Entropia Aplicada a Sistemas

PME3398

Prof. Antonio Luiz Pacífico

1° Semestre de 2019

Conteúdo da Aula

- Desigualdade de Clausius e Variação de Entropia
- Cálculo da Entropia
- Principio do Aumento da Entropia
- Processos Isoentrópicos
- 5 Exercícios

Desigualdade de Clausius

A Desigualdade de Clausius estabelece que para qualquer sistema percorrendo um ciclo termodinâmico:

$$\oint \left(\frac{\delta Q}{T}\right)_{fronteira} \leqslant 0$$

A mesma desigualdade pode ser escrita na forma:

$$\oint \left(\frac{\delta Q}{T}\right)_{\text{fronteira}} = -\sigma_{\text{ciclo}}$$

onde:

- $\sigma_{ciclo} = 0$ para ausência de irreversibilidades no sistema;
- $\sigma_{ciclo} > 0$ para presença de irreversibilidades no sistema;
- σ_{ciclo} < 0 impossível;

Variação de Entropia

 σ_{ciclo} deve ser entendida como a *entropia gerada* por irreversibilidades internas durante o ciclo.

Figura: Caminhos de dois ciclos internamente reversíveis.

$$\begin{split} \left(\int_{1}^{2} \frac{\delta Q}{T}\right)_{A} + \left(\int_{2}^{1} \frac{\delta Q}{T}\right)_{C} &= -\sigma_{\text{ciclo}} = 0\\ \left(\int_{1}^{2} \frac{\delta Q}{T}\right)_{B} + \left(\int_{2}^{1} \frac{\delta Q}{T}\right)_{C} &= -\sigma_{\text{ciclo}} = 0 \end{split}$$

Variação de Entropia

 $\sigma_{\text{ciclo}} = 0$ uma vez que os ciclos são compostos de processos internamente reversíveis.

$$\left(\int_{1}^{2} \frac{\delta Q}{T}\right)_{A} = \left(\int_{1}^{2} \frac{\delta Q}{T}\right)_{B}$$

Uma vez que os caminhos A e B são arbitrários, segue-se que a integral de $\delta Q/T$ tem o mesmo valor para qualquer processo internamente reversível. Assim, esta integral depende apenas dos estados inicial e final.

Variação de Entropia

Conclui-se, portanto, que a integral de $\delta Q/T$ representa a variação de uma propriedade do sistema. A tal propriedade da-se o nome de **ENTROPIA** e para ela utiliza-se o símbolo S:

$$S_2 - S_1 = \left(\int_1^2 \frac{\delta Q}{T}\right)_{int_rev}$$

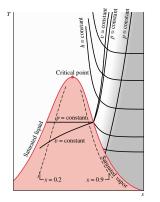
Na forma diferencial:

$$dS = \left(\frac{\delta Q}{T}\right)_{int\ rev}$$

No SI a sua unidade é o \mathbf{J}/\mathbf{K} e a entropia específica, s, é dada em $\mathbf{J}/\mathbf{kg}.\mathbf{K}$.

Entropia - Propriedade do Sistema

Tabelas de Propriedades


Table T-2 Properties of Saturated Water (Liquid-Vapor): Temperature Table

Temp.	Press.	Specific Volume m³/kg		Internal Energy kJ/kg		Enthalpy kJ/kg			Entropy kJ/kg · K		
		Sat. Liquid $v_f \times 10^3$	Sat. Vapor v _g	Sat. Liquid u _f	Sat. Vapor u _g	Sat. Liquid h _f	Evap.	Sat. Vapor h _g	Sat. Liquid	Sat. Vapor	Temp.
.01	0.00611	1.0002	206.136	0.00	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	.01
4	0.00813	1.0001	157.232	16.77	2380.9	16.78	2491.9	2508.7	0.0610	9.0514	4
5	0.00872	1.0001	147.120	20.97	2382.3	20.98	2489.6	2510.6	0.0761	9.0257	5
6	0.00935	1.0001	137.734	25.19	2383.6	25.20	2487.2	2512.4	0.0912	9.0003	6
8	0.01072	1.0002	120.917	33.59	2386.4	33.60	2482.5	2516.1	0.1212	8.9501	8
10	0.01228	1.0004	106.379	42.00	2389.2	42.01	2477.7	2519.8	0.1510	8.9008	10
11	0.01312	1.0004	99.857	46.20	2390.5	46.20	2475.4	2521.6	0.1658	8.8765	11
12	0.01402	1.0005	93.784	50.41	2391.9	50.41	2473.0	2523.4	0.1806	8.8524	12
13	0.01497	1.0007	88.124	54.60	2393.3	54.60	2470.7	2525.3	0.1953	8.8285	13
14	0.01598	1.0008	82.848	58.79	2394.7	58.80	2468.3	2527.1	0.2099	8.8048	14
15	0.01705	1.0009	77.926	62.99	2396.1	62.99	2465.9	2528.9	0.2245	8.7814	15
16	0.01818	1.0011	73.333	67.18	2397.4	67.19	2463.6	2530.8	0.2390	8.7582	16
17	0.01938	1.0012	69.044	71.38	2398.8	71.38	2461.2	2532.6	0.2535	8.7351	17
18	0.02064	1.0014	65.038	75.57	2400.2	75.58	2458.8	2534.4	0.2679	8.7123	18
19	0.02198	1.0016	61.293	79.76	2401.6	79.77	2456.5	2536.2	0.2823	8.6897	19
20	0.02339	1.0018	57.791	83.95	2402.9	83.96	2454.1	2538.1	0.2966	8.6672	20
21	0.02487	1.0020	54.514	88.14	2404.3	88.14	2451.8	2539.9	0.3109	8.6450	21

Para região de saturação: $s = (1 - x).s_f + x.s_a$

Entropia - Propriedade do Sistema

Diagramas $T \times s$ e $h \times s$

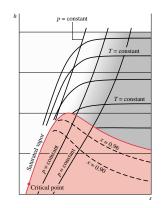


Diagrama temperatura-entropia

Diagrama entalpia-entropia

Cálculo de Entropia - Equação T.ds

1^a Lei da Termodinâmica para Sistemas, forma diferencial:

$$dU = \delta Q - \delta W$$

Para processos internamente reversívies:

$$(\delta Q)_{int_rev} = T.dS$$

$$(\delta W)_{int_rev} = p.dV$$

Portanto:

$$dU = T.dS - p.dV : T.dS = dU + p.dV$$

Uma vez que H = U + p.V, segue-se que:

$$T.dS = dH - V.dp$$

Valem as mesmas equações para propriedades específicas: u, s e h.

Dividindo as Equações T.ds por T, integrando-as, e utilizando as definições de calores específicos a volume constante, C_{v0} , e a pressão constante, C_{p0} , que, para gases ideais são funções apenas da temperatura, chega-se a:

$$s(T_2, p_2) - s(T_1, p_1) = \int_{T_1}^{T_2} C_{v0}(T) \cdot \frac{dT}{T} + R \cdot \ln \frac{v_2}{v_1}$$

$$s(T_2, p_2) - s(T_1, p_1) = \int_{T_1}^{T_2} C_{p0}(T) \cdot \frac{dT}{T} - R \cdot \ln \frac{p_2}{p_1}$$

Por definição, para gases ideais, s=0 para T=0 K e p=1 atm. Define-se, assim, para um processo isobárico: $s^o=\int_0^T \frac{C_{p0}(T)}{T}\cdot dT$.

$$s(T_2, p_2) - s(T_1, p_1) = s^o(T_2) - s^o(T_1) - R \cdot \ln \frac{p_2}{p_1}$$

Facilidade em tabelar valores para gases.

Cálculo de Entropia - Sólidos e Líquidos usando Calor Específico

Salvos casos muitíssimos particulares, sólidos e líquidos podem ser assumidos como *incompressíveis*. Assim, pode-se escrever,

$$dh = du + d(p.v) \approx du + v.dp$$

Além disso, para ambas as fases, o volume específico é muito pequeno. Deste modo, para maioria dos casos práticos:

$$dh \approx du \approx C.dT$$

onde C é o calor específico a volume constante ou à pressão constante, uma vez que os dois são praticamente os mesmos nestas fases, porém possuem valores diferentes em cada fase.

Cálculo de Entropia - Sólidos e Líquidos usando Calor Específico

Assim, como $T.ds = du + p.dv \approx du$ e $T.ds = dh - v.dp \approx dh$, segue-se que,

$$ds pprox rac{du}{T} = rac{dh}{T} pprox rac{C}{T} \cdot dT$$

que após integração, resulta em,

$$s_2 - s_1 \approx C \cdot \ln \frac{T_2}{T_1}$$

Balanço de Entropia para Sistemas

$$S_2 - S_1 = \int_1^2 \left(\frac{\delta Q}{T}\right)_{fronteira} + \sigma$$

- $S_2 S_1 \rightarrow \text{variação de entropia (pode ser } <, > \text{ou = 0)};$
- $\int_{1}^{2} \left(\frac{\delta Q}{T}\right)_{fronteira}$ \rightarrow transferência de entropia (pode ser <, > ou = 0);
- $\sigma \rightarrow$ geração de entropia (sempre \geqslant 0).

Balanço de Entropia para Sistemas

Aspectos importantes:

- A entropia de um sistema só pode crescer por adição de calor ou por irreversibilidade;
- A entropia de um sistema só pode diminuir por remoção de calor;
- A entropia de um sistema não pode diminuir durante um processo adiabático. Assim, a variação de entropia de um sistema isolado não pode ser negativa;
- Todos os processos adiabáticos e reversívies são isoentrópicos; no entanto, todos os processos de variação nula de entropia não são necessariamente adiabáticos e reversíveis. A entropia final pode ser igual à inicial no processo se a remoção de calor equilibrar as irreversibilidades:
- A entropia é uma propriedade que não se conserva: não existe um princípio de conservação da entropia

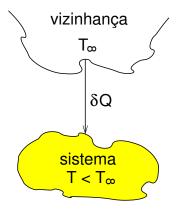
Taxa de Variação de Entropia

Uma equação que forneça a taxa de variação de entropia em um sistema é importante para que seja possível a análise do comportamento temporal dos processos.

A equação do balanço de entropia na forma diferencial é dada por:

$$dS = \frac{\delta Q}{T} + \delta \sigma$$

que dividida por δt resulta em,


$$\frac{dS}{\delta t} = \frac{1}{T} \cdot \frac{\delta Q}{\delta t} + \frac{\delta \sigma}{\delta t} \left(\bigstar \right)$$

Taxa de Variação de Entropia

Como a fronteira de um sistema pode apresentar diversas regiões com n temperaturas diferentes, a integração da Eq. (\bigstar) deve levar isso em consideração resultando em:

$$\frac{dS}{dt} = \sum_{i=1}^{n} \frac{1}{T_i} \cdot \dot{Q}_i + \dot{\sigma}$$

Valem os mesmos comentários (aspectos importantes) mencionados anteriormente, adaptando-os ao conceito de taxa.

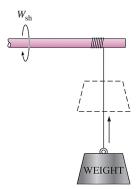
Variação de entropia para o sistema:

$$dS_{sis}\geqslant rac{\delta Q}{T}$$

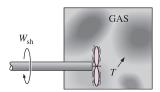
Variação de entropia para a vizinhança:

$$dS_{viz} = -rac{\delta Q}{T_{\infty}}$$

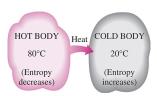
Variação de entropia para o universo:


$$dS_{\textit{universo}} = dS_{\textit{sis}} + dS_{\textit{viz}} \geqslant \frac{\delta Q}{T} - \frac{\delta Q}{T_{\infty}} \geqslant \delta Q \cdot \left(\frac{1}{T} - \frac{1}{T_{\infty}}\right)$$

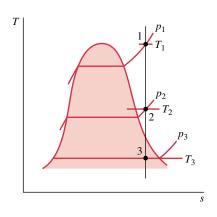
Como $T_{\infty}\geqslant T$ a quantidade $\left(\frac{1}{T}-\frac{1}{T_{\infty}}\right)\geqslant 0$. Como δQ é positivo, segue-se que:

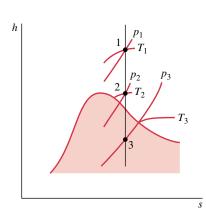

$$dS_{universo} \geqslant 0$$

NÃO EXISTEM PROCESSOS QUE ACARRETAM A DIMINUIÇÃO DA ENTROPIA DO UNIVERSO.


A energia utilizada na forma de trabalho para o levantamento de um peso não causa desordem (entropia). Consequentemente não há degradação da energia durante o processo. Há alinhamento das moléculas no eixo (todas giram na mesma direção e sentido).

O trabalho realizado pela pá causa o aumento da temperatura do gás aumentando o nível de desordem (entropia). Assim, há degradação da energia durante o processo. As moléculas colidem desordenadamente com as pás. A quantidade de moléculas que colidem numa direção e sentido contra as pás é praticamente igual à das moléculas que se chocam contra as pás na mesma direção e sentido oposto.




Calor é uma forma de transferência de energia de modo desorganizado. Deste modo, na sua transferência essa desorganização é transportada (entropia). O nível de desordem para o corpo quente diminui, mas o do corpo frio aumenta. A 2ª Lei da Termodinâmica estabelece que o aumento de entropia do corpo frio seja maior (em módulo) que a diminuição da entropia do corpo quente. Assim, o aumento da entropia do sistema combinado é positivo, sempre.

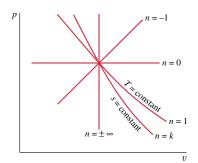
Processos Isoentrópicos

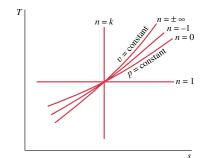
Para substâncias puras

Para gases ideais:

$$0 = s^{o}(T_{2}) - s^{o}(T_{1}) - R \cdot \ln \frac{p_{2}}{p_{1}} \therefore p_{2} = p_{1} \cdot \exp \left[\frac{s^{o}(T_{2}) - s^{o}(T_{1})}{R} \right]$$

Admitindo-se calores específicos constantes:


$$0 = C_{v0} \cdot \ln \frac{T_2}{T_1} + R \cdot \ln \frac{v_2}{v_1} ; 0 = C_{p0} \cdot \ln \frac{T_2}{T_1} - R \cdot \ln \frac{p_2}{p_1}$$


$$k = \frac{C_{p0}}{C_{v0}} ; C_{p0} - C_{v0} = R ; C_{v0} = \frac{R}{k-1} ; C_{p0} = \frac{k \cdot R}{k-1}$$

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{(k-1)/k} ; \frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{k-1} ; \frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)^k$$

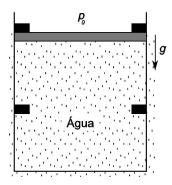
Processos Isoentrópicos

Processos politrópicos:

Enunciado: Um conjunto cilindro-pistão contém 1 kg de amônia que está, inicialmente, a 50 °C e 1 MPa. Determine o trabalho realizado e o calor transferido quando o fluido é expandido:

- a) De modo isotérmico e reversível até que a pressão atinja 100 kPa;
- b) De modo isobárico e reversível até que a temperatura atinja 140 °C;
- c) Num processo adiabático reversível, até que a temperatura atinja $-10~^{\circ}\text{C}$.

Enunciado: Dois quilos de CO₂ são comprimidos de 120 kPa e 27 °C para 480 kPa em um volume rígido. Calcule a variação de entropia.


Enunciado: Uma massa de ar de 0,2 kg é comprimida lentamente de 150 kPa e a 40 °C para 600 kPa em um processo adiabático. Determine o volume final.

Enunciado: Uma forma de fundição contém 25 kg de areia a 200 °C. Ela é, então, mergulhada num tanque com 50 L de água e que inicialmente estava a 15 °C. Admitindo que a transferência de calor para o meio seja nula e que não ocorra evaporação de água, calcule a variação líquida de entropia que ocorre até que a forma e a água entrem em equilíbrio térmico. Dado: $C_{areia} = 0.8 \text{ kJ/(kg.K)}$.

Enunciado: Dois quilos de ar são armazenados em um recipiente rígido de 2 m³ com uma temperatura inicial de 300 °C. Calor é transmitido do ar até que a pressão alcance 120 kPa. Calcule a mudança de entropia do ar e do sistema universo, se as imediações estão a 27 °C.

Enunciado: Um conjunto cilindro-pistão isolado contém, inicialmente, R-134a a 1 MPa e 50 °C e, nesta condição, o volume da câmara é 100 L. O R-134a, então, expande, provocando o movimento do pistão, até que a pressão no cilindro atinja 100 kPa. Alega-se que o R-134a realiza 190 kJ de trabalho neste processo. Como você julga esta alegação?

Enunciado: A figura mostra um conjunto cilindro pistão que, inicialmente, contém água a 1 MPa e 500 °C, e o pistão encosta no esbarro superior. O volume da câmara é 1 m³ quando o pistão repousa sobre o esbarro inferior e é igual a 3 m³ quando o pistão está encostado no esbarro superior. A pressão atmosférica e a massa do pistão são tais que a pressão na câmara é igual a 500 kPa guando o pistão está localizado entre os esbarros. O conjunto, é, então, resfriado, transferindo-se calor para o meio que apresenta temperatura igual a 20 °C, até que a temperatura atinia 100 °C. Determine a entropia gerada neste processo.

