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SUMMARY
For over 30 years, sperm morphology assessment has been one of the most common tests in evaluation of fertility. This review

examines the clinical relevance of sperm morphology assessment in the diagnosis of infertility and in assisted reproductive technol-

ogy, as well as its analytical reliability. Publications on the pathophysiology, the analytical reliability of the test and its clinical rele-

vance in diagnosis and in Assisted Reproductive Technology (ART) were evaluated. This review compared and discussed study

methodologies and results, including patient characteristics, preparation, smear staining methods and classification systems. The

assessment of the percentage of some abnormalities such as for example thin head, amorphous head, or bent or asymmetrical neck

is of little clinical use, and their pathophysiology is not well explained as most are physiological traits. Some studies have highlighted

correlations between the percentage of normal forms and functional sperm abnormalities, as well as correlations with ability to con-

ceive in vivo and, in some situations, with the success of intra-uterine insemination (IUI) or conventional IVF. However, except in

the case of some specific sperm defects (easy to detect with 99 or 100% of spermatozoa affected) and which are often linked to

genetic disorders (globozoospermia, macrocephaly, decapitated sperm syndrome and fibrous sheath dysplasia), sperm morphology

assessment has very poor sensitivity and specificity in the diagnosis of infertility. Moreover, there is very little evidence that indices

of multiple sperm defects [sperm deformity index (SDI), teratozoospermia index (TZI), and multiple abnormalities index (MAI)] are

relevant. Above all, many publications report a major lack of analytical reliability of this test, mainly in assessment of the details of

sperm abnormalities. Many questions arise concerning how and when sperm morphology should be assessed, and how to interpret

the thresholds of normal forms. Questions are raised on the real clinical impact of this test.

INTRODUCTION
In men, the transformation of spermatids during spermiogen-

esis is a key post-meiotic event contributing to major

morphological reorganizations. Spermiogenesis concerns the

reorganization of the nucleus, the development and positioning

of the acrosome from the Golgi apparatus, the assembly of the

tail structures and reorganization of the cytoplasm, and the ter-

minal phase ends in the release of spermatozoa in the lumen of

the seminiferous tubule. Morphology assessment under optical

microscopy shows that morphological modifications during

spermiogenesis are not very homogeneous in humans, generat-

ing spermatozoa with various morphologies. Therefore, the main

question is: what is a normal spermatozoon? Observations of

spermatozoa that have migrated through the mucus of the upper

endocervical canal have helped to define a normal-shaped sper-

matozoon (Menkveld et al., 1990). According to the strict crite-

ria, the percentage of ‘ideal spermatozoa’ in men is very low.

Assessment of sperm morphology is the most discriminating

sperm parameter between two populations of fertile and infertile

men (Ombelet et al., 1997a; Guzick et al., 2001) with, for the lat-

ter, a cut-off of 10% according to ROC curves and 5% by using

the 10th percentile of the fertile population for the percentage of

normal shapes.

For 20 years, sperm morphology assessment has been

described by some authors as a good indicator of male fertility

(Bonde et al., 1998; Slama et al., 2002) and in some situations of

the success of intra-uterine insemination (IUI) or conventional

IVF (Kruger et al., 1988; Coetzee et al., 1998; Gunalp et al., 2001;
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Van Waart et al., 2001; Spiessens et al., 2003; Nikbakht & Sahar-

khiz, 2011). For other authors, the test is not a relevant prognos-

tic factor for spontaneous pregnancy. In a model for predicting

spontaneous conception leading to live birth within one year

after intake and based on data from both partners, sperm mor-

phology was not included (Hunault et al., 2004). In the vast

majority of countries, this laboratory test is one of the most

common andrological investigations. However, numerous publi-

cations have highlighted its analytical weakness with wide intra-

and inter-laboratory variations (Matson, 1995; Eustache & Auger,

2003; Franken, 2003; Menkveld, 2013). Since there are different

classifications and lack of technical standardization, it does not

meet current analytical requirements as a standard validated

biological test. Many questions arise concerning the test’s clini-

cal relevance, how sperm morphology should be assessed, the

specific situations in which the test should be performed, and

how to interpret the thresholds of normal forms provided by the

studies on this topic.

There is a lack of support from clinicians (andrologists and

gynecologists) for this test, related in part to its weak analytical

reliability. It is urgent to standardize the practices for technical

performance of this test and good clinical use. This would con-

tribute to greater acceptance by prescribing physicians.

In order to better understand the place of sperm morphology

in the assessment of the fertilizing ability of men, we aimed,

through this narrative literature review, to evaluate its clinical

relevance in addition to its analytical reliability.

Firstly, we describe the different classification systems, their

associated reference values and the technical challenges of the

test, and discuss publications on the analytical reliability of

sperm morphology assessment. Secondly, we review data con-

cerning the current pathophysiological knowledge of the various

abnormalities described during sperm morphology assessment

in order to investigate their value as indicators of andrological

disorders. Finally, we discuss data concerning the prognostic rel-

evance of sperm morphology assessment before assisted repro-

ductive technology (ART).

MATERIAL AND METHODS
We conducted a narrative review of the relevant literature. The

PubMed database was used to retrieve works published between

January 1980 and July 2016 using the following search terms:

sperm morphology, strict morphology, strict criteria, and terato-

zoospermia. The publications’ titles, abstracts and reference lists

were reviewed and only relevant publications (i.e. those report-

ing on the pathophysiology of sperm defects, the analytical relia-

bility of sperm morphology assessment and its clinical relevance

in fertility diagnosis and in ART) were evaluated (Fig. 1). This

review examined, compared and discussed study methodologies

and results, including patient characteristics, preparation, the

smear staining method, and the used classification system used.

As this was a narrative review, no review protocol or registration

number were required. No specific funding was received.

RESULTS

Classifications used to assess human sperm morphology

In 1982, spermatozoa recovered from cervical mucus and from

the uterus and Fallopian tubes showed improved morphology

compared with the spermatozoa in the original semen sample

(Mortimer et al., 1982). (Menkveld et al., 1990) based their defi-

nition of a normal shaped spermatozoon on spermatozoa col-

lected in cervical mucus.

Several classifications for sperm morphology assessment have

been developed, and have different approaches. In the first

approach described by MacLeod & Gold (1951), different

Figure 1 Flow chart for selection of relevant publications.
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obvious abnormalities were described. All spermatozoa without

clear, well-defined abnormalities were considered as normal:

therefore, normal spermatozoa were identified by default. No

specific criteria were given to define a normal spermatozoon.

This liberal approach showed poor correlation with ability to

conceive (Page & Houlding, 1951). It was used in the 1st and 2nd

editions of the World Health Organization (WHO) manual

(Table 1).

In contrast to this ‘liberal’ approach, strict criteria exist. Sperm

morphology was described according to the Tygerberg strict cri-

teria developed by Menkveld (Menkveld, 1987), and applied to

in vitro study by Kruger et al. (1987b) based on observations

made on spermatozoa present in the cervical mucus and

described in detail by Menkveld et al. (1990). These descriptions

were later supported by descriptions of spermatozoa bound to

the human zona pellucida as seen in the hemizona assay (Menk-

veld et al., 1991) and confirmed by in vitro sperm-zona binding

tests (Liu & Baker, 1992). With the strict criteria, spermatozoa

with slightly abnormal ‘borderline’ heads are classified as abnor-

mal (Menkveld et al., 1990). The range defining a normal form is

small, and this is one of the most important aspects of this clas-

sification. The clear description of morphologically normal sper-

matozoa appears only in the 3rd edition of the WHO manual

(Who, 1992) according to the Tygerberg strict criteria (Table 1).

In the 4th edition of the WHO manual, the different abnormali-

ties are enumerated but no precise description is given. The lat-

est and 5th WHO manual (WHO, 2010) recommends using the

strict criteria for identifying a normal spermatozoon and gives

the following precise definition of a normal spermatozoon: ‘The

head should be smooth, regularly contoured and generally oval in

shape. . . acrosomal region comprising 40–70% of the head area

without large vacuoles, and not more than two small vacuoles. . .

the post-acrosomal region should not contain any vacuoles. . .the

midpiece should be slender, regular and about the same length as

the sperm head. . . Residual cytoplasm is considered an anomaly

only when in excess, i.e. when it exceeds one third of the sperm

head size. . . principal piece with uniform calibre along its length,

must be thinner than the midpiece, and approximately 45 lm
long (about 10 times the headlength). . .’. In this 5th edition, sche-

matic drawings of head defects, neck and midpiece defects, tail

defects and excess residual cytoplasm are given. Other classifica-

tions exist, but are only used in certain countries. For example,

in France the most commonly used classification is the modified

David classification (Auger et al., 2001). This classification was

originally developed by David et al. in 1975 and modified by

Jouannet et al. (1988) by adding some abnormalities and by

establishing the multiple abnormalities index (MAI). Contrary to

the strict criteria, the modified David classification considers

spermatozoa with ‘sub-normal’ or ‘borderline’ forms as normal.

‘Borderline’ forms are known to be responsible for greater inter-

and intra-observer variability (Menkveld, 2010). Changes in the

reference values in the literature are sometimes related to

the introduction or exclusion of a ‘borderline’ appearance of the

spermatozoon in defining its normality.

Reference values for the percentage of normal forms

The WHO threshold for the percentage of normal forms has

been reduced from the 1st edition in 1980 to the 4th, and espe-

cially to the 5th edition (Menkveld, 2010) (Table 1). In the 1st

edition, average normal morphology was 80.5% (range 48–98%

calculated on 602 ejaculates from 72 fertile men). In the 2nd edi-

tion, the value of the percentage of normal forms was 50%, then

30% in the 3rd edition with the note ‘An empirical reference

value is suggested to be 30% or more. . .’. In the 4th edition, the

reference value was 14% with a note ‘Multicentre studies are

now in progress. Data from assisted reproductive technology

programmes suggest that, as sperm morphology falls below

15%. . . the fertilization rate in vitro decreases’. In the recom-

mendations of the 5th edition (WHO 2010), the lower reference

limit is 4%, lower than the recommendation in the 4th edition,

and the recommended criteria for spermatozoa morphology

assessment are also different from the 4th edition. In the 5th edi-

tion, the reference value of 4% for the percentage of normal

forms is based on the 5th percentile of combined data resulting

from recent publications using known and standardized

methodologies (Cooper et al., 2010). The latter threshold is in

agreement with the results of studies which compared popula-

tions of fertile and infertile men and established a discriminating

threshold using ROC curves (Ombelet et al., 1997a; Menkveld

et al., 2001, 2011; Haugen et al., 2006). The reasons for the

decline of reference values are mainly the introduction of strict

criteria (and the classification of ‘borderline spermatozoa’ as

abnormal), while other authors have suggested there is a real

decrease of normal forms due to a negative impact of environ-

mental factors (Carlsen et al., 1992). The first hypothesis was

approved by Ariagno et al. (Ariagno et al., 2011): after reevalua-

tion of semen over a period from 1973 to 1989, they could not

demonstrate a true decline in sperm morphology despite a great

Table 1 Methods and cut-off values for sperm morphology in the different WHO manuals

WHO

edition

Year Criteria Methods of assessment Cut-off for normal

forms (%)

Calculation of cut-off values

1st 1980 Liberal approach No clear description of normal forms, ‘classification based

on MacLeod’s description’

80.5 Mean of fertile population

(range = 48–98%)

2nd 1987 Liberal approach No important difference compared with the 1st edition ≥50 No precise data

3rd 1992 Strict criteria Clear description of normal spermatozoa according to

strict criteria with well-defined sperm head lengths and

widths and qualitative descriptions

≥30 Arbitrary value

4th 1999 Strict criteria List of various abnormalities without accurate description 14 No precise value given,

‘multicenter studies refer to

>14% for IVF’

5th 2010 Strict criteria Precise definition of normal spermatozoa and of different

abnormalities

4 Lower reference limit (lower fifth

centile value), data from fertile

men
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difference in the percentage of normal forms of the same

patients assessed after changing criteria.

In the French modified David classification, the reference

value for the percentage of normal forms was at first 30% and

was then reassessed by Auger et al. (2016) at 23% in a study that

described the frequency of the various sperm abnormalities of

the head, midpiece and tail principal piece in a large group of

fertile men (male partners of pregnant females).

The use of one or the other classification has a major impact

on the assessment of the percentage of normal forms. For

instance, studies that examined the impact of morphology on

ART results were conducted with the strict criteria. Therefore,

the published threshold for decision-making cannot be applied

to other classifications. Blanchard et al. (Blanchard et al., 2011)

have shown that the David classification was not discriminant

for the rate of fertilization by conventional IVF compared with

assessment using the strict criteria in the computer-assisted

sperm analysis (CASA) system. According to a French survey,

there is considerable heterogeneity not only in the different ref-

erence thresholds used, but also between laboratories that claim

to use standardized values from the literature; 33.6% of them use

inadequate reference values for their classification (Gatimel

et al., 2016). Concerning the definition of reference values, it has

been suggested that each laboratory could define its own stan-

dards (Matson, 1995) in view of the wide range of variability

related to the technique and the operator and because of the

considerable heterogeneity in the methods used from one labo-

ratory to another. Sperm morphology assessment is undertaken

by very few laboratories, at least in France (8.5%), probably due

to the difficulty of obtaining a reference population.

Indices of multiple sperm defects

Three different indices have been proposed and defined:

• The multiple abnormalities index (MAI), used in the French

modified David classification, is the average number of

abnormalities per abnormal spermatozoon.

• The teratozoospermia index (TZI) is similar to the MAI, but a

maximum of four abnormalities per abnormal spermatozoon

are counted: one each for the head, the midpiece, the princi-

pal tail piece, and the residual cytoplasm, regardless of the

real number of abnormalities per abnormal spermatozoon.

• The sperm deformity index (SDI) is the number of abnormali-

ties divided by the total number of spermatozoa (normal and

abnormal).

Data from the literature on the clinical relevance of these

indices is very scarce; in more than 30 years, there have only

been one or two publications for each index, which seems lar-

gely insufficient for routine daily use in all laboratories. The MAI

(Jouannet et al., 1988; Slama et al., 2002) and the TZI (Menkveld

et al., 2001) relate to in vivo fertility and the SDI relates to fertil-

ization rate (but not pregnancy rate) in conventional IVF (Aziz

et al., 1996). According to van Zyl & Menkveld (2006), the TZI

has a low predictive value for spontaneous fertility and ART out-

comes. Considering data from the literature, we question the rel-

evance of the systematic development of these indices.

Analytical performances of sperm morphology assessment

Several authors have regularly drawn attention to the wide

intra- and inter-laboratory variability of this test. In 1977, Elias-

son was one of the first to emphasize the necessity of conducting

analytical performance of sperm morphology assessment (Elias-

son et al., 1977). Several factors are responsible for this technical

variability: heterogeneity in the preparation and staining tech-

niques for the smears, in the classification systems used, and

technician competency for an assessment that is necessarily

subjective. Therefore, the authors highlight the need to homoge-

nize smear preparations, reading techniques and classifications,

and stress the importance of conducting quality controls and

training programs and maintaining operator competency (Davis

& Gravance, 1993; Comhaire et al., 1994; Matson, 1995; Ombelet

et al., 1997b, 1998; Bonde et al., 1998; Keel et al., 2000; Eustache

& Auger, 2003; Franken et al., 2003; Henkel et al., 2008; Leushuis

et al., 2010; Mallidis et al., 2012; Menkveld, 2013). The proce-

dure, the type of classification used (strict criteria, modified

David classification, traditional or liberal approach, etc.) and the

sperm morphology assessment reading technique are still very

much under debate (Auger, 2010; Eliasson, 2010; Menkveld

et al., 2011). The lack of technical standardization and the sub-

jective nature of the assessment make it difficult to compare

WHO values and inter-laboratory values (Menkveld et al., 2011).

Internal quality control (IQC) monitors precision and external

quality control (EQC) monitors the accuracy and stability of the

methods, so both are important complementary processes to

assess the analytical reliability of the technique.

Eustache and Auger have demonstrated wide inter-operator

variability in France in the assessment of the percentage of nor-

mal forms and the detail of abnormalities according to the modi-

fied David classification (Eustache & Auger, 2003): during an

external quality assessment program using projected images, the

CV for the percentage of normal forms was 40% with a percent-

age of normal forms ranging from 6 to 39%. The most reliable

CV was for the MAI (12%), acrosome abnormalities (26%), misa-

ligned midpieces (23%), and absent tails (25%). Some abnormal-

ities reach extremely high CVs (thin head 72%, thin midpiece

114%, short tail 145%). Other authors reported strong inter-

operator variability (CV between 21 and 65%) (Davis & Gravance,

1993; Matson, 1995; Ombelet et al., 1998; Keel et al., 2000; Wang

et al., 2014). These authors suggested that even with the strict

criteria recommended by the latest manual, it is still difficult for

evaluators to give a precise assessment, particularly for head

defects. In another study (Wang et al., 2014), the CV for the vari-

ous abnormalities ranged from 4.80% (irregular caliber) to

132.97% (thin midpiece), and the coefficients of agreement

(kappa test) for specific defects such as head defects, asymmetri-

cal midpiece, or coiled-in tail were all <0.40 and were considered

fair or slight. For some types of defect, such as ‘tapered’, ‘pyri-

form’, and ‘amorphous’ spermatozoa, agreement was low:

tapered (0.067; 0.243; 0.029), pyriform (0.134; 0.303; 0.199), and

amorphous (0.061; 0.306; 0.084). The authors concluded that the

main reason for such poor agreements is that the criteria of

these defects are abstract and difficult to grasp.

Evidently, tightening the rules for defining a normal spermato-

zoon will affect the result. In a study of 8846 men, van den

Hoven et al. highlighted a dramatic decrease in the percentage

of normal forms between 1986 and 2011, from 30–80% to 0–10%

related to changes in the assessment methodology (correspond-

ing to the different versions of the WHO manual from 1980 to

the strict criteria of 2010) (van den Hoven et al., 2015). However,

according to a Chinese study, the precisely defined criteria for

sperm morphology normalcy in the 5th edition of the WHO
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laboratory manual are less strict than the more subjective crite-

ria of the 4th edition. This is shown in the same population by

the significantly higher percentage of normal forms according to

the 5th edition (26.50 � 5.06)% than to the 4th edition

(11.39 � 3.17)% (p < 0.05) (Zhang et al., 2011a). Morbeck et al.

(2011) found a relationship between sperm morphology and

pregnancy rate in intra-uterine insemination (IUI) during the

years 1996–1997, whereas this relationship was not present in

2005–2006 due to a marked difference in the use of the classifica-

tion in their laboratory. This difference was related to changes in

technicians, differences in training, lack of quality control and

changes in international standards.

In a Chinese team (Yao et al., 2010), regular training sessions

for standardizing the assessment of morphological criteria

reduced inter-individual variability: the average difference

between three technicians decreased from 4.57% � 3.69% to

1.96% � 1.19% after training. Franken and Kruger (Franken &

Kruger, 2006) showed that competency in reading sperm mor-

phology could be acquired and maintained through training ses-

sions, external quality control programs and during annual

refresher courses. One interesting point was that only the techni-

cians who underwent regular training (five out of 19 in this

study) were able to maintain their competency for more than

40 months. The others showed a decline 6 to 9 months after the

initial training.

In a Belgian national External quality Control EQC of semen

analysis (Punjabi et al., 2016), 87 smears for sperm morphology

were distributed between 1998 and 2012 to about 120 partici-

pants each year. The median CV over this whole period was

79.4% (lower quartile 53.9, upper quartile 94.4). Even if CV

improved over the years with increasing use of WHO recommen-

dations, the CV remains very high for sperm morphology (be-

tween about 40 and 90% in 2012). The results of the Belgian EQC

program revealed large variability for sperm morphology and

much more acceptable variability for other semen analyses:

19.2% for sperm count, 15.1% for progressive motility. Another

report of the results of EQC in a program performed in 71 labora-

tories in the Tuscany region (Italy) showed a huge variability in

the procedures and the results (Filimberti et al., 2013). The high-

est variability was found for morphology (CV above 80% for all

the trials, range 88.6 – 105.6%). In this survey, sperm morphol-

ogy training courses made it possible to decrease variability to

some extent, but CVs still remained >50%, which is not

acceptable.

Evaluation of the accuracy of the test by EQC is difficult even

within a same group of peers (same technique), due to the inter-

laboratory variations mentioned. Therefore, we suggest that each

laboratory must regularly monitor the average value obtained on

its own samples for percentage of normal forms in order to

detect any deviation over time, because of difficulties in

interpreting EQC results.

Surprisingly, automated reading is not yet very widespread. In

automated reading, the operator’s influence on the assessment

of studied cells is reduced; however, some CASA systems require

an intervention to select cells for study. Additionally, automated

systems also help to archive data with images and videos that

are excellent materials for training staff. These systems seem to

offer better intra- and inter-individual reproducibility (Menkveld

& Kruger, 1995; Marnet et al., 2000) even if intra- and inter-

operator variability problems have already been reported on the

first automated systems. In the study of Menkveld et al. (Menk-

veld et al., 1997), the coefficients of variation (CV) were very high

(from 40 to 60%) not only for manual evaluation but also for

automated evaluation. So although automated evaluation is sim-

pler than manual assessment, training and quality control on

automated systems should not be neglected.

Staining technique: an important technical aspect

Before reading under a microscope, smear fixation and stain-

ing are mandatory. There is still considerable heterogeneity in

carrying out preparation, staining and smear reading tech-

niques. It is primordial to use staining techniques recommended

by the WHO (Papanicolaou, Diff-Quik and Shorr). Since osmo-

larity varies from one stain to another, cell size also varies as a

function of the technique used (van den Hoven et al., 2015).

Mortimer and Menkveld (Mortimer & Menkveld, 2001) recom-

mend Papanicolaou stain for the best morphological assess-

ment. The WHO manual also accepts the use of Shorr stain and

Diff-Quik stain. The latter techniques have the advantage of

being fast, but they provide fewer details of spermatozoon

appearance than the Papanicolaou stain (Mortimer & Menkveld,

2001). However, no statistically significant difference has been

observed when comparing Papanicolaou and Diff-Quik (Kruger

et al., 1987a; Menkveld et al., 1997). One study showed very dif-

ferent results between the Diff-Quik and TestSimplets methods

(TestSimplets is a quick staining procedure, without a fixation

step and using a wet mount on special slides) (Natali et al.,

2013) This highlighted the importance of using the same stains

for inter-laboratory comparisons, for application in decision-

making thresholds in ART or even for the proper use of reference

values published in the literature.

Pathophysiology of morphological abnormalities

The origin and impact of some morphological abnormalities

remain unknown, possibly because there is a physiological ele-

ment in the development of most of these abnormalities. How-

ever, some sperm morphology defects may be associated with

functional abnormalities such as changes in chromatin conden-

sation, defects in the acrosome reaction, problems with tail

motility or even an increase in phenomena of apoptosis or

necrosis (Menkveld et al., 1990; Bastiaan et al., 2003; Abu Has-

san Abu et al., 2012; Franken, 2015). There are also some specific

defects (affecting 99 or 100% of spermatozoa) associated with

genetic abnormalities such as globozoospermia, sperm macro-

cephaly syndrome, multiple tail abnormalities, or headless

spermatozoa.

Relationship between the percentage of normal forms and

functional abnormalities

Passage through the mucosa. Gneist et al. (2007) highlighted that

there was reduced glycodelin binding to normal-shaped male

gametes compared with abnormal spermatozoa (strict criteria).

Glycodelin is a seminal plasma protein which may play a role in

the suppression of capacitation. Decreased glycodelin adherence

may facilitate the passage of spermatozoa through cervical

mucus during natural conception (Gneist et al., 2007).

Binding to the zona pellucida and acrosome reaction. Abnormal

spermatozoa appear to have reduced ability to undergo

© 2017 American Society of Andrology and European Academy of Andrology Andrology, 2017, 5, 845–862 849
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acrosome reaction in response to binding to the zona pellucida

(Liu & Baker, 1994) or binding induced by calcium ionophore

(Liu & Baker, 1998).

The percentage of normal forms has been found to be signifi-

cantly correlated with the percentage of living spermatozoa that

have undergone acrosome reaction induced by binding to the

zona pellucida (r = 0.518; p < 0.0001; n = 92) (Abu Hassan Abu

et al., 2012), and to be inversely correlated with spontaneous

acrosome reaction rate (Parinaud et al., 1995). A significant cor-

relation has been shown between the percentage of normal

forms and the ability to fertilize hamster oocytes (Bronson et al.,

2007).

Despite these negative correlations demonstrated between

morphology and functional abnormalities, some authors con-

sider that morphology has a low predictive value for these func-

tional abnormalities (Bronson, 2016). Spermatozoa exhibiting

<5% of normal forms are in fact still able to effectively penetrate

zona free hamster oocytes (>95% of penetrated oocytes, (Bron-

son et al., 2007).

Relationship between the percentage of normal forms and

DNA integrity or chromatin quality

The percentage of normal forms has been significantly inver-

sely correlated to chromatin condensation by chromomycin A3

(r = �0.745; p < 0.0001; n = 92) (Abu Hassan Abu et al., 2012).

Correlation between the percentage of normal spermatozoa

and chromatin quality has also been demonstrated by other

authors (Franken et al., 1999; Esterhuizen et al., 2000), but

refuted by others (Beletti & Mello, 2004). In infertile patients,

polymorphism of the protamine 1 (PRM1) promoter gene is

associated with an increase in the protamine 1/protamine 2 ratio

and an alteration in sperm morphology (<9% Kruger), probably

related to the change in chromatin conformation (Gazquez

et al., 2008).

A significantly increased rate of disomic sperm evaluated by

FISH (X, Y, 8 probes) was found in 70 patients with isolated tera-

tozoospermia (<20% David) compared with 30 fertile controls,

with a correlation with head abnormalities: amorphous shaped

sperm were positively correlated with disomy X (r = 0.377,

p = 0.01) and total sex chromosome aneuploidy (r = 0.310,

p < 0.05), short tails were slightly but significantly correlated

with the incidence of disomy X (r = 0.293, p < 0.05), and disomy

XY (r = 0.287, p < 0.05) (Brahem et al., 2011). In another study,

the same team highlighted a significant increase in the rate of

disomy 18, X and Y in 30 patients with severe polymorphic tera-

tozoospermia (<20% David) compared with a group of 15 con-

trols with normal sperm parameters. Count and motility also

significantly differed between the two groups in this study

(Mehdi et al., 2012). However, a review and meta-analysis (Sun

et al., 2006) indicated that FISH studies did not show a specific

association between morphology and chromosomal abnormali-

ties, except in rare cases of monomorphic teratozoospermia

such as macrocephalic sperm syndrome. Studies in this meta-

analysis indicated that, like other forms of semen alteration

(oligozoospermia or asthenozoospermia), teratozoospermia is

associated with a very modest increase in chromosomal abnor-

malities. In this review, studies found that aneuploidy in men

with teratozoospermia and asthenoteratozoospermia was 2 to 3-

fold higher than in normal controls. (Ushijima et al., 2000)

reported that the oligoasthenoteratozoospermia group showed a

very moderate increase in frequency of disomy for chromosomes

13 (0.13% vs. 0.09%; p < 0.001), 21 (0.24% vs. 0.19%; p < 0.05),

sex (0.59% vs. 0.38%; p < 0.001), and diploidy (0.29% vs. 0.16%;

p < 0.005) compared with the control group. These correlations

between sperm morphology and aneuploidy, sometimes found

in ejaculated sperm, are not found after fertilization. Karyotype

data from spermatozoa after penetration in hamster oocytes do

not show any relationship between chromosomal abnormalities

and sperm morphology in fertile men and in men carrying

translocations (Amelar et al., 1973; Balkan & Martin, 1983; Mar-

tin, 1984; Martin et al., 1987; Sun et al., 2006).

Concerning DNA fragmentation abnormalities, Brahem et al.

(2011) also reported a significantly increased rate of fragmented

DNA measured using TUNEL assay in their teratozoospermic

population compared with a fertile population. This is not in

agreement with results obtained by other teams, who found no

clear relationship between sperm morphology and the degree of

DNA damage (Evenson et al., 1999; Donnelly et al., 2001; Trisini

et al., 2004). Trisini et al. and Donnelly et al. found no correla-

tion between either the percentage of normal forms (strict crite-

ria) and DNA integrity (Comet assay) or between specific head

abnormalities (deformed head, macrocephaly) and DNA integ-

rity. Evenson et al. found only a very weak correlation (r = 0.21

to 0.31; p < 0.05) between sperm chromatin structure assay

(SCSA) and morphology (strict criteria).

A recent work (Jenkins et al., 2016) has investigated a possible

association between different sperm parameters (which

included sperm head morphology) and DNA methylation mark-

ers in mature spermatozoa. These authors found no difference

in overall methylation and regional methylation profiles for

specific genes subject to parental imprint between the normal

morphology group (>30% normal heads) and the group with

<30% of normal heads.

Pathophysiology of certain abnormalities

Head abnormalities

Microcephalic heads. These are defined as a head <3.5 lm in

length and 2.5 lm in width and are often associated with acro-

some abnormalities (Menkveld et al., 2011). In in vitro fertiliza-

tion (IVF) and even in intra-cytoplasmic sperm injection (ICSI),

fertilization rates are low but can be improved by more stringent

selection of spermatozoa before micro-injection (Kihaile et al.,

2003) (selection of spermatozoa with a more oval head during an

ICSI procedure). Gandini et al. (2000) highlighted a correlation

between DNA fragmentation using TUNEL and the presence of

microcephalic heads.

Total globozoospermia syndrome. Globozoospermia (spermato-

zoa with round heads and no acrosome) is a rare syndrome (in-

cidence <0.1% of infertile men) responsible for male infertility

(Holstein et al., 1973). The presence of 100% globozoospermato-

zoa in the ejaculate defines the total syndrome. A combination

of several defective mechanisms may be involved in the forma-

tion of the spermatozoon during spermiogenesis and may lead

to lack of acrosome formation, which is sometimes associated

with cytoskeletal abnormalities (Longo et al., 1987). Over the last

three decades, the etiology of these reported cases is still unclear

but genetic causes have been found, notably in families with
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globozoospermic brothers. In men, the first identified mutation

responsible for total globozoospermia was a homozygous muta-

tion of the SPATA 16 gene (Dam et al., 2007). This gene is

expressed in testicular tissues, and it encodes for a fusion pro-

tein whose expression was located using immunofluorescence

on the Golgi apparatus and on the pro-acrosomal vesicle in the

spermatids, giving rise to speculation of a crucial role during

acrosome formation during spermiogenesis. In 2011, Koscinski

et al. (2011) identified the DPY19L2 deletion as a major cause of

globozoospermia. This deletion of 200 kb encompasses only

gene DPY19L2 on chromosome 12. The frequency of heterozy-

gous deletion is evaluated at 1/222. In human spermatozoa, it

has a role in acrosome formation and elongation of the sperma-

tozoa. Three recent studies confirmed the high prevalence of

DPY19L2 gene alterations in patients with globozoospermia

from different ethnicities and geographical origins (Coutton

et al., 2012; Elinati et al., 2012; Zhu et al., 2013). Homozygous

deletions represent 26.7 to 73.3% of DPY19L2 mutations. The fer-

tilization rate even after ICSI remained low. Oocyte activation

(in particular with calcium ionophore) could improve the preg-

nancy rate significantly when dealing with globozoospermia

(Chansel-Debordeaux et al., 2015).

Thin (modified David classification) or elongated heads (strict crite-

ria). A increasing incidence of thin heads, from 2 to 10%, was

reported during experimental scrotal hyperthermia of 6 to

24 months duration (Mieusset et al., 1987). A similar finding was

also observed in varicocele with a decrease from 14% to 6.4%

after embolization (p < 0.01) (Prasivoravong et al., 2014). Elon-

gated heads are often associated with tail insertion abnormali-

ties, residual cytoplasmic material and aneuploidies (Prisant

et al., 2007).

Macrocephaly. Patients with macrocephalic sperm syndrome

have 100% macrocephalic spermatozoa, with large irregular

heads, sometimes an abnormal midpiece and acrosome, and

multiple tails (on average, 3.6 per head). They present primary

infertility. Ultrastructural study revealed a significant 3-fold

increase in nuclear volume (Escalier, 1983). Teratozoospermia is

generally associated with asthenozoospermia. A high rate of ane-

uploidy and polyploidy has been reported in patients with this

syndrome (Achard et al., 2007; Perrin et al., 2008; Coutton et al.,

2015). It is likely that this syndrome results from nondisjunction

of the chromosomes or defective cytokinesis during the first or

second mitotic division. Homozygous mutations have been

identified in the central part of the distal region of the long arm

of chromosome 19: the AURKC gene (Dieterich et al., 2009; El

Kerch et al., 2011; Ben Khelifa et al., 2014; Eloualid et al., 2014;

Ounis et al., 2015). This gene is involved in chromosome segre-

gation and cytokinesis during spermatogenesis. AURKC is part

of the Aurora kinase family that has a key role in the control of

mitosis and meiosis (Coutton et al., 2015). AURKC is predomi-

nantly expressed in the testicles. The c.144delC deletion leads to

the synthesis of a truncated protein and is found in about 85% of

mutated alleles (Ben Khelifa et al., 2014). The prevalence of this

mutation in the heterozygous state is particularly high in the

Maghrebian population (1/50) (Dieterich et al., 2009). There

may be mosaic forms with a variable rate of macrocephalic

sperm and a lower rate of aneuploidy in these situations. Where

100% of spermatozoa are affected by an identified AURKC

mutation, ICSI is ineffective and contraindicated, and sperm

donation may be suggested to the couple (Perrin et al., 2008).

Cases of macrocephaly (aside from the previously described

genetic syndrome) occur after treatment with sulfasalazine for

ulcerative colitis and Crohn’s disease. The abnormality may dis-

appear when treatment is discontinued or if sulfasalazine is

replaced by mesalazine (Toth, 1979; Cosentino et al., 1984).

Headless spermatozoa and non-inserted tail defects

These abnormalities are also called decapitated sperm syn-

drome or ‘pin heads’, and have not been widely studied. They

arise from a defect in distal centriole migration during spermio-

genesis. The resulting phenotype has no head, a head-midpiece

attachment defect, or both. To date, no genetic abnormality has

been identified. Micro-injection of spermatozoa with a head-

midpiece attachment defect leads to fertilization which is not

followed by pro-nuclear fusion or cleavage (Chemes et al., 1987,

1999).

Residual cytoplasmic material

Some authors differentiate cytoplasmic droplets (normal

events) from excess residual cytoplasm, i.e. when cytoplasmic

residue is present around the spermatozoon midpiece in exces-

sive quantity (Rengan et al., 2012). Normally, a human sperma-

tozoon retains a small cytoplasmic droplet around the midpiece

after the spermiogenesis process. Physiological cytoplasmic dro-

plets have functional significance and are involved in hyperacti-

vation, capacitation and the acrosome reaction (Rengan et al.,

2012). Retention of excessive cytoplasm around the midpiece is

due to incomplete cytoplasmic extrusion. In comparison with

the typical cytoplasmic droplet found in normal ejaculated

human spermatozoa, excess residual cytoplasm contains ele-

vated levels of cytoplasmic enzymes that produce pathological

quantities of reactive oxygen species (ROS) (Gomez et al., 1996;

Rengan et al., 2012). Excess residual cytoplasm is more abun-

dant: its area is 30% greater than the sperm head area. The inci-

dence of excess residual cytoplasm (not including physiological

cytoplasmic droplets) is very low in fertile men (Auger et al.,

2016).

Tail abnormalities

These abnormalities systematically lead to asthenozoosper-

mia. There are various abnormalities (absent, short, angular or

irregular tails) and they are sometimes combined with sperma-

tozoa head abnormalities.

In 1977, Eliasson et al. highlighted that a congenital defect of

the cilia combined with a dynein defect in the tail is the cause of

chronic respiratory infections and male sterility. Three of the six

patients studied had situs inversus, corresponding to Kartagener

syndrome (Eliasson et al., 1977). It was noteworthy that the tails

appeared normal under optical microscopy despite functional

disorders (immobility).

Thick tails or irregular tails are sometimes associated with

periaxonemal abnormalities (Feneux et al., 1985). Other authors

highlighted correlations between certain tail characteristics eval-

uated by optical microscopy and axonemal anomalies demon-

strated by electron microscopy (Mitchell et al., 2015).

The various flagellar anomaly phenotypes associated with

genetic mutations have already been described as ‘short tails’,

‘stump tails’ or ‘dysplasia of the fibrous sheath’ (Neugebauer
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et al., 1990; Chemes et al., 1998; Davila Garza & Patrizio, 2013).

Ben Khelifa et al. (2014) combined this heterogeneous group

under the term of multiple morphological abnormalities of the

sperm flagella. (Ben Khelifa et al., 2014). Genetic abnormalities

have been identified leading to phenotypes including angled

tails and/or acrosome abnormalities, such as mutations of the

solute carrier family 26 (SLC26A8) or septin 12 (SEPT12) (Kuo

et al., 2012; Dirami et al., 2013; Coutton et al., 2015). Among

patients presenting a more serious phenotype with 100% tail

abnormalities, 28% had a mutation on the DNAH1 gene, which

encodes for an inner dynein heavy chain. This mutation may be

associated with general axonemal disorganization, including

mislocalization of microtubule doublets and loss of the inner

dynein arms (Ben Khelifa et al., 2014).

The percentage of coiled spermatozoa (not counting the heads

in the coil) has a very low correlation with age (r = 0.26;

p = 0.003) and epididymal alpha-glucosidase (r = 0.016;

p < 0.01). Coiled spermatozoa are associated with heavy smok-

ing and varicocele (Yeung et al., 2009).

The level of expression of TCP11 (human y-complex protein

11) is 70% less in samples containing high rates of spermatozoa

with coiled tails (Liu et al., 2011). Their results show that TCP11

interacts with ODF1 (a major component of outer dense fibers)

that plays a role in flagellar morphogenesis.

Morphological abnormalities and exposure to specific

environmental factors or clinical contexts: tobacco and

cannabis, temperature, obesity, testicular cancer, varicocele,

urogenital infections

Tobacco and cannabis

Most studies on this topic showed that tobacco consumption

has little impact on sperm morphology (Hoidas et al., 1985;

Pacey et al., 2014), although they varied in their methods for

assessing sperm morphology (Jeng et al., 2014). Pacey et al.

(2014) showed that men aged ≤30 years who used cannabis in

the 3 months prior to sample collection were more likely to have

sperm morphology <4% normal forms (strict criteria, WHO

2010) (OR = 1.94, 95% CI 1.05–3.60). These authors hypothesized

that the cannabinoid receptor pathway had an impact on chro-

matin remodeling, as in mouse spermatids (Chioccarelli et al.,

2010).

Polychlorinated biphenyls (PCBs)

Men exposed to PCBs and dibenzofurans have alterations in

sperm morphology (Hsu et al., 2003). The percentage of abnor-

mal forms (WHO 1992 criteria) was increased in the group

exposed to PCBs compared with the non-exposed group (27.5 vs.

23.3%; p = 0.04).

Temperature

MacLeod & Gold (1951)found a significant decrease in sperm

motility and sperm morphology in medical students after a feb-

rile event (chickenpox and pneumonia), with recovery 4 weeks

later. For Carlsen et al. (2003), the percentage of normal forms

was reduced by 7.4% (� 11.6 � 3.0) after a febrile event during

the post-meiotic period of spermatogenesis (spermiogenesis). A

regular and significant increase in abnormal forms (from <30%
to more than 50%) and of some abnormalities (mainly thin

heads) has been reported during experimental scrotal

hyperthermia (Mieusset et al., 1987). Mieusset et al. observed

that recovery began a few days after hyperthermia was discon-

tinued. This suggests that temperature has an impact on remod-

eling of the spermatozoon head during spermiogenesis and

epididymal transit. However, the percentage of normal forms

did not return to its baseline level until 8 months after discontin-

uation of exposure, and a longer period was necessary for some

abnormalities of the midpiece and tail. The impact of tempera-

ture is complex and probably also affects the first stages of sper-

matogenesis. In 1992, a Danish study found a significant

decrease in normal forms in 17 welders who were exposed to

radiant heat for 6 weeks compared with a control group of 73

unexposed welders (Bonde, 1992). Another study showed a

decrease in normal forms in semen samples from Roman taxi

drivers compared with a group of 50 controls matched for age

and tobacco use (45.8% vs. 64.0%, p < 0.05) (Figa-Talamanca

et al., 1996). However, we must consider the possible influence

of other risk factors in such studies.

Some authors have observed that the season affects sperm

morphology (Zhang et al., 2013; Pacey et al., 2014), but not

others (Gyllenborg et al., 1999; Jorgensen et al., 2001).

Obesity

No relationship was found between obesity and sperm mor-

phology (Pacey et al., 2014; Eisenberg et al., 2015) although an

increase of time-to-pregnancy has been observed in couples

whose BMI was ≥35 kg/m2 compared with leaner couples (BMI

<25 kg/m2) (Sundaram et al., 2017).

Testicular cancer

According to a recent study, patients with testicular cancer

show an increase in some abnormalities: microcephalic sper-

matozoa, abnormalities of the post-acrosomal region, acroso-

mal defects, excessive residual cytoplasm and short tails

(Auger et al., 2016). It still remains unclear how this disease

interferes with sperm morphogenesis. Several mechanisms

seem to be involved. Moreover, fever during the disease could

also have an impact. Patients with testicular cancer present

oligoasthenoteratozoospermia before any treatment (Rives

et al., 2012). Alteration of sperm quality before any treatment,

is due to the effect of the tumor itself or because testicular

germ cell tumors is more frequent in men with other testicu-

lar disease (Giwercman et al., 1989; Moller et al., 1996; Hor-

wich et al., 2006; Bujan et al., 2013). Several explanations

have been proposed for sperm alteration before cancer treat-

ment, such as cryptorchidism (a well documented risk factor).

However, other causes could be suggested, such as

tumor-associated secreted factors or stress (Bujan et al.,

2013). Moreover, testicular germ cell tumors are linked in part

to the testicular dysgenesis syndrome (Skakkebaek et al.,

2001), which also leads to defective spermatogenesis.

Varicocele

Sperm morphology assessment (Kruger) revealed a decrease

in normal forms in patients with varicocele (Zumrutbas et al.,

2013). In another study (Yeung et al., 2009), 43 men with varico-

cele had a significantly higher rate of coiled tails compared with

384 patients without varicocele (mean � SEM 10.8 � 0.9% vs.

9.0 � 0.3%, respectively, p = 0.027). This type of result is difficult

to interpret, as it depends on the analytical reliability of the
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technique (see section 4 Analytical performances of sperm mor-

phology assessment).

Urogenital infections

Zhang et al. (Zhang et al., 2011b) showed a significant

decrease in the percentage of normal forms in Ureaplasma ure-

alyticum-positive sperm samples compared with negative sam-

ples and with fertile controls. These results are not in agreement

with previous work (Sanocka-Maciejewska et al., 2005). More-

over, in the study of Zhang et al., there are no data on conven-

tional sperm parameters other than sperm morphology.

Question on the clinical value of assessment of the frequency

of each detailed abnormality in addition to the percentage of

normal forms

Sperm abnormalities are sometimes correlated with particular

clinical situations, but with a very moderate sensitivity and

specificity (see section 4). The question thus arises of whether it

is clinically relevant to systematically evaluate specific abnor-

malities in fertility check-ups. Most laboratories systematically

count the different abnormalities, while 47.7% of clinicians

interviewed do not take them into consideration (Gatimel et al.,

2016). This is probably due to the very moderate clinical rele-

vance of these different abnormalities, apart from the rare

monomorphic abnormalities syndromes. The frequency of each

morphological abnormality is significantly higher in infertile

men than in fertile men (Auger et al., 2016). The latter is the first

report on the distribution of the different abnormalities of the

head, the midpiece and the tail in a group of fertile men. The

WHO 2010 manual does not recommend systematic detailing of

abnormalities. Furthermore, the major problem with the assess-

ment of these abnormalities is the very wide range of intra- and

inter-operator variability (Eustache & Auger, 2003; Wang et al.,

2014) (see section 4 Analytical performances of the sperm mor-

phology assessment). This is unacceptable given the current rec-

ommendations in terms of quality assurance to ensure the

reliability of analyses (ISO 15189 standard (Vassault, 2013)).

PROGNOSTIC VALUE OF SPERM MORPHOLOGY
ASSESSMENT BEFORE ART

Impact of sperm morphology on intra-uterine insemination

(IUI) outcomes

It has been shown that the results of IUI are strongly depen-

dent, where male parameters are concerned, on the number of

motile spermatozoa after preparation (Monraisin et al., 2016).

The minimum threshold for number of motile spermatozoa after

preparation recommended for inseminations is 1 million (WHO

recommendations, 2010). There is no consensus for morphology.

The impact of the percentage of normal forms (NF) on the rate

of pregnancy by intrauterine insemination (IUI) is still debated

(Table 2).

Before 2011, some studies (Hauser et al., 2001; Van Waart

et al., 2001; Lee et al., 2002; Spiessens et al., 2003; Shibahara

et al., 2004; Grigoriou et al., 2005; Badawy et al., 2009; Nikbakht

& Saharkhiz, 2011) showed that the rate of pregnancy by IUI was

higher for a NF value greater than a defined threshold (most

often 4% using strict criteria). However, other studies (Karabinus

& Gelety, 1997; Check et al., 2002) found no significant impact of

morphology on pregnancy rate. A review and meta-analysis (Van

Waart et al., 2001) included 18 original articles, of which 6 were

statistically analyzed. These 6 studies used the Tygerberg strict

criteria. This meta-analysis concluded on ‘a significant improve-

ment in pregnancy rate above the 4% threshold for strict crite-

ria’. In this meta-analysis, the threshold values showing an

impact of spermatozoa morphology on pregnancy rates was 4%

in most cases when the strict criteria were used and ranged from

8% (Comhaire et al., 1995) to 50% (Francavilla et al., 1990) when

the WHO criteria (1987, 1992) were used. However, most of these

studies did not concern isolated teratozoospermia, and impor-

tant male and female characteristics were lacking in the publica-

tions included in the meta-analysis.

The study of Ombelet et al. (Ombelet et al., 1997c) showed an

impact of morphology on pregnancy rates after IUI only when

the number of motile spermatozoa after preparation was <1 mil-

lion, a threshold under which IUI is not recommended in any

circumstances.

Recent publications on the subject found no significant differ-

ence in pregnancy rates in IUI cycles between groups with or

without isolated teratozoospermia (Sun et al., 2012; Deveneau

et al., 2014; Lockwood et al., 2015; Lemmens et al., 2016). In

their retrospective study, (Deveneau et al., 2014) included not

only male infertility but also female causes of infertility (ovula-

tory in particular). Confounding factors were examined by multi-

variate analysis. These variables included history of pregnancy,

the age of the two members of the couple, the number of cycles,

the type of cycle (natural or stimulated), and the various infertil-

ity diagnoses. This study showed that the number of motile sper-

matozoa after preparation is the most significant factor

influencing the rate of pregnancy and that morphology should

not affect indications of IUI.

Contradictory results in the literature are probably linked to

the wide range of intra- and inter-laboratory variations in mor-

phology assessment by technicians, differences in staining

methods, in the way teratozoospermia is defined (<5%, <15%,

etc.) and of course, in the characteristics of the studied popula-

tion: duration of infertility, female factors (age, ovarian reserve),

cause of infertility. The progress of ART techniques has led to a

change in the characteristics of the population treated by IUI.

In a prospective study (Erdem et al., 2016), the percentage of

normal forms (before and after preparation) was significantly

higher in patients who achieved a live birth, but only in the male

infertility subgroup and not in the unexplained infertility group.

In a retrospective study of 1166 couples and 4251 cycles, Lem-

mens et al. (2016) found that sperm parameters (WHO 5th edi-

tion criteria) had no predictive value for the likelihood of

pregnancy. In this same study, a multivariate model showed,

quite strikingly, that ongoing pregnancy rates were moderately

negatively influenced by a percentage of normal forms >4%
(Lemmens et al., 2016).

Impact of sperm morphology on conventional in vitro

fertilization (IVF) outcomes

In 1986, Kruger et al. described a sperm morphology assess-

ment method known as the Kruger/Tygerberg criteria as a pre-

dictive factor for conventional IVF success (fertilization and

pregnancy rates). Chances of success were low when normal

forms (NF) were between 0 and 4%, intermediate when NF were

between 5 and 14% and normal when NF >14% (Kruger et al.,

1986). In 1998, a structured literature review (Coetzee et al.,
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1998) showed that in more than 80% (a total of 18) of studies

conducted between 1976 and 1996, the percentage of normal

forms was positively associated with successful IVF (fertilization

rate and clinical pregnancy rate) when the 5% or 14% threshold

was used. One of these studies (Enginsu et al., 1991) also found

that the fact of correlating the morphology assessment to the

sperm preparation test results offered a better predictive value

for the likelihood of success for classic IVF. Thereafter, other

studies confirmed the results of this meta-analysis and recom-

mended ICSI below the 5% threshold for normal forms, regard-

less of the count and motility values (Marnet et al., 2000; Gunalp

et al., 2001; Menkveld et al., 2001). However, this strategy was

undermined by several studies that did not find a significant

decrease in the likelihood of pregnancy after IVF in the case of

teratozoospermia (Ombelet et al., 1994; Terriou et al., 1997; Kee-

gan et al., 2007; Lundin, 2007).

Although many studies found that semen parameters other

than morphology, motility (Hirsch et al., 1986; Comhaire et al.,

1988; De Geyter et al., 1992; Marnet et al., 2000) or concentra-

tion (Liu & Baker, 1988; Biljan et al., 1994) are also positively

associated with fertilization and/or pregnancy, number of stud-

ies also showed that association between sperm morphology

and IVF outcome was independent of any of the other semen

parameters (Mahadevan & Trounson, 1984; Kruger et al., 1986;

Oehninger et al., 1988; Liu & Baker, 1990; Grow et al., 1994).

Most published studies found that teratozoospermia had an

impact on conventional IVF outcomes.

Impact of sperm morphology on intra-cytoplasmic sperm

injection (ICSI) outcomes

In practice, in cases of male infertility, the choice between

IUI or IVF and ICSI is not very dependent on morphology

because, on the one hand, there is no applicable recommen-

dation, and on the other hand, teratozoospermia is very fre-

quently associated with severe oligoasthenozoospermia

(OATS), which is an immediate indication for ICSI. But if

sperm parameters are only moderately altered, does isolated

teratozoospermia justify recourse to ICSI? In 2011, a system-

atic review and meta-analysis (Hotaling et al., 2011) studied

the relationship between severe isolated teratozoospermia

(<5% with the strict criteria) and clinical pregnancy rate after

conventional IVF or ICSI through four retrospective studies

(Lundin et al., 1997; Osawa et al., 1999; Keegan et al., 2007;

Dubey et al., 2008). These studies provided precise data on

conventional sperm parameters in the control group and the

teratozoospermia group, with no statistically significant differ-

ence in the demographics of the men and women studied.

They included 2853 IVF/ICSI cycles with 673 men with severe

teratozoospermia and 2183 men without severe teratozoosper-

mia. Teratozoospermia was not associated with lower clinical

pregnancy rates either with IVF or with ICSI. Two of these

four studies (Osawa et al., 1999; Keegan et al., 2007) con-

cluded that the results of IVF/ICSI were not affected by sev-

ere teratozoospermia. (Dubey et al., 2008) concluded that

among couples treated by IVF (without ICSI), men with nor-

mal sperm parameters were much more likely to achieve a

pregnancy than those with teratozoospermia (OR 3.19; 95%

CI: 1.1 to 9.0). In a sub-analysis of IVF-ICSI couples, (Lundin

et al., 1997) suggested that severe teratozoospermia increased

the risk of poor results more than three-fold compared with

normal sperm (OR 3.36; 95% CI: 1.53 to 7.40) (OR 3.36; 95%

CI: 1.53 to 7.40).

In a retrospective study on 332 ICSI cycles, Sariibrahim

et al. (Sariibrahim et al., 2013) found no statistically signifi-

cant difference between their three groups defined according

to Kruger strict criteria (<4%; 4–14%, >14%) with regard to the

rates of fertilization, implantation, clinical pregnancy, and live

births. In a retrospective study including 3922 conventional

IVF and 843 ICSI procedures, Li et al. (Li et al., 2014) demon-

strated that the rate of fertilization decreased with the per-

centage of normal forms with strict criteria in conventional

IVF but not in ICSI. In a recent study (van den Hoven et al.,

2015), the percentage of normal forms appeared to be corre-

lated with ongoing pregnancy rates with an OR of 1.06 [1.02–

1.16] in conventional IVF (n = 2323) but not in ICSI

(n = 1353). A statistically significant relationship has been

observed between a decrease in the percentage of normal

forms and lower chances of ongoing pregnancy in conven-

tional IVF, with, however, an area under the curve of only

0.54. The authors conclude that sperm morphology is not a

good tool for predicting the ongoing chances of pregnancy

through either IVF or ICSI. Another study compared the

results after randomization between IVF or ICSI on sibling

oocytes in a group of patients with isolated teratozoospermia

(<4% strict criteria) (n = 183) and a group of patients with all

normal sperm parameters (n = 258). They found no signifi-

cant difference in fertilization rates, day 3 embryonic mor-

phology, pregnancy and spontaneous abortion rates between

the groups in either IVF or ICSI (Fan et al., 2012).

Except for some specific severe teratozoospermia such as

globozoospermia, no study has found that a total absence of

normal forms has absolute predictive value for fertilization rate

during IVF or ICSI. As shown by French et al., 2010; sperm mor-

phology is of low predictive value in ICSI: no ICSI outcomes (fer-

tilization, rate, blastulation rate, implantation rate, pregnancy

rate) were decreased in their subgroup with 0% of normal forms

(French et al., 2010).

Regarding ICSI, most publications agree that the percentage of

normal forms is not predictive of either fertilization rates or

pregnancy rates (Mansour et al., 1995; Nagy et al., 1995; Oehnin-

ger et al., 1996; Svalander et al., 1996; Lundin et al., 1997; Suk-

charoen et al., 1998; Host et al., 1999; Osawa et al., 1999;

McKenzie et al., 2004; Keegan et al., 2007; French et al., 2010;

Berger et al., 2011). The main arguments explaining the lack of

correlation between sperm abnormalities shown by sperm mor-

phology assessment and the results of ICSI attempts are that the

micro-injection makes it possible to bypass some of the obsta-

cles encountered during natural processes, and that, during an

ICSI attempt, the spermatozoon used for fertilization is not very

representative of the whole population.

We must note the lack of any randomized controlled trials in

the field, the large variations of the thresholds used between

studies (even when the same classification is used) and the

numerous biases of most retrospective studies. Using WHO 2010

recommendations, no studies are yet available on the value of

sperm morphology assessment in IVF, and only two retrospec-

tive studies have been published for IUI with opposite results

(Table 1). The decision to assign a couple to conventional IVF or

ICSI must be based mainly on the number of total motile sper-

matozoa after selection.

© 2017 American Society of Andrology and European Academy of Andrology Andrology, 2017, 5, 845–862 855

SPERMMORPHOLOGY ASSESSMENT: A REVIEW ANDROLOGY



CONCLUSION
For more than 30 years, numerous authors have endeavored

to explain the pathophysiology of human sperm morphological

abnormalities. They have highlighted correlations between the

percentage of normal forms, some sperm functional abnormali-

ties, and spontaneous fertility. The physiological nature of most

morphological ‘traits’ of human spermatozoa makes sperm mor-

phology very difficult to interpret. With the exception of the

diagnosis of some very rare specific defects linked to genetic dis-

orders (globozoospermia, macrocephaly, decapitated sperm

syndrome, and fibrous sheath dysplasia) which could be easily

done when assessing conventional sperm parameters on fresh

sample, sperm morphology assessment has a very poor clinical

impact not only in diagnostic investigation but also in the choice

of ART technique. Moreover, since there are huge technical vari-

ations in morphology assessments from one laboratory to

another, the published thresholds of normal sperm morphology

used to assist in the choice of ART technique or to assess prog-

nosis are not transposable. To be defined as a diagnostic test,

sperm morphology assessment must fulfill, as other diagnostic

tests, at least 3 successive criteria: analytic reliability, clinical

validity and clinical utility. We have largely shown that sperm

morphology assessment does not even fulfill the first criterion.

Regarding its clinical validity defined as its ability to predict a

clinical phenotype with good sensitivity and specificity, there are

only very few studies reporting such values for sperm morphol-

ogy assessment. Guzick et al. (2001) found no threshold of nor-

mal forms giving both sensitivity and specificity above 60%.

Recently, a study argued that sperm morphology was of little

clinical value, showing that men with a complete absence of nor-

mal sperm morphology exhibited high rates of spontaneous

pregnancy without assisted reproduction (Kovac et al., 2017). In

this cohort of 24 men identified with 0% NF and 27 randomly

selected men with ≥4% NF as controls, 29.2% of the men with

0% NF obtained a spontaneous pregnancy (controls = 55.6%,

p ≤ 0.05) after a median follow-up time of 2.5 years. Finally,

clinical utility is estimated through prospective, randomized

controlled trials in order to demonstrate the added value of the

test on the clinical management or outcome. We cannot find real

examples of studies to validate this criterion.

The lack of analytical reliability of this test is arises from

heterogeneity in the preparation and reading of smears, lack

of knowledge and homogeneity of classification systems, lack of

measures to maintain technicians’ and biologists’ skills and, of

course, the subjective nature of morphological assessment.

We suggest that, for laboratories who continue to perform

sperm morphology assessment, it is becoming urgent and

essential:

• to conduct internal and external quality control programs and

regular refresher courses to maintain technicians’ skills and

biologists’ knowledge,

• to regularly monitor the average value obtained by the labora-

tory for percentage of normal forms because of difficulties in

interpreting EQC results,

• to end systematic determination of the frequency of each

morphological abnormality in view of their clinical relevance

and as they are sources of even very high variability. Such

analysis should only be performed upon request during a

specific andrological investigation.

• to discontinue the recording of any index of multiple defects

(MAI, TZI, SDI) as there is very little evidence in the literature

of its clinical interest.

Twenty years ago, Ombelet et al. (1997b) concluded that ‘lack

of standardization of sperm morphology assessments remains

the main reason for the debatable usefulness of this parameter

in the laboratory evaluation of semen’. We have to concede that

this situation has not changed in 2017. For all these reasons, we

seriously question the utility of systematic sperm morphology

assessment whileanalytical problems are not completely

resolved and until its clinical use is clearly codified through a

consensus.
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