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Introduction

Prof. Heckman gives in his lecture notes (in Dutch) a quantum mechani-
cal/group theoretical treatment of the Kepler problem. He mentions with-
out proof a few properties of the Laplace-Runge-Lenz-Pauli vector, which
are used in his subsequent development. In these notes these properties are
formulated in Theorem 2 and proved. The proofs are made somewhat more
transparent by introduction of the vector operator and its properties. Con-
sidering the length of the present notes, it is evident why prof. Heckman
skipped the proof.

Vector operators

Consider two arbitrary linear operators A and B acting on the same linear
space. Then we define the operator AdA and its nth power (n = 1, 2, . . .)
acting on the operator B, by

(AdA)0B ≡ B (1)

(AdA)nB ≡ [A, [A, [A, · · · , B]] . . .]︸ ︷︷ ︸
n times

(2)

The following result is a well-known lemma needed in the proof of the Baker-
Campbell-Hausdorff theorem.

eAB e−A = exp[Ad (A)]B ≡
∞∑
k=0

(AdA)k

k!
B

The proof of this result, although not difficult, is skipped.

Remember that rotation of a vector a ∈ R3 around a unit vector n over
an angle ψ, which moves a to a′, is given by the operator

a′ = R(n, ψ)a ≡ a cosψ + n(n · a)(1− cosψ) + (n× a) sinψ.

Definitions

1. Angular momentum operator: L ≡ x× p, where p = −i∇.
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2. For the definition of the vector operator A ≡ (A1, A2, A3) we consider
a rotation around a unit vector n over an angle ψ. If A satisfies

e−iψn·LA eiψn·L = R(n,−ψ)A (3)

≡ A cosψ + n(n ·A)(1− cosψ)− (n×A) sinψ,

then it is a vector operator.

Sum over repeated indices is implied everywhere and recall that εijk, the
antisymmetric Levi-Civita tensor, obeys the following contraction rule,

εkiaεbja = δkbδij − δkjδib. (4)

Theorem 1. An operator A = (A1, A2, A3) is a vector operator if and only
if it satisfies the commutation relations

[Li, Aj] = iεijkAk. (5)

In order to prove this theorem we will need the following lemma.

Lemma 1. Let n be a unit vector and let the components of A satisfy the
commutation relations of Eq. (5), then

(Adn ·L)2k+1A = (Adn ·L)A for k ≥ 0, (6)

(Adn ·L)2kA = A− (n ·A)n for k ≥ 1. (7)

Proof. The proof is by mathematical induction. Using Eq. (4) we find

(Adn ·L)2Ai = [n ·L, [n ·L, Ai]]
= njnk[Lj, [Lk, Ai]] = njnkiεkia[Lj, Aa]

= −njnkεkiaεjabAb = njnk(δkjδib − δkbδij)Ab
= Ai − n ·Ani,

which proves the second statement for k = 1. It is easily shown that
[n ·L,n ·A]= 0. Indeed, the expression

[n ·L,n ·A] = ininjεijkAk

is a product of ninj, which is symmetric in i and j and εijk, which is anti-
symmetric in i and j. Consider now

(Adn ·L)3A = (Adn ·L)(Adn ·L)2A

= [n ·L,A− (n ·A)n] = (Adn ·L)A,
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which proves the first statement for k = 1. For k = 0 this statement is an
identity. The general induction step is easy

(Adn ·L)2kA = (Adn ·L)(Adn ·L)2k−1A

= [n ·L, [n ·L,A]] = A− n ·An.

And

(Adn ·L)2k+1A = (Adn ·L)(Adn ·L)2kA

= [n ·L,A− (n ·A)n] = (Adn ·L)A.

Proof of Theorem 1. If A satisfies the commutation relations, then

exp[Ad − iψ(n ·L)]A = A +
∞∑
k=1

(−iψ)2k

(2k)!
(Adn ·L)2kA

+
∞∑
k=0

(−iψ)2k+1

(2k + 1)!
(Adn ·L)2k+1A

= A +
∞∑
k=1

(−1)k
ψ2k

(2k)!

(
A− (n ·A)n

)
+
∞∑
k=0

(−1)k
ψ2k+1

(2k + 1)!
[−in ·L,A]

= A + (cosψ − 1)
(
A− (n ·A)n

)
− sinψn×A

= R(n,−ψ)A.

If A is a vector operator it satisfies Eq. (3). Differentiate this equation
with respect to ψ at ψ = 0

−i(n ·L)A + iA(n ·L) = i[A,n ·L] = −n×A.

Then, taking for n the coordinate axis ei, i.e., (ei)k = δik,

i[Aj, Li] = − (ei ×A)j = −εjklδikAl = εijlAl.

Corollary: [Li, Ai] = 0 and L ·A = A ·L.

Lemma 2.
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1. x and p are vector operators.

2. The outer product of any two vector operators is a vector operator.

Proof. Use [xi, xj] = [pi, pj] = 0 for all i, j = 1, 2, 3. Use also [pi, xj] = −iδij.

[Li, xj] = εabi[xapb, xj] = εabixa[pb, xj] = εabi(−i)δbj = iεijaxa.

The proof that p is a vector operator is analogous. Consider the vector
operators A and B. It is easily proved by the use of Eq. (4) that

[Li, (A×B)j] ≡ εabj[Li, AaBb] = iAiBj − iAjBi = iεijk(A×B)k.

Corollary: The angular momentum operator L is a vector operator.

Lemma 3. Any vector operator A satisfies

A×L = −L×A + 2iA. (8)

Proof.
(A×L)i = εjkiAjLk = εjki(LkAj − iεkjlAl).

By inspection it is shown that εjkiεkjl = −2δil, then

A×L = −L×A + 2iA.

Corollary: L×L = iL.
Because [xi, xj] = 0 and [pi, pj] = 0 it follows that

x× x = 0 and p× p = 0. (9)

Lemma 4. Any three vector operators satisfy:

A · (B ×C) = (A×B) ·C. (10)

Proof.

A · (B ×C) = Ai(εijkBjCk) = (εkijAiBj)Ck = (A×B) ·C.

Lemma 5.

x ·L = L · x = 0 (11)

p ·L = L · p = 0 (12)

Proof. x ·L = x · (x× p) = (x× x) · p = 0 = L · x,
L · p = (x × p) · p = x · (p × p) = 0 = p · L, where we used Eqs. (10)

and (9) and the fact that both x and p are vector operators.
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The Runge-Lenz-Pauli operator

Definitions

1. Runge-Lenz-Pauli operator

K ≡ 1

2
L× p− 1

2
p×L +

x

r
.

is a vector operator (by second statement of lemma 2).

2. Hydrogen atom Hamiltonian:

H ≡ 1

2
(p2 − 2

r
).

Theorem 2. [
Li, Kj

]
= iεijkKk

K ·L = L ·K = 0

K2 = 2H(L2 + 1) + 1[
H,K

]
= 0[

Ki, Kj

]
= −2iεijkLkH

Proof. The first assertion follows directly from the fact that K is a vector
operator. Consider L ·K:

L · (L× p) = (L×L) · p = iL · p = 0

L · (p×L) = L · (−L× p + 2ip) = 0

L · x
r

=
1

r
(L · x) + x · (L1

r
) +

1

r
(x ·L) = 0

where the middle term vanishes because L(V (r)) = 0 for any central sym-
metric function V (r). Hence, L·K = 0. The operator K is a vector operator,
so that K ·L = L ·K = 0.

Turning to K2 we need two more lemmas.

Lemma 6.

p · (p×L) = 0 (13)

p · (L× p) = 2ip2 (14)
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Proof. p · (p×L) = (p× p) ·L = 0.
p · (L× p) = p · (−p×L + 2ip) = 2ip2 [by Eq. (8)].

Lemma 7.

(p×L) · (p×L) = p2 L2 (15)

(L× p) · (p×L) = −p2 L2 (16)

(L× p) · (L× p) = p2 L2 (17)

(p×L) · (L× p) = −p2 L2 − 4p2 (18)

Proof. Use Eq. (4), then

(p×L) · (p×L) = εijkεabkpiLjpaLb = piLjpiLj − piLjpjLi
= pi(piLj − iεijkpk)Lj − pi(L · p)Li

= p2L2 + i(p× p) ·L = p2 L2.

It is easily shown with the use of Eqs. (8), (14) and (15) that

(p×L) · (L× p) = (p×L) · (−p×L + 2ip) = −p2 L2 + 2ip · (L× p)

= −p2 L2 − 4p2.

Equations (16) and (17) are proved likewise.

The operator K2 consists of 9 terms, 4 of which are given by the previous
lemma. Consider

(L× p) · x = L · (p× x) = −L2,

so that (recalling that L2 commutes with 1/r) a further term of K2 is:

(L× p) · x 1

r
= −L

2

r
. (19)

Using Eq. (8) we find

(p×L) · x 1

r
=
L2

r
+ 2ip · x1

r
.

where

ip · x1

r
= ∇ · x1

r
= (3 + x ·∇)

1

r

=
3

r
− x · x

r3
+

1

r
x ·∇ =

2

r
+
i

r
x · p.
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Hence,

(p×L) · x 1

r
=
L2

r
+

4

r
+

2i

r
x · p. (20)

Use that

1

r
x · (p×L) =

L2

r
(21)

1

r
x · (L× p) = −L

2

r
+

2i

r
x · p (22)

and we get finally from Eqs. (15), (18), (16), (17), (19), (20), (21), (22) and
from the definition of r: x · x/r2 = 1,

K2 = (p2 − 2

r
)L2 + p2 − 2

r
+ 1 ≡ 2H(L2 + 1) + 1,

which proves the third statement of Theorem 2.

We will now show that [H,K] = 0. Because p2 is rotationally invariant,
[Li, p

2] = 0 and since [pi, p
2] = 0 it follows directly that [(L × p)i, p

2] =
εijk[Ljpk, p

2] = 0. Similarly [p× L, p2] = 0. The operator x commutes with
any operator depending on xi only, hence[

x

r
,
−1

r

]
= 0.

It is fairly tedious to show the mutual cancellation of the two remaining
terms. We will need

[pi,
1

r
] =

ixi
r3
,

and the equations in the following lemma.

Lemma 8.

x×L = x(x · p)− r2p (23)

L× x = −(p · x)x + pr2 (24)

Proof.

(x×L)i = εijkεabkxjxapb = xjxipk − xjxjpi = xi(x · p)− r2pi
(L× x)i = −εikjεabjpaxbxk = pixkxk − pkxixk = pir

2 − (p · x)xi.

The first non-vanishing term in [H,K] is given by the following lemma.
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Lemma 9.

[
1

2
p2,

x

r
] =

i

2r3
(x×L−L× x)

Proof. Consider

[pi,
xj
r

] = xj[pi,
1

r
] +

1

r
[pi, xj] = i(

xixj
r3
− δij

r
) (25)

and

[p2,
xj
r

] = pi[pi,
xj
r

] + [pi,
xj
r

]pi

= ipi(
xixj
r3
− δij

r
) + i(

xixj
r3
− δij

r
)pi.

Using Eqs. (23) and (24)

[p2,
x

r
] = i

[
p · x x

r3
+

x

r3
x · p− p

1

r
− 1

r
p
]

=
i

r3
x×L−L× x

i

r3
.

Observing that x and L commute with 1/r3, the result follows.

The last non-vanishing term of [H,K] is given by the following lemma.

Lemma 10.

[−1

r
,
1

2
(L× p− p×L)] =

i

2r3
[
(L× x)− (x×L)

]
.

Proof. Use [Li, 1/r] = [Li, 1/r
3] = 0, then

εijk[
1

r
, Lipj + pjLi] = εijk

{
Li[

1

r
, pj] + [

1

r
, pj]Li

}
= εijk

(
Li
−ixj
r3

+
−ixj
r3

Li
)

=
−i
r3
[
(L× x)k − (x×L)k

]
.

Finally we see that the results of the last two lemmas cancel each other,
so that indeed [H,K] = 0 (the fourth assertion of Theorem 2).

To evaluate [Ki, Kj] we need a few more lemmas.
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Lemma 11.
[(L× p)i, pj] = i(pipj − δijp2)

Proof.

[(L× p)i, pj] = εabi[Lapb, pj] = εabi[La, pj]pb

= εabiiεajkpkpb = i(pipj − δijpkpk).

Note that this lemma implies that [(L× p)i, pj] is symmetric in i and j.
Using Eq. (8) and this symmetry, one shows easily that

1

4
[(L× p− p×L)i, (L× p− p×L)j] = [(L× p)i, (L× p)j]. (26)

Lemma 12.
[(L× p)i, (L× p)j] = −iεijkp2Lk.

Proof. We write Ai ≡ (L×p)i and use that it is a vector operator. Remember
that [p2, Li] = 0.

[Ai, (L× p)j] = εabj[Ai, Lapb] = εabjLa[Ai, pb] + εabj[Ai, La]pb

= iεabjLa(pipb − δibp2)− iεabjεaikAkpb
= i(L× p)jpi − iεaijp2La − iAjpi = −iεaijp2La.

Use of Eq. (26) and this lemma shows that the first terms of [Ki, Kj] satisfy

1

4
[(L× p− p×L)i, (L× p− p×L)j] = −2iεijk

1

2
p2Lk.

In order to reduce the last two terms of [Ki, Kj] we introduce the following
short hand notation for them:

Qij ≡
1

2
[(L× p− p×L)i,

xj
r

] +
1

2
[
xi
r
, (L× p− p×L)j],

we use again Eq. (8) and the fact that [pi, xj/r] is symmetric in i and j [cf.
Eq. (25)] so that

Qij = [(L× p)i,
xj
r

] + [
xi
r
, (L× p)j] (27)

Note that Qij = −Qji so that only the case i 6= j must be considered. We
need the following result:
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Lemma 13.

(L× x)ixj − (L× x)jxi = r2(pixj − pjxi).

Proof. By Eq. (24):
(L× x)× x = p× xr2.

Or,
εijk(L× x)ixj = r2εijkpixj

Multiply by εi′j′k sum over k, use Eq. (4) and remember that a sum over i
and j is implied,

(δi′iδj′j − δi′jδj′i)(L× x)ixj = r2(δi′iδj′j − δi′jδj′i)pixj,

from which the lemma follows.

Lemma 14.

Qij = 2iεijk
Lk
r

Proof. Use Eqs. (25) and (27), the fact that x/r is a vector operator and
dropping a term in δij, we get

[(L× p)i,
xj
r

] = εabi(La[pb,
xj
r

] + [La,
xj
r

]pb)

= εabiLa
i(xbxj − r2δbj)

r3
+ iεabiεajk

xk
r
pb

=
i

r3
(L× x)ixj − iεaji

La
r

+ iδbjδik
xk
r
pb

=
i

r3
(L× x)ixj + iεijk

Lk
r

+ i
xi
r
pj

Likewise

−[(L× p)j,
xi
r

] = − i

r3
(L× x)jxi + iεijk

Lk
r
− ixj

r
pi

Use of the previous lemma and the observation that [xi, pj] = 0, because
i 6= j, proves the lemma.

The last assertion of Theorem 2 follows now by recalling that Qij is a
short hand notation for the two remaining terms in [Ki, Kj].
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