@
LSR Rd Logical Shift Right Rdin) « Rd{n+1), ZCNV 1
Rd(7) « 0O,
C « RdO
ROL Rd Raotate Left Through Carry Rdi0) « C, ZCNVH 1
Rdin+1) « Rd{n),
C « Rd7@
ROR Rd Raotate Right Through Carry Rd(7) « C, ZCNV 1
Rd(n) «— Rd{n+1),
C « RdO)
ASR Rd Arithmetic Shift Right Rdin) « Rd{n+1),n=0.6 ZCNV 1
SWAP Rd Swap Nibbles Rd(3..0) <« Rd({7.4) None 1
BSET s Flag Set SREG(s) — 1 SREG(s) 1
BCLR] Flag Clear SREG(s) «— 0 SREG(s) 1
SBI Ab Set Bit in I/O Register VO(A D) « 1 None 1182 1
CBI Ab Clear Bit in /O Register FO(A b)) « © None 182 1
BST Ar, b Bit Store from Registerto T T « Rib) T 1
BLD Rd, b Bit load from T to Register Rd(b) — T None 1
SEC Set Carry C < 1 o] 1
cLC Clear Carry C « 0 o] 1
SEN Set Negative Flag N — 1 N 1
CLN Clear Negative Flag N «— 0 N 1
SEZ Set Zero Flag Z o« 1 z 1
CLZ Clear Zero Flag Z « 0 z 1
SEI Global Interrupt Enable I« A | 1
CLI Global Interrupt Disable I« 0 | 1
SES Set Signed Test Flag S o« 1 8 1
CLs Clear Signed Test Flag S « 0 8 1
SEV Set Two's Complement Overflow Voo 1 v 1
CcLv Clear Two's Complement Overflow V o« 0 v 1
SET Set Tin SREG T « 1 T 1
CLT Clear T In SREG T « 0 T 1
SEH Set Half Carry Flag In SREG H — 1 H 1
CLH Clear Half Carry Flag in SREG H «— 0 H 1
MCU Control Instructions
BREAK'" ‘ ‘ Break (See specific descr. for BREAK) None 1
#Clocks
Mnemonics Operands | Description Operation Flags #Clocks XMEGA
NOP MNo Operation MNone 1
SLEEP Sleep (see specific descr. for Sleep) None 1
WDR Watchdog Reset (see specific descr. for WDR) None 1
Notes: 1. This instruction is not available in all devices. Refer to the device specific instruction set summary.

L

>

Not all variants of this instruction are available in all devices. Refer to the device specific instruction set summary.

Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses via the external
RAM interface.
One extra cycle must be added when accessing Internal SRAM.
Number of clock cycles for Reduced Core tinyAVR.

SEZ - Set Zero Flag

Description:
Sets the Zero Flag (Z) in SREG (Status Register).

Operation:
(i) Z« 1

Syntax: Operands: Program Counter:
(i) SEZ None PC « PC +1

16-bit Opcode:

| 1001 0100 0001 1000 |

Status Register (SREG) and Boolean Formula:

I T H S Vv N Z C

- - - - - - 1 -

Z: 1
Zero Flag set
Example:
add r2,rl2 ;o Add rl9 to r2
Sz ;i Set Zero Flag

Words: 1 (2 bytes)
Cycles: 1

INC - Increment

Description:
Adds one -1- to the contents of register Rd and places the result in the destination register Rd.

The C Flag in SREG is not affected by the operation, thus allowing the INC instruction to be used on a loop counter in mul-
tiple-precision computations.

When operating on unsigned numbers, only BREQ and BRNE branches can be expected to perform consistently. When
operating on two’s complement values, all signed branches are available.

Opetration:
(i) Rd < Rd + 1

Syntax: Operands: Program Counter:
(i) INC Rd 0<d=<31 PC « PC +1

16-bit Opcode:

| 1001 | 0104 | addd | 0011 |

Status Register and Boolean Formula:

I T H s V. N z c
-l -l -l=]=]=]=1]"="]

S: N&V
For signed tests.

V: R7 *R6 *R5 «R4 +R3+« R2 «R1 «R0O
Setif two’s complement overflow resulted from the operation; cleared otherwise. Two’s complement overflow occurs
if and only if Rd was $7F before the operation.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 «R6 *R5 sR4+R3 «R2« R1e RO
Set if the result is $00; Cleared otherwise.

R (Result) equals Rd after the operation.

Words: 1 (2 bytes)
Cycles: 1

MOV - Copy Register

Description:

This instruction makes a copy of one register into another. The source register Rr is left unchanged, while the destination
register Rd is loaded with a copy of Rr.

Operation:
(i) Rd « Rr

Syntax:
(i) MOV Rd,Rr

16-bit Opcode:

| 0010 | 11rd |

Operands: Program Counter:
0=<d<31,0<r=<31 PC « PC +1
dddd | rrrr |

Status Register (SREG) and Boolean Formula:

| T H \' N Z C
Example:
mov rle,r0 ; Copy r0 te rle
call check ; Call subroutine
check: cpi rlé, 511 ; Compare rlé to 511
ret ; Return from subroutine

Words: 1 (2 bytes)
Cycles: 1

ADD - Add without Carry

Description:

Adds two registers without the C Flag and places the result in the destination register Rd.

Operation:
(i) Rd « Rd + Rr

Syntax: Operands: Program Counter:
(i) ADD Rd,Rr 0<d=31,0<r=31 PC « PC + 1

16-bit Opcode:

\ 0000 \ 11rd | dddd | rrrr

Status Register (SREG) and Boolean Formula:

| T H S Vv N Z C
- - = Pt = = =
H: Rd3+Rr3+Rr3«R3+R3«Rd3
Set if there was a carry from bit 3; cleared otherwise
S: N & V, For signed tests.
V: Rd7eRr7¢R7+Rd7«Rr7«R7

Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7« R6 «R5¢ R4 «R3 «R2 «R1 «RO
Set if the result is $00; cleared otherwise.

C: Rd7 «Rr7 +Rr7 «R7+ R7 «Rd7
Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
add rl,r2 ; Add r2 to rl (rl=rl+r2)
add r28,r28 ; Add r28 to itself (r28=1r28+rIf)

Words: 1 (2 byles)
Cycles: 1

LDl - Load Immediate

Description:

Loads an 8 bit constant directly to register 16 to 31.

1di rio, S$FO
lpm

Words: 1 (2 bytes)
Cycles: 1

; memory pointed to by Z

; Set Z low byte to $FO

; Load constant from Program

=

Operation:
(i) Rd « K
Syntax: Operands: Program Counter:
(i) LDI Rd,K 16=d=<31,0=K=<255 PC « PC + 1
16-bit Opcode:
| 1110 KKEK adad KKKK |
Status Register (SREG) and Boolean Formula:
| T H S v N C
Example:
elr r3l ; Clear Z high byte

STS - Store Direct to Data Space

Description:

Stores one byte from a Register to the data space. For parts with SRAM, the data space consists of the Register File, I/O
memory and internal SRAM (and external SRAM if applicable). For parts without SRAM, the data space consists of the
Register File only. The EEPROM has a separate address space.

A 16-bit address must be supplied. Memory access is limited to the current data segment of 64K bytes. The STS instruction
uses the RAMPD Register to access memory above 64K bytes. To access another data segment in devices with more than
64K bytes data space, the RAMPD in register in the I/O area has to be changed.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
(i) (k) « Rr

Syntax: Operands: Program Counter:
(i) STS k,Rr 0<r<31,0<k<65535 PC« PC+2

32-bit Opcode:

1001 0014 dddd 0000
kklkk klkldk kklkk klkldk

Status Register (SREG) and Boolean Formula:

| T H S \' N z C
Example:
1lds r2,SFFO0 ; Load r2 with the contents of data space location $FF00
add rz,rl ; add rl to rZ
sts SFFO0,r2 ; Write back

Words: 2 (4 bytes)
Cycles: 2

JMP — Jump

Description:

Jump to an address within the entire 4M (words) Program memory. See also RJMP.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
(i) PC « k

Syntax: Operands:
(i) JMP k 0<k<4M

32-bit Opcode:

1001 010k kkkk 110k
kkkk kkkk kkkk kkkk

Status Register (SREG) and Boolean Formula:

Program Counter:

| T H S Vv N
Example:
mov rl,r0 ; Copy r0 te rl
Jjrp farple ; Unconditional jump
farplec: nop ; Jump destination (do nothing)

Words: 2 (4 bytes)
Cycles: 3

Stack:
Unchanged

LDS - Load Direct from Data Space

Description:

Loads one byte from the data space to a register. For parts with SRAM, the data space consists of the Register File, 1/O
memory and internal SRAM (and external SRAM if applicable). For parts without SRAM, the data space consists of the reg-
ister file only. The EEPROM has a separate address space.

A 16-bit address must be supplied. Memory access is limited to the current data segment of 64K bytes. The LDS instruction
uses the RAMPD Register to access memory above 64K bytes. To access another data segment in devices with more than
64K byles data space, the RAMPD in register in the I/O area has to be changed.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
(i) Rd « (k)

Syntax: Operands: Program Counter:
(i) LDS Rd,k 0<d=<31,0=<k<65535 PC« PC+2

32-bit Opcode:

1001 0ood dddd 0000
ke kkkk kkkk kklkdk

Status Register (SREG) and Boolean Formula:

| T H S V') N Z C
Example:
lds r2,SFF00 ; Load r2 with the contents of data space location $FF00
add r2,rl ; add rl to r2
ste SFF00,r2 ; Write back

Words: 2 (4 bytes)
Cycles: 2
Cycles XMEGA: 2 If the LDS instruction is accessing internal SRAM, one extra cycle is inserted.

CLR - Clear Register

Description:

Clears a register. This instruction performs an Exclusive OR between a register and itself. This will clear all bits in the
register.

Operation:
(i) Rd «— Rd & Rd

Syntax: Operands: Program Counter:
(i) CLR Rd 0=d=31 PC « PC +1

16-bit Opcode: (see EOR Rd,Rd)

| DOL0 | 01dd | dddd | dddd |

Status Reglster (SREG) and Boolean Formula:

I T H S v N Z C
-l -] -] oo fo o]t]-]
S: 0

Cleared
V: 0
Cleared
N: 0
Cleared
Z 1
Set

R (Result) equals Rd after the operation.

Example:
clr rls8 : clear rilB
loop: inc Tl8 : ilncrease rl8
cpi rlg, 550 : Compare rl8 to 550
brne locop

Words: 1 (2 bytes)
Cycles: 1

CP - Compare

Description:

This instruction performs a compare between two registers Rd and Rr. None of the registers are changed. All conditional
branches can be used after this instruction.

Operation:
(i) Rd - Rr

Syntax: Operands: Program Counter:
(i) CP Rd.Rr 0=d=31,0=r=31 PC « PC + 1

16-bit Opcode:

| 0001 | 01lrd | adda | Trrr |

Status Register (SREG) and Boolean Formula:

I T H S V'l N Z C
-] -]=]l=]l=]l=1=1¢=]
H: Rd3 «Rr3+ Rr3 «R3 +R3« Rd3

Set if there was a borrow from bit 3; cleared otherwise
S: N @ V, For signed tests.
V: Rd7e« Rr7 «R7+ Rd7 «R17 «R7

Set if two's complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7+ R6 *R5¢ R4 «R3 *R2 +R1 +R0O
Set if the resultis $00; cleared otherwise.

C: Rd7 «Rr7+ Rr7+ R7 +R7« Rd7
Set if the absolute value of the contents of Rr is larger than the absolute value of Rd; cleared otherwise.

R (Result) after the operation.

Example:
cp rd,rle ; Compare r4d with rl9
brne noteq ; Branch if r4 <> rl@
noteq: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1

BRNE - Branch if Not Equal

Descriptlon:

Conditional relative branch. Tests the Zero Flag (£) and branches relatively to PC if Z is cleared. If the instruction is exe-
cuted immediately after any of the instructions CP, CPI, SUB or SUEI, the branch will occur if and only if the unsigned or
signed binary number represented in Rd was not equal to the unsigned or signed binary number represented in Rr. This
instruction branches relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from
PC and is represented in two's complement form. (Equivalent to instruction BRBC 1,k).

Operation:
(i) If Rd = Rr (Z = 0) then PC « PC + k + 1, else PC « PC + 1

Syntax: Operands: Program Counter:
(i) BRNE k -64 = Kk = +63 PC«—PC+k+1

PC « PC + 1, if condition is false

16-bit Opcode:

| 1111 | 01kk | Kk | K001 |

Status Reglster (SREG) and Boolean Formula:

| T H S v N Zz c
Example:
20T r27,r27 : Clear r27
loop: inec r27 ; Increase r2
cpl r27,5 ; Compare r27 to 5
brne loop ; Branch if r27<=5
nop ; Loop exit (do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

CPIl — Compare with Immediate

Description:

This instruction performs a compare between register Rd and a constant. The register is not changed. All conditional
branches can be used after this instruction.

Operation:
(i) Rd - K

Syntax: Operands: Program Counter:
(i) CPIRd,K 16=d=<31,0=K=255 PC « PC +1

16-bit Opcode:

| 0011 | KKKK | dddd | KEKEE |

Status Register (SREG) and Boolean Formula:

| T H S \' N z (o
-l -l=]l=]=]=]=]=]
H: Rd3 *K3+ K3+ R3+ R3 «Rd3

Set if there was a borrow from bit 3; cleared otherwise
S: N @ V, For signed tests.
V: Rd7 «K7 «R7 +Rd7 *K7 *R7

Set if two's complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 «R6e R5 sR4+ R3« R2 «R1 «R0O
Set if the result is $00; cleared otherwise.

C: Rd7 «K7 +K7 «R7+ R7 «Rd7
Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.

R (Result) after the operation.

Example:
opi rl9,3 ; Compare rl% with 3
brne error ; Branch if rl19<=3
error: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1

BRMI - Branch if Minus

Descriptlon:

Conditional relative branch. Tests the Negative Flag (N) and branches relatively to PC if N is set. This instruction branches
relatively to PC in either direction (PC - 63 = destination < PC + 64). The parameter k is the offset from PC and is repre-
sented in two's complement form. (Equivalent to instruction BRBS 2 k).

Operation:
(i) IfN=1then PC«— PC +k+ 1, else PC«— PC + 1

Syntax: Operands: Program Counter:
(i) BRMI k -64 < k = +63 PC«—PC+k+1

PC « PC + 1, if condition is false

16-bit Opcode:

| 1111 | 00kk | klckk | k010 |

Status Register (SREG) and Boolean Formula:

| T H S v N z Cc
Example:
subi rlg, 4 : Subtract 4 from ril8
brmi negative ; Branch if result negative
negative: nop : Branch destination {(do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

ANDI - Logical AND with Immediate

Descriptlon:

Performs the logical AND between the contents of register Rd and a constant and places the result in the destination regis-
ter Rd.

Operation:
(i) Rd « Rd « K

Syntax: Operands: Program Counter:
(i ANDI Rd,K 16<d<31,0<K=<255 PC«PC+1

16-bit Opcode:

| 0111 | KEEE | dddd | KEKE |

Status Reglster (SREG) and Boolean Formula:

| T H] \' N z Cc
- [- -JTeloo]Jele] -]
S: N & V, For signed tests.
V: 0
Cleared
N: R7

Set if MSB of the result is set; cleared otherwise.

Z R7 «RA6+ R5+R4 «R3+ A2« R1« RO
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
andi rl7,50F ; Clear upper nibble of rl7
andi rlg&,510 ;: Isolate bit 4 in rlS8
andi rl%,5aa ; Clear codd bits of rl%

Words: 1 (2 bytes)
Cycles: 1

BREQ - Branch if Equal

Description:

Conditional relative branch. Tests the Zero Flag (Z) and branches relatively to PC if Z is set. If the instruction is executed
immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned or signed
binary number represented in Rd was equal fo the unsigned or signed binary number represented in Rr. This instruction
branches relatively to PC in either direction (PC - 63 < destination < PC + 64). The parameter k is the offset from PC and is
represented in two’s complement form. (Equivalent to instruction BRBS 1,Kk).

Operation:
(i) If Rd = Rr (Z = 1) then PC «- PC + k + 1, else PC «- PC + 1

Syntax: Operands: Program Counter:
(i) BREQ k 64 <k < +63 PC« PC+k+1

PC « PC + 1, if condition is false

16-bit Opcode:

| 1111 | 00Xk | Kkl | k001 |

Status Register (SREG) and Boolean Formula:

| T H S \ N Z C
Example:
cp rl,r0 ; Compare registers rl and r0
breqg equal ; Branch if registers egual
ecual: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

RJMP - Relative Jump

Desctrliption:

Relative jump to an address within PC - 2K +1 and PC + 2K (words). For AVR microcontrollers with Program memory not
exceeding 4K words (8K bytes) this instruction can address the entire memory from every address location. See also JMP.

Operation:
(i) PC < PC+k+1
Syntax: Operands: Program Counter: Stack
(i) RJMP k 2K =k < 2K PC«—PC+k+1 Unchanged

16-bit Opcode:

1100 | klckk | Kk | kkkk |

Status Reglster (SREG) and Boolean Formula:

| T H S v N Z Cc
Example:
cpi ris, 542 : Compare rlé to 542
brne error ; Branch if rlé == 542
rimp ok ; Unconditional branch
error: add rle,rl7 ; Add rl7 to rlé
inc rlé ; Increment rlé
ok: nop ; Destination for rjmp (deo nothing)

Words: 1 (2 bytes)
Cycles: 2

DEC - Decrement

Description:
Subtracts one -1- from the contents of register Rd and places the result in the destination register Rd.

The C Flag in SREG is not affected by the operation, thus allowing the DEC instruction to be used on a loop counter in mul-
tiple-precision computations.

When operating on unsigned values, only EREQ and BRNE branches can be expected to perform consistently. When
operating on two's complement values, all signed branches are available.

Operation:
(i) Rd « Rd - 1

Syntax: Operands: Program Counter:
(i) DEC Rd 0=d=31 PC « PC +1

16-bit Opcode:

| 1001 | 0104 | dadd | 1010

Status Reglster and Boolean Formula:

[T H s v N z c
-l -l -l=]J=]=]=]"-]

S: NeV
For signed tests.

V: R7 *R6 «R5 sR4s R3« R2 «R1« RO
Set if two's complement overflow resulted from the operation; cleared otherwise. Two's complement overflow occurs
if and only if Rd was $80 before the operation.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z R7 «R6+ R5 «R4e R3» R2« Ris RO
Set if the result is $00; Cleared otherwise.

R (Result) equals Rd after the operation.

Example:
1di rl7, 510 ; Load constant in rl7
loocp: add rl,.r2 ; BAdd rZ to rl
dec rl7 ; Decrement rl7
brne loop ; Branch if rl17<=>0
nop ; Continue (do nothing)

Words: 1 (2 bytes)
Cycles: 1

ST - Store Indirect From Register to Data Space using Index X

Descriptlon:

Stores one byte indirect from a register to data space. For parts with SRAM, the data space consists of the Register File,
/O memory and internal SRAM (and external SBRAM if applicable). For parts without SRAM, the data space consists of the

Register File only. The EEPROM has a separate address space.

The data location is pointed to by the X (16 bits) Pointer Register in the Register File. Memory access is limited to the cur-
rent data segment of 64K bytes. To access another data segment in devices with more than 64K bytes data space, the

RAMPX in register in the I/O area has to be changed.

The X-pointer Register can either be left unchanged by the operation, or it can be post-incremented or pre-decremented.
These features are especially suited for accessing arrays, tables, and Stack Pointer usage of the X-pointer Register. Note
that only the low byte of the X-pointer is updated in devices with no more than 256 bytes data space. For such devices, the
high byte of the pointer is not used by this instruction and can be used for other purposes. The RAMPX Register in the /O
area is updated in paris with more than 64K bytes data space or more than 64K bytes Program memory, and the incre-

ment/ decrement is added to the entire 24-bit address on such devices.

Mot all variants of this instruction is available in all devices. Refer to the device specific instruction set summary.

The result of these combinations is undefined:

ST X+, r26
ST X+, r27
ST-X, r26
ST -X, r27

Using the X-pointer:

$60(X post inc)

562 (X pre dec)

Operation: Comment:
(i) (X) « Rr X: Unchanged
(ii) (X) «— Rr X X+ X: Post incremented
(iii) XeX-1 {X) « Rr X: Pre decremented
Syntax: Operands: Program Counter:
(i) STX, Rr O=r=31 PC —PC+1
(i) ST X+, Rr O0=r=31 PC « PC +1
(iii) ST-X, Rr O=r=31 PC «— PC+1
16-bit Opcode :
(i} 1001 001r rrrr 1100
(ii) 1001 001r rrrr 1101
(iid) 1001 001r rrrr 1110
Status Reglster (SREG) and Boolean Formula:
| T H] v N Zz C
Example:
clr r27 : Clear X high byte
141 r2&, 560 ; Set X low byte to S60
st X+,1x0 : Store r0 in data space loc.
st X, rl ; Steore rl in data space loc. $61
14i r26,563 : Set X low Dyte to S63
st X, r2 ; Store r2 in data space loc. 563
st -X,r3 : Store ri in data space loc.
Words: 1 (2 bytes)
Cycles: 2

SBRS - Skip if Bit in Register is Set

Description:

This instruction tests a single bit in a register and skips the next instruction if the bit is set.

Operation:

(i) If Rr{b) = 1 then PC « PC + 2 (or 3) else PC «— PC + 1
Syntax: Operands:

(i) SERS Rr,b 0=r=31,0=b=7

16-bit Opcode:

1111 | 1117 | rrrr bbb

Status Reglster (SREG) and Boolean Formula:

Program Counter:

PC « PC + 1, Condition false - no skip
PC « PC + 2, Skip a one word instruction
PC « PC + 3, Skip a two word instruction

| T H S v N c
Example:
sub ro,rl ; Subtract rl from ro0
sbrs ro,7 ; Skip if bit 7 in r0 set
neqg ri : Only executed if bit 7 in r0 not set
nop ; Continue {(do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false (no skip)

2 if condition is true (skip is executed) and the instruction skipped is 1 word
3 If condition is true (skip is executed) and the instruction skipped is 2 words

OUT - Store Register to I/O Location

Descriptlion:

Stores data from register Rr in the Register File to I/O Space (Ports, Timers, Configuration Registers etc.).

Operation:
(i) I/O(A) « Rr

Syntax: Operands: Program Counter:
(i) OuUT A,Rr 0=r=31,0<A<83 PC « PC +1

16-bit Opcode:

| 1011 | l1anr | ITrxr | ARAR |

Status Reglster (SREG) and Boolean Formula:

| T H S Vv N Z C
Example:
clr rlé ; Clear rla
ser rl7 ; Set rl7
out 518,.rl6 : Write zeros to Port B
nop : Wait (do nothing)
out 518,r17 : Write cnes to Port B

Words: 1 (2 bytes)
Cycles: 1

IN - Load an I/O Location to Register

Description:

Loads data from the I/O Space (Ports, Timers, Configuration Registers etc.) into register Rd in the Register File.

Operation:
(i) Rd < I/O(A)

Syntax: Operands: Program Counter:
(i) IN Rd,A 0=d=31,0=A<63 PC« PC+1

16-bit Opcode:

1011 | 0nAd | dddd | ARAR |

Status Reglster (SREG) and Boolean Formula:

I T H S v N Fd C
Example:
in rh, 516 : Read Port B
cpl rz5,4 : Compare read value to constant
breg aexit : Branch if rib=4
exit: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1

PUSH - Push Register on Stack

Descrliptlon:

This instruction stores the contents of register Rr on the STACK. The Stack Pointer is post-decremented by 1 after the
PUSH.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
(i) STACK < Rr
Syntax: Operands: Program Counter: Stack:
(i) PUSH Rr O=r=31 PC—PC+1 SP « SP-1

16-bit Opcode:

| 1001 | 001d | dddd | 1111 |

Status Reglster (SREG) and Boolean Formula:

I T H S v N Z Cc
Example:
call routine ; Call subroutine
routine: push rld ; Save rld4 on the Stack
push rl3 ; Save rli on the Stack
pop rl3 ; Restore rll
pop ri4 : Restore rld
ret ; Return from subroutine
Words : 1 (2 bytes)

Cycles : 2

POP - Pop Register from Stack

Desctliptlon:
This instruction loads register Rd with a byte from the STACK. The Stack Pointer is pre-incremented by 1 before the POP.
This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
(i) Rd « STACK

Syntax: Operands: Program Counter: Stack:
(i) POP Rd 0<d=31 PC « PC +1 SP« SP +1

16-bit Opcode:

| 1001 | nood | d-jjd| 1111 |

Status Reglster (SREG) and Boolean Formula:

I T H S v N Z Cc
Example:
call routine ; Call subroutine
routine: push rid : Save rl4 on the Stack
push rl3 : Save rl3l on the Stack
pop rl3 : Restore rl3
pop rl4 ;: Restore rl4
ret : Return from subroutine

Words: 1 (2 bytes)
Cycles: 2

CALL - Long Call to a Subroutine

Description:

Calls to a subroutine within the entire Program memary. The return address (to the instruction after the CALL) will be stored
onto the Stack. (See also RCALL). The Stack Pointer uses a post-decrement scheme during CALL.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Stack:

STACK « PC+2
SP < SP-2, (2 bytes, 16 bits)

STACK « PC+2
SP < SP-3 (3 bytes, 22 bits)

Operation:
(i) PC «k Devices with 16 bits PC, 128K bytes Program memory maximum.
(ii) PC « k Devices with 22 bits PC, 8M bytes Program memory maximum.
Syntax: Operands: Program Counter
(i) CALL k 0 <k« 64K PC «—k
(ii) CALL k 0=k«<4M PC «—k
32-bit Opcode:
1001 010k kkkk 111k
kkkk kkkk kkkk kkkk
Status HEngtEI‘ (SFIEG:I and Boolean Formula:
| T H] v N C
Example:
MoV rlé,r0 ; Copy rl to rlé
call check ; Call subroutine
nop ; Continue {(do nothing)
check: cpi rlh, 542 ; Check if rlé has a special wvalue
breg arror ; Branch if equal
rat ; Return from subroutine
error: rjmp arror : Infinite loop
Words 2 (4 bytes)
Cycles : 4, devicas with 16 bit PC

5, devices with 22 bit PC

RET - Return from Subroutine

Descriptlon:

Returns from subroutine. The return address is loaded from the STACK. The Stack Pointer uses a pre-increment scheme
during RET.

Operation:
(i) PC(15:0) « STACK Devices with 16 bits PC, 128K bytes Program memaory maximum.
(ii) PC(21:0) « STACKDevices with 22 bits PC, 8M bytes Program memaory maximum.

Syntax: Operands: Program Counter: Stack:
1) RET None See Operation SP«5SP + 2, (2bytes, 16 bits)
(ii) RET MNone See Operation SP«SP + 3, (3bytes, 22 bits)

16-bit Opcode:

| 1001 | 0101 | 0000

1000 |

Status Reglster (SREG) and Boolean Formula:

| T H S v N Z c
Example:
call routine : Call subroutine
routine: push rl4 : Save rld on the Stack
pop rl4 ; Restore rl4
ret ; Return from subroutine

Words: 1 (2 bytes)
Cycles: 4 devices with 16-bit PC
5 devices with 22-bit PC

LD (LDD) - Load Indirect From Data Space to Register using Index Z

Description:

Loads one byte indirect with or without displacement from the data space to a register. For parts with SBAM, the data
space consists of the Register File, /O memory and internal SRAM (and external SRAM if applicable). For parts without
SRAM, the data space consists of the Register File only. In some parts the Flash Memory has been mapped to the data
space and can be read using this command. The EEPROM has a separate address space.

The data location is pointed to by the Z (16 bits) Pointer Register in the Register File. Memory access is limited to the cur-
rent data segment of 64K bytes. To access another data segment in devices with more than 64K bytes data space, the
RAMPZ in register in the I/O area has to be changed.

The Z-pointer Register can either be left unchanged by the operation, or it can be post-incremented or pre-decremented.
These features are especially suited for Stack Pointer usage of the Z-pointer Register, however because the Z-pointer
Register can be used for indirect subroutine calls, indirect jumps and table lookup, it is often more convenient to use the X
or Y-pointer as a dedicated Stack Pointer. Note that only the low byte of the Z-pointer is updated in devices with no more
than 256 bytes data space. For such devices, the high byte of the pointer is not used by this instruction and can be used for
other purposes. The RAMPZ Register in the I/O area is updated in parts with more than 64K bytes data space or more than
64K bytes Program memory, and the increment/decrement/displacement is added to the entire 24-bit address on such
devices.

Mot all variants of this instruction is available in all devices. Refer to the device specific instruction set summary.

In the Reduced Core tinyAVR the LD instruction can be used to achieve the same operation as LPM since the program
memeory is mapped to the data memory space.

For using the Z-pointer for table lookup in Program memory see the LPM and ELPM instructions.

The result of these combinations is undefined:

LD r30, Z+
LD r31, Z+
LD r30, -2
LD r31, -Z

Using the Z-pointer:

Operation: Comment:

(i) Rd « (Z) Z: Unchanged

(i) Rd « (Z) L+ Z+1 Z: Post increment

(iiii) Z—Z-1 Rd « (Z) Z: Pre decrement

(iv) Rd « (Z+q) Z: Unchanged, g: Displacement
Syntax: Operands: Program Counter:

(i) LDRd, Z 0=d=31 PC « PC +1

(i) LD Rd, Z+ 0=d=31 PC < PC +1

(iii) LD Rd, -Z 0=d=31 PC « PC +1

(v) LDDRd, Z+q 0<d<31,0<q=<63 PC<« PC+1

16-bit Opcode:

(i} 1000 oood ddad 0ooo
(1i) 1001 oood ddad o000l
(1ii) 1001 oood ddad 0010
(iwv) 10g0 ggld dddd 0ggg

Status Reglster (SREG) and Boolean Formula:

| T H S v N Z c
Example:
clr ril ; Clear Z high byte
141 rif, 560 : Set Z low byte to 560
14 rl, Z+ ; Load r0 wich data space loc. $60({Z post inc)
14 rl,Z ; Load rl with data space loc. 561
14i rin, 563 ; Set T low byte to SE632
14 r2,Z ; Load r2 with data space loc. 3563
14 ri,-% : Load r3 with data space loc. 562(Z pre dec)
144 rd,Z+2 : Load r4 with data space loc. 564

Words: 1 (2 bytes)

Cycles: i 1@
(i) 2
(iiy 3@
Cycles XMEGA: i 1m
(i 1M
{iiiy 2™
(iv) 20

MNotes: 1. IF the LD instruction is accessing internal SRAM, one exira cycle is inserted.

2. LD instruction can load data from program memory since the flash is memory mapped. Loading data from the data memory
takes 1 clock cycle, and loading from the program memory takes 2 clock cycles. But if an interrupt occur (before the last
clock cycle) no additional clock cycles is necessary when loading from the program memoary. Hence, the instruction takes
only 1 clock cycle to execute.

LD instruction with pre-decrement can load data from program memory since the flash is memory mapped. Loading data
from the data memory takes 2 clock cycles, and loading from the program memory takes 3 clock cycles. But if an interrupt
occur (before the last clock cycle) no additional clock cycles is necessary when loading from the program memory. Hence,
the instruction takes only 1 clock cycle to execute.

BRSH - Branch if Same or Higher (Unsigned)

Desctrlption:

Conditional relative branch. Tests the Carry Flag (C) and branches relatively to PC if C is cleared. If the instruction is exe-
cuted immediately after execution of any of the instructions CP, CPI, SUB or SUBI the branch will occur if and only if the
unsigned binary number represented in Rd was greater than or equal to the unsigned binary number represented in Rr.
This instruction branches relatively to PC in either direction (PC - 63 < destination = PC + 64). The parameter k is the offset
from PC and is represented in two's complement form. (Equivalent to instruction BERBC 0,k).

Operation:
(i) If Rd 2Rr (C = 0) then PC « PC + k + 1, else PC « PC + 1

Syntax: Operands: Program Counter:
(i) BRSH k -64 < k= +63 PC«—PC+k+1

PC «— PC + 1, if condition is false

16-bit Opcode:

| 1111 | 01kk | klckk | k000 |

Status Reglster (SREG) and Boolean Formula:

| T H S v N z c
Example:
subi rl9,4 : Subtract 4 from rl9
brsh highsm Branch if rl19 >= 4 (unsigned)
highsm: nop : Branch destination {(do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false
2 if condition is true

MUL - Multiply Unsigned

Descriptlion:

This instruction performs 8-bit x 8-bit — 16-bit unsigned multiplication.

Rd Rr R1 RO
Multiplicand ® Multiplier - Product High Product Low
8 8 16

The multiplicand Rd and the multiplier Rr are two registers containing unsigned numbers. The 16-bit unsigned product is
placed in R1 (high byte) and RO (low byte). Note that if the multiplicand or the multiplier is selected from RO or R1 the result
will overwrite those after multiplication.

This instruction is not available in all devices. Refer to the device specific instruction set summary.

Operation:
(i) R1:R0 «— Rd « BRr (unsigned «— unsigned = unsigned)

Syntax: Operands: Program Counter:
(i) MUL Rd,Rr 0=d=31,0=r=31 PC« PC+1

16-bit Opcode:

| 1001 | 11rd | ddad | rrrr |

Status Reglster (SREG) and Boolean Formula:

I T H S WV N Z ©C
-l -l -1 -1 -1-1=1=]

C: R15
Set if bit 15 of the result is set; cleared otherwise.

Set if the result is $0000; cleared otherwise.

R (Result) equals R1,R0 after the operation.

Example:
mul r5,rd ; Multiply unsigned r5 and r4
move T4, 10 ;: Copy result back in r5:r4

Words: 1 (2 bytes)
Cycles: 2

