Introdução à Transferência de Calor

PME3398

Prof. Antonio Luiz Pacífico

1° Semestre de 2019

Conteúdo da Aula

- Definições
- Origens Físicas e Equações das Taxas de Transferência
- Conservação da Energia
- 4 Exercícios

Definição de Transferência de Calor

Transferência de calor é energia em trânsito devido a uma diferença de temperatura.

Nomenclatura que será utilizada:

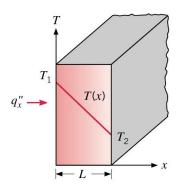
- $Q \equiv \text{Calor } [J];$
- $\dot{Q} \equiv$ Taxa de transferência de calor [J/s \equiv W];
- q ≡ Calor por unidade de massa [J/kg];
- $\dot{q}' \equiv$ Taxa de transferência de calor por unidade de comprimento [W/m];
- q" ≡ Taxa de transferência de calor por unidade de área ≡ Fluxo de calor [W/m²];
- q''' ≡ Taxa de transferência de calor por unidade de volume ≡
 Taxa de geração volumétrica [W/m³].

Modos de Transferência de Calor

Os três modos de transferência de calor são: condução, convecção e radiação.

Condução através de um sólido ou fluido estacionário	Convecção de uma superfície para um fluido em movimento	Transferência líquida de calor por radiação entre duas superfícies
$T_1 > T_2 \qquad T_2 \qquad T_2 \qquad T_3 = T_3 \qquad T_4 = T_4 = T_4 = T_5 $	$T_{s} > T_{\infty}$ Fluido em movimento, T_{∞} $\xrightarrow{\qquad \qquad } q''$ $\xrightarrow{\qquad \qquad } T_{s}$	Superficie, T_1 q_1'' q_2''

OBS: na figura, $q'' \equiv \dot{q}''$ segundo nossa nomenclatura.



Condução

O termo condução de calor é utilizado para se referir à transferência de calor, devida ao gradiente de temperatura em um meio estacionário, através de um meio que, na sua grande maioria é um sólido (vibrações nos retículos e migração de elétrons), mas também pode ser um fluido (difusão de energia).

O mecanismo físico da condução envolve conceitos de atividade atômica e molecular, que sustenta a transferência de energia das partículas mais energéticas para as partículas de menor energia de uma substância devido às interações que existem entre as partículas.

Condução

Para o modo de condução de calor a equação do fluxo de calor é conhecida como **Lei de Fourier**. Para uma parede plana unidimensional, como a ilustrada ao lado, essa lei é dada por:

$$\dot{q}_{x}^{"}=-k\cdot\frac{dT}{dx}$$

nesta equação k é uma constante de proporcionalidade conhecida como **condutividade térmica** (W/m.K ou W/m.°C). O sinal negativo é consequência do fato de que calor é sempre transferido no sentido da diminuição da temperatura. OBS: na figura, $q_x'' \equiv \dot{q}_x''$ segundo nossa nomenclatura.

Condução

Em condições de regime permanente, para a qual a distribuição de temperatura é linear numa parede plana unidimensional (o porque disso será visto no próximo capítulo), pode-se escrever:

$$\frac{dT}{dx} = \frac{T_2 - T_1}{L} : \dot{q}_x'' = -k \cdot \frac{T_2 - T_1}{L} = k \cdot \frac{T_1 - T_2}{L}$$

A taxa de transferência de calor é obtida multiplicando-se o fluxo de calor pela área ortogonal à direção do fluxo de calor, A, na parede:

$$\dot{Q}_{x}=A.\dot{q}_{x}^{\prime\prime}$$

Convecção

O termo *convecção* refere-se à transferência de calor que ocorre entre uma superfície (sólida ou líquida) e um fluido em movimento ou estacionário, quando estes se encontram em temperaturas diferentes.

A transferência de calor por convecção envolve dois mecanismos de troca de calor:

- o movimento molecular aleatório (condução);
- o movimento global, macroscópico, do fluido (advecção).

Na convecção as *camadas limite hidrodinâmica e térmica* desempenham papel fundamental.

Convecção

A Lei do resfriamento de Newton estabelece que:

$$\dot{q}''=h.\left(T_{s}-T_{\infty}
ight)$$

onde h é o coeficiente de proporcionalidade entre \dot{q}'' e (T_s-T_∞) conhecido como **coeficiente de transferência de calor por convecção** (W/m².K ou ou W/m².°C)). h também é conhecido como coeficiente de película. OBS: na figura, $q'' \equiv \dot{q}''$ segundo nossa nomenclatura.

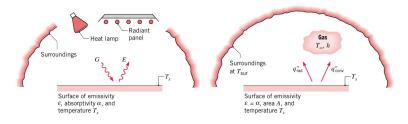
Convecção

A convecção é classificada em função da natureza e localização relativa do escoamento.

Natureza do escoamento:

- Convecção forçada: escoamento causado por meios externos, como ventiladores, vento, etc.;
- Convecção natural (ou livre): escoamento induzindo por forças de empuxo (diferenças entre massas específicas devido a gradientes de temperatura no fluido);

Localização relativa do escoamento:


- Convecção externa: superfícies e corpos imersos no fluido;
- Convecção interna: escoamento contido em superfícies e dutos.

A Radiação térmica é a energia emitida por toda matéria que se encontra a uma temperatura não-nula. Não é necessário a existència de um meio material entre dois ou mais corpos que trocam calor por radiação, porém a existência de um meio afeta esta troca. Como é um fenômeno associado à matéria, esta pode estar em qualquer fase: sólida, líquida ou gasosa.

As emissões de energia são atribuídas a mudanças nas configurações eletrônicas dos átomos ou moléculas que constituem a matéria. O transporte da radiação é feito por ondas eletromagnéticas.

Defini-se **irradiação**, *G*, ao fluxo de calor, proveniente que qualquer corpo e/ou matéria, que incide sobre uma superfície; e **poder emissivo** de um corpo, *E*, ao fluxo de calor que emerge de uma superfície (ou que é emitido por uma superfície).

OBS: na figura, $q''_{rad}\equiv \dot{q}''_{rad}$ e $q''_{conv}\equiv \dot{q}''_{conv}$ segundo nossa nomenclatura.

A **Lei de Stefan-Boltzmann** estabelece que o limite superior para o poder emissivo, E_b , é dado por:

$$E_b = \sigma . T_s^4$$

onde E_b é conhecido como poder emissivo de um corpo negro; T_s é a temperatura absoluta da superfície; e σ é a constante de Stefan-Boltzmann, cujo valor é $\sigma = 5,67 \times 10^{-8} \text{ W/m}^2\text{.K}^4$.

Para uma superfície real seu poder emissivo, E, é menor que E_b e é dado por:

$$E = \varepsilon . E_b = \varepsilon . \sigma . T_s^4$$

onde ϵ é uma propriedade da <u>superfície</u> denominada **emissividade**, sendo que $0 \leqslant \epsilon \leqslant 1$.

Uma parte ou toda da irradiação pode ser <u>absorvida</u> pela superfície, aumentando assim a energia interna do material. A fração da irradiação que é absorvida por uma superfície é dada pela **absortividade** da superfície, α ($0 \le \alpha \le 1$). Assim, chamando G_{abs} ao fluxo de calor absorvido pela superfície a partir de uma irradiação, G, que o atinje, tem-se que:

$$G_{abs} = \alpha.G$$

Quando α < 1 significa que uma parte da irradiação pode ser <u>refletida</u> ou <u>transmitida</u> ou ambas.

Define-se **superfície cinza difusa** à superfície que apresenta como propriedade $\alpha=\epsilon$. Para supefícies deste tipo, o fluxo líquido de radiação deixando a superfície é dado por:

$$\dot{q}_{rad}^{"} = \varepsilon \cdot E_b(T_s) - \alpha \cdot G = \varepsilon \cdot \sigma \left(T_s^4 - T_{viz}^4\right)$$

Conservação da Energia em Volumes de Controle

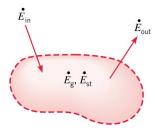


Figura: subscritos: in $\equiv e$; out $\equiv s$; $g \equiv g$; e st $\equiv arm$. Note que $\dot{q}''' = \dot{E}_{a}/V$

Num volume de controle, as taxas (ou quantidades) de energias térmica e mecânica que entram, \dot{E}_e ou E_e , mais a taxa (ou \dot{E}_{out} quantidade) de energia térmica gerada, \dot{E}_g ou E_g , menos as taxas (ou quantidades) de energias térmica e mecânica que saem, \dot{E}_s ou E_s , deve ser igual à taxa de aumento (ou aumento da quantidade) de energia armazenada no seu interior, dE_{arm}/dt ou ΔE_{arm} . Matematicamente:

$$\dot{E}_e + \dot{E}_g - \dot{E}_s = \frac{dE_{arm}}{dt}$$

$$E_e + E_g - E_s = \Delta E_{arm}$$

Conservação da Energia em Superfícies de Controle

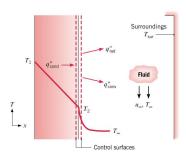


Figura:
$$q''_{cond} \equiv \dot{q}''_{cond}$$
; $q''_{conv} \equiv \dot{q}''_{conv}$; $q''_{rad} \equiv \dot{q}''_{rad}$; $T_{sur} \equiv T_{viz}$.

Superfícies de controle não possuem massa e volume. Assim, os termos \dot{E}_g ou E_g e dE_{arm}/dt ou ΔE_{arm} não existem. Deste modo:

$$\dot{E}_e - \dot{E}_s = 0$$

$$E_e - E_s = 0$$

Na figura ao lado,

$$\dot{q}_{cond}^{\prime\prime}-\dot{q}_{conv}^{\prime\prime}-\dot{q}_{rad}^{\prime\prime}=0$$

$$-k \cdot \frac{T_2 - T_1}{I} - h.(T_2 - T_{\infty}) - \varepsilon.\sigma.(T_2^4 - T_{viz}^4) = 0$$

Exercício de Aula 1

Enunciado: Uma placa de alumínio, com 4 mm de espessura, encontra-se na posição horizontal e a sua superfície inferior está isolada termicamente. Um fino revestimento especial é aplicado sobre sua superfície superior de tal forma que a mesma pode ser considerada uma superfície cinza com emissividade 0,50. A massa específica ρ e o calor específico c do alumínio são iguais a 2700 kg/m³ e 900 J/(kg.K), respectivamente.

- (a) Considere condições nas quais a placa está à temperatura de 25 °C e a sua superfície superior é subitamente exposta a uma corrente de ar com $T_{\infty}=20$ °C estando numa câmara cujas paredes estão a 150 °C. O coeficiente de transferência de calor por convecção entre a superfície e o ar é de h=20 W/(m².K). Qual é a taxa inicial da variação de temperatura da placa?
- (b) Qual será a temperatura de equilíbrio da placa quando as condições de regime estacionário forem atingidas?

