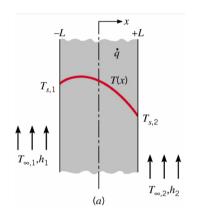
4.4 Parede plana com geração



Eq. do calor:
$$\frac{d^2T}{dx^2} + \frac{q'''}{k} = 0$$

Solução geral:

$$T(x) = -\frac{q'''}{2k}x^2 + C_1x + C_2$$

Exemplos de condição de contorno: $T(-L) = T_{s,1}, T(+L) = T_{s,2}$

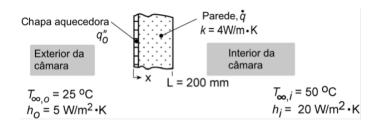
$$C_1 = \frac{T_{s,2} - T_{s,1}}{2L}$$
 $C_2 = \frac{q'''}{2k}L^2 + \frac{T_{s,1} + T_{s,2}}{2}$

$$T(x) = \frac{q'''L^2}{2k} \left(1 - \frac{x^2}{L^2} \right) + \frac{T_{s,2} - T_{s,1}}{2} \frac{x}{L} + \frac{T_{s,1} + T_{s,2}}{2}$$

Fluxo depende de x, analogia elétrica não pode ser usada.

Exercício 7

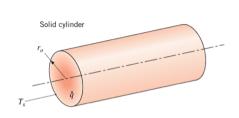
Ar no interior de uma câmara a $T_{\infty,i} = 50\,^{\circ}\text{C}$ é aquecido por convecção, com $h_i = 20\,\text{W}/(\text{m}^2 \cdot \text{K})$, através de uma parede com 200 mm de espessura, condutividade térmica de $4\,\text{W}/(\text{m} \cdot \text{K})$ e com geração uniforme de calor a uma taxa de $1000\,\text{W}/\text{m}^3$. Para evitar que o calor gerado no interior da parede seja perdido para o lado de fora da câmara, a $T_{\infty,o} = 25\,^{\circ}\text{C}$ e com $h_o = 5\,\text{W}/(\text{m}^2 \cdot \text{K})$, um aquecedor elétrico delgado é colocado sobre a superfície externa da parede para fornecer um fluxo térmico uniforme, q_o'' .



- a) Esboce a distribuição de temperatura na parede, em um sistema de coordenadas T-x, para a condição em que nenhum calor gerado no seu interior é perdido para o lado de fora da câmara.
- b) Quais são as temperaturas nas superfícies da parede, T(0) e T(L), para as condições da parte (a)?
- c) Determine o valor de q''_o que deve ser fornecido pelo aquecedor elétrico de modo que todo o calor gerado no interior da parede seja transferido para o interior da câmara.

d) Se a geração de calor na parede for interrompida e o fluxo fornecido pelo aquecedor elétrico permanecer constante, qual será a temperatura em regime estacionário, T(0), na superfície externa da parede.

Cilindro com geração



Eq. do calor:
$$\frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) + \frac{q'''}{k} = 0$$

Solução geral:

$$T(r) = -\frac{q'''}{4k}r^2 + C_1 \ln r + C_2$$

Exemplos de condição de contorno:

• Simetria:
$$\frac{dT}{dr}\Big|_{r=0} = 0 \implies C_1 = 0$$

• $T(r_o) = T_s \implies C_2 = T_s + \frac{q'''}{4k}r_o^2$

$$T(r) = \frac{q'''}{4k}\left(r_o^2 - r^2\right) + T_s$$

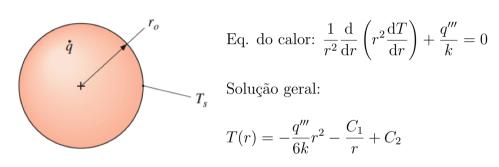
•
$$T(r_o) = T_s$$
 \Rightarrow $C_2 = T_s + \frac{q'''}{4k}r_o^2$

$$T(r) = \frac{q'''}{4k} (r_o^2 - r^2) + T_s$$

Exercício 8

Um cabo de cobre, com 30 mm de diâmetro e resistência elétrica de $5 \times 10^{-3} \,\Omega/\text{m}$, conduz uma corrente elétrica de 250 A. O cabo está exposto ao ar ambiente a 20 °C, onde o coeficiente de transferência de calor por convecção é $25 \, \text{W}/(\text{m}^2 \cdot \text{K})$. Quais são as temperaturas na superfície e no centro do cabo de cobre?

4.6 Esfera com geração



Exemplos de condição de contorno:

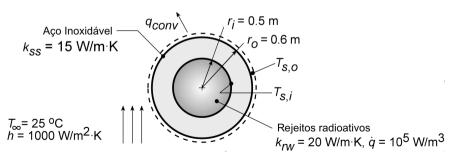
• Simetria:
$$\frac{dT}{dr}\Big|_{r=0} = 0 \implies C_1 = 0$$

• $T(r_o) = T_s \implies C_2 = T_s + \frac{q'''}{6k}r_o^2$

$$T(r) = \frac{q'''}{6k}\left(r_o^2 - r^2\right) + T_s$$

Exercício 9

Rejeitos radioativos $[k_{rw} = 20 \,\mathrm{W/(mK)}]$ são armazenados em um recipiente esférico de aço inoxidável $[k_{ss} = 15 \,\mathrm{W/(m \cdot K)}]$, com raios interno e externo iguais a $r_i = 0.5 \,\mathrm{m}$ e $r_o = 0.6 \,\mathrm{m}$, respectivamente. Calor é gerado no interior dos rejeitos a uma taxa volumétrica uniforme de $q''' = 10^5 \,\mathrm{W/m^3}$, e a superfície externa do recipiente está exposta a uma corrente de água na qual $h = 1000 \,\mathrm{W/(m^2 \cdot K)}$ e $T_{\infty} = 25 \,\mathrm{^{\circ}C}$.



- a) Calcule a temperatura da superfície externa do recipiente, $T_{s,o}$, em condições de regime estacionário.
- b) Calcule a temperatura da superfície interna do recipiente, $T_{s,i}$, em condições de regime estacionário.
- c) Obtenha uma expressão para a distribuição de temperatura, T(r), nos rejeitos radioativos. Represente o seu resultado em termos de r_i , $T_{s,i}$, k_{rw} e q'''. Calcule a temperatura em r=0.