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Introduction

Prof. Heckman gives in his lecture notes (in Dutch) a quantum mechani-
cal/group theoretical treatment of the Kepler problem. He mentions with-
out proof a few properties of the Laplace-Runge-Lenz-Pauli vector, which
are used in his subsequent development. In these notes these properties are
formulated in Theorem 2 and proved. The proofs are made somewhat more
transparent by introduction of the vector operator and its properties. Con-
sidering the length of the present notes, it is evident why prof. Heckman
skipped the proof.

Vector operators

Consider two arbitrary linear operators A and B acting on the same linear
space. Then we define the operator Ad A and its n'" power (n = 1,2,...)
acting on the operator B, by

Il
Sy

(AdA)°B (1)
(AdA)'B = [A[A A, B]..] 2)

Vv
n times

The following result is a well-known lemma needed in the proof of the Baker-
Campbell-Hausdorff theorem.

= (Ad A)*

k!B

e Be ™ = exp[Ad (A)]B =

k=0

The proof of this result, although not difficult, is skipped.

Remember that rotation of a vector a € R? around a unit vector n over
an angle ¢, which moves a to a’, is given by the operator

a =R(n,Y)a=acos)+n(n-a)(l—cosy))+ (n x a)siny.
Definitions

1. Angular momentum operator: L = x X p, where p = —iV.



2. For the definition of the vector operator A = (A, A, A3) we consider
a rotation around a unit vector m over an angle . If A satisfies

el Al — R(n,—)A (3)
= Acosty+n(n-A)(l—cosyp) —(n x A)sin,

then it is a vector operator.

Sum over repeated indices is implied everywhere and recall that €;;;, the
antisymmetric Levi-Civita tensor, obeys the following contraction rule,

€kia€bja = 5kb5ij - 5k:j5ib- (4)

Theorem 1. An operator A = (Ay, Ay, A3) is a vector operator if and only
if it satisfies the commutation relations

[LZ‘, AJ] = ieijkAk. (5)

In order to prove this theorem we will need the following lemma.

Lemma 1. Let n be a unit vector and let the components of A satisfy the
commutation relations of Eq. (5), then

(Adn-L)**A = (Adn-L)A  for k>0, (6)
(Adn-L)*A = A—(n-A)n for k> 1. (7)
Proof. The proof is by mathematical induction. Using Eq. (4) we find

(Adn-L)?A; = [n-L,n-L,A]]
= njnk[Lj, [L/€7 Az]] = njnkiekia[Lj, Aa]
= _njnkEkia€jabAb = njnk(5kj5ib - 5kb5ij>Ab

which proves the second statement for £ = 1. It is easily shown that
[n-L,n-A]= 0. Indeed, the expression

[’I’L . L, n- A] = ininjeijkAk

is a product of n;n;, which is symmetric in ¢ and j and ¢;;;, which is anti-
symmetric in ¢ and j. Consider now

(Adn-L)?A = (Adn-L)(Adn-L)*A
= [n-L,A—(n-A)n]=(Adn-L)A,
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which proves the first statement for £ = 1. For k£ = 0 this statement is an
identity. The general induction step is easy

(Adn-L)*A = (Adn-L)(Adn-L)*'A
= [n-L,n-L A|]=A—-n-An.

And

(Adn-L)*"A = (Adn-L)(Adn-L)*A
= [n-L,A—(n-A)n]=(Adn-L)A.

O
Proof of Theorem 1. If A satisfies the commutation relations, then
: _ (i) ok
exp[Ad —itp(n-L)JA = A+ 0] (Adn - L)* A
k=1 ’
(i) 2kt
A L))"t A
+k§ @+ 1y Adn- L)
A+ (A (n- A)n)
= + —1 n n
— (2k)!
o0 YL
A+ (costp—1)(A—(n-A)n) —sinyn x A

If A is a vector operator it satisfies Eq. (3). Differentiate this equation
with respect to ¥ at ¢ =0

—i(n-L)A+iA(n-L)=i[A,n-L]=—-nx A.
Then, taking for n the coordinate axis e;, i.e., (€;)r = 0ik,

i[Aj, Li] = — (e; X A); = —ejudiAi = €A

Corollary: [L;,A;]=0and L- A= A- L.

Lemma 2.



1. @ and p are vector operators.
2. The outer product of any two vector operators is a vector operator.
Proof. Use [z;,x;] = [pi,p;] =0 for all i, j = 1,2,3. Use also [p;, ;] = —id;;.
[Li, 73] = €avi[TaPy, Tj] = €apiTalPb, Tj] = €abi(—1)0p; = i€ijaTa-

The proof that p is a vector operator is analogous. Consider the vector
operators A and B. It is easily proved by the use of Eq. (4) that

[Lz'7 (A X B)J] = eabj[Li; AaBb] = ’LAzB] — ZAJBZ = ZGij(A X B)k

O
Corollary: The angular momentum operator L is a vector operator.
Lemma 3. Any vector operator A satisfies
AxL=-LxA-+2A. (8)
Proof.
(A X L); = €5 A; Li, = €jpi(LpAj — i€t Ar).
By inspection it is shown that €€, = —26;, then
AXxL=—-Lx A+ 2iA.
O
Corollary: L x L =1iL.
Because [z;,z;] = 0 and [p;, p;] = 0 it follows that
xxx=0 and pxp=0. (9)
Lemma 4. Any three vector operators satisfy:
A- (BxC)=(AxB)-C. (10)
Proof.
A (BxC)=A(€xB;jCr) = (ex;;AiBj)C = (A x B) - C.
O
Lemma 5.
L = L-xz=0 (11)
p-L = L-p=0 (12)

Proof. - L=x-(x xp)=(xxx) - p=0=0L-x,
L-p=(xxp)-p==x-(pxp)=0=p- L, where we used Egs. (10)
and (9) and the fact that both @ and p are vector operators. O



The Runge-Lenz-Pauli operator

Definitions

1. Runge-Lenz-Pauli operator

1 1
KE—LXp——pXL+£.
2 2 r

is a vector operator (by second statement of lemma 2).

2. Hydrogen atom Hamiltonian:

Theorem 2.

[Li, K;] = ek

K-L = L-K=0
K?* = 2H(L*+1)+1

[H, K] = 0

(K, K;] = —2ie;LpH

Proof. The first assertion follows directly from the fact that K is a vector

operator. Consider L - K:

L (Lxp) = (LxL)-p=iL-p=0
L - (pxL) = L-(—Lxp+2ip)=0
L- & = 1(L-az)+az-(L%)+%(az-L):O

r T

where the middle term vanishes because L(V (r)) = 0 for any central sym-
metric function V(7). Hence, L- K = 0. The operator K is a vector operator,

sothat K- L=L -K =0.

Turning to K2 we need two more lemmas.

Lemma 6.



Proof. p-(px L)=(pxp)-L=0.

p- (L xp)=p-(=px L+ 2ip) = 2ip* [by Eq. (8)]. O
Lemma 7.

(pxL)-(pxL) = p’L? (15)

(Lxp)-(pxL) = —p*L* (16)

(Lxp)-(Lxp) = p*L? (17)

(px L)- (L x p) —p* L? — 4p? (18)

Proof. Use Eq. (4), then

(px L) - (px L) = e€jreaprPilipals =piLjp;Lj — p;Ljp;L;
= pi(piL; — t€ijepr)Lj — pi(L - p)L;
= p’L>+i(pxp)-L=p*L°

It is easily shown with the use of Eqgs. (8), (14) and (15) that

(pxL)-(Lxp) = (pxL) (—pxL+2ip)=—p*L*+2ip- (L x p)
— _p2 L2 . 4p2

Equations (16) and (17) are proved likewise. O

The operator K? consists of 9 terms, 4 of which are given by the previous
lemma. Consider

(Lxp)-x=L-(pxx)=—L°

so that (recalling that L? commutes with 1/r) a further term of K? is:

1 L?
Lxp)az-=-". 19
(Lxp)wt=-t (19)
Using Eq. (8) we find
1 L2
(px L) -x—=—+2ip -x—
r
where
1 1
ip-x— = V.x—=B3+x-V)-
r T
3 . 1
— __wgw _m.V:— Emp
r r r roor



Hence,

1 L2 4 2
(pxL) z-=—+-+—a-p. (20)
r r T T
Use that
1 L?
L L - = 21
- (px L) . (21)
1 L? 2
—x-(Lxp) = ——+—las-p (22)
T r r

and we get finally from Eqgs. (15), (18), (16), (17), (19), (20), (21), (22) and
from the definition of r: @ - & /r* =1,

2 2
K2=(P2—;)L2+p2—;+152H(L2+1)+17

which proves the third statement of Theorem 2.

We will now show that [H, K| = 0. Because p? is rotationally invariant,
[Li,p*] = 0 and since [p;,p?] = 0 it follows directly that [(L x p);,p?] =
€ijk[Lipr, p?] = 0. Similarly [p x L,p?| = 0. The operator & commutes with
any operator depending on x; only, hence

It is fairly tedious to show the mutual cancellation of the two remaining
terms. We will need .

[ 1] o

pla r - 7’3 )

and the equations in the following lemma.

Lemma 8.
xxL = x(x-p) —1r’p (23)
Lxz = —(p-z)x+pr (24)
Proof.
(50 X L)i = €jk€abkTjTaPb = TjTiPk — TjTP; = xz(iv ~p) - 7”2]%'
(Lxx) = —€ikj€abjPalol = PilkT — Prlill = pﬂ“2 —(p-x)z;.
]

The first non-vanishing term in [H, K| is given by the following lemma.
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Lemma 9.

[Ep,?]:ﬁ(mXL—LXCL')
Proof. Consider
Ty LB Oy
o 2 = aylpe 2]+ o] =i~ )
and
P =2 = pilpi, =+ [pi i
r r r
o Tyl 51] . L _ 61']' '
= (=57 = ) Fil= 5T — e
Using Egs. (23) and (24)
9o Ty . r x 1 1
[Pa;] = @‘[P'mﬁ‘f'ﬁﬂ?'P‘—P;—;P]

2 1
= —3.’.BXL—LX$—3
r r

Observing that  and L commute with 1/r3, the result follows.

(25)

]

The last non-vanishing term of [H, K| is given by the following lemma.

Lemma 10.

[_%7%(pr_pr)]:L[(an:)—(a:xL)].

273
Proof. Use [L;,1/r] = [L;,1/r3] = 0, then

1 1 1
Eijk[;aLipj +p;Li| = Eijk{Li[;an]ﬂL[;an]Li}

—iX; —X;
— y ) Jr.
= EZ]k (Lz 7"3 —|— 7"3 Lz)

~.

r3

]

Finally we see that the results of the last two lemmas cancel each other,

so that indeed [H, K] = 0 (the fourth assertion of Theorem 2).

To evaluate [K;, K;] we need a few more lemmas.



Lemma 11.
[(L X p)z’apj] = i(l?ipj - 5z'jp2)
Proof.

[(L X p)iapj] = eabi[Lapmpj] = 6abi[mej]pb
= €abil€akDkDs = 1(DiDj — 0ijDkDk)-

]

Note that this lemma implies that [(L X p);, p;] is symmetric in ¢ and j.
Using Eq. (8) and this symmetry, one shows easily that

JExp—px L) (Lxp-px L) =[Lxp)(Lxp)l  (20)
Lemma 12.

[(L X p)i, (L X p)J] = _Zfijkpz[/k‘
Proof. We write A; = (L xp); and use that it is a vector operator. Remember
that [p?, L;] = 0.
[Ai, (L X p)j] = Cabj [Ai, Lapb] = €abjLia [Aiapb] + €abj [Ai> La]pb
= i€anj La(pipy — OipD®) — i€apj€air ArDy
= (L X p)jp; — i€qijp” Lo — iAjpi = —i€qi;p” La.
]

Use of Eq. (26) and this lemma shows that the first terms of [K;, K| satisfy

1 1
Z[(L xp—pxUL),(Lxp—pxL)| = —2zeijk§p2Lk.
In order to reduce the last two terms of [K;, K| we introduce the following
short hand notation for them:
1 €T;

Qs =3B xp—px L), D]+ ]

L — L),
27"’( Xp pX )]]7

we use again Eq. (8) and the fact that [p;, z;/r] is symmetric in ¢ and j [cf.
Eq. (25)] so that

Qi = (L x p)i, 2] + [, (L x p)}] (27)

Note that Q);; = —@Q;; so that only the case i # j must be considered. We
need the following result:



Lemma 13.
(L x x);x; — (L x ®) 2, = r*(pixj — pjx;).

Proof. By Eq. (24):
(Lxx)xx=pxxr

Or,
2
€ijk(L X x);x; = 1€ kpix;

Multiply by €y sum over k, use Eq. (4) and remember that a sum over 4
and j is implied,

<5i’i6j’j — 5i’j5j’i)(L X CU)i.%'j = T2(5i’i5j’j — 5i’j5j’i)pixj7
from which the lemma follows. O

Lemma 14. I
Qij = 2i€ijk7k

Proof. Use Eqgs. (25) and (27), the fact that x/r is a vector operator and
dropping a term in 9,5, we get

(Ex P 2] = canlLalpn 2] + (Lo, L)

i(zpr; — 120y))

. Ty
= 6ab'iLa 3 +Z€abi€ajk_pb
r r
1 . La . Tk
= E(L X ZL')Z‘ZE]' — ZEajZ‘T + zébjéik7pb
{ Ly oy
= ﬁ(L X w)ile + ZEijkT + 27]?]'
Likewise
—[(L X p)j, ?] = _ﬁ(L X m)jxi + ZEijkT — 27])1'
Use of the previous lemma and the observation that [z;,p;] = 0, because
1 # j, proves the lemma. m

The last assertion of Theorem 2 follows now by recalling that @);; is a
short hand notation for the two remaining terms in [K;, K]
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