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Abstract

The response of metals to high-strain-rate deformation is successfully described by physically-based mechanisms which
incorporate dislocation dynamics, twinning, displacive (martensitic) phase transformations, grain-size, stacking fault, and solution
hardening effects. Several constitutive equations for slip have emerged, the most notable being the Zerilli–Armstrong and MTS.
They are based on Becker’s and Seeger’s concepts of dislocations overcoming obstacles through thermal activation. This approach
is illustrated for tantalum and it is shown that this highly ductile metal can exhibit shear localization under low temperature and
high-strain-rate deformation, as predicted from the Zerilli–Armstrong equation. A constitutive equation is also developed for
deformation twinning. The temperature and strain-rate sensitivity for twinning are lower than for slip; on the other hand, its
Hall–Petch slope is higher. Thus, the strain rate affects the dominating deformation mechanisms in a significant manner, which
can be quantitatively described. Through this constitutive equation it is possible to define a twinning domain in the Weertman–
Ashby plot; this is illustrated for titanium. A constitutive description developed earlier and incorporating the grain-size
dependence of yield stress is summarized and its extension to the nanocrystalline range is implemented. Computational
simulations enable the prediction of work hardening as a function of grain size; the response of polycrystals is successfully
modeled for the 50 nm–100 m range. The results of shock compression experiments at pulse durations of 3–10 ns (this is
two–three orders less than gas-gun experiments) are presented. They prove that the defect structure is generated at the shock
front; the substructures observed are similar to the ones at much larger durations. A mechanism for dislocation generation is
presented, providing a constitutive description of plastic deformation. The dislocation densities are calculated which are in
agreement with observations. The threshold stress for deformation twinning in shock compression is calculated from the
constitutive equations for slip, twinning, and the Swegle–Grady relationship. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Crystalline metals can deform plastically by one (or
more) of the following mechanisms: slip, twinning,
displacive transformations, or diffusional creep pro-
cesses. Dislocations play a pivotal role in the first three
mechanisms, since they are the units of plastic shear. In
creep, a number of mechanisms involve dislocations,
either directly or through pipe diffusion. Grain-
boundary sliding and Coble creep may also involve
grain-boundary dislocations.

The current framework for understanding and quan-
titatively predicting the kinetics of the four mechanisms
of plastic deformation rests on the theory of thermally
activated processes. John Dorn, to whom this sympo-
sium is dedicated, applied this theory to creep and
developed a quantitative, physically based underpin-
ning for the processes involved. The Sherby–Dorn [1]
equation for predicting the stress–rupture life and the
Mukherjee–Bird–Dorn [2] equation for creep are two
cornerstones of our contemporary treatment of high-
temperature deformation and creep.

The objective of this paper is to present, in a synoptic
fashion, the research carried out by the authors over
the past 5 years, with emphasis on high-strain-rate
deformation. For clarity, this contribution is divided
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into four parts: (a) constitutive description of plastic
deformation by slip; (b) the slip– twinning transition;
(c) grain-size effects; and (d) the upper limit: shock
compression. Thermal activation is central to these
processes and is briefly reviewed first.

2. Constitutive description of plastic deformation by
slip

The seminal work by Becker [3] and Seeger [4–7]
provides the underpinning for the contemporary consti-
tutive description of plastic deformation of metals. The
basic concepts of Becker and Seeger were further devel-
oped by Conrad [8–10], Krausz and Eyring [11], Ono
[12], Vöhringer [13], Kocks and co-workers [14,15],
Klepaczco [16,17], and Zerilli and Armstrong [18,19].
There is a considerable number of assumptions underly-
ing the current constitutive models. We present below a
summary of the principal elements of this approach.
Greater detail is provided elsewhere [20,21]. The funda-
mental equation upon which these constitutive descrip-
tions rests is the commonly referred to ‘Arrhenius’
equation. It is instructive to analyze it into some detail,
since it is seldom if ever presented; the reader is simply
compelled to accept that dislocations obey this chemical
reaction relationship.

In 1889 Arrhenius observed that there is an ‘activated
state’ intermediate between reactants and products. He
suggested that the reaction rate was controlled by a rate
constant k � given by

k �=A exp
�−�Ee

kT
�

(1)

where A is a frequency factor and �Ee is the activation
energy for the process. This equation was based on
van’t Hoff’s equation describing the effect of the tem-
perature on the equilibrium constant for reactions.

However, the rigorous proof for this equation is rooted
in statistical mechanics and in Boltzmann statistics. The
movement of a dislocation requires it to pass through
an ‘activated state’. Quantum-mechanical consider-
ations are required to calculate the exact shape of the
potential-energy barriers facing a dislocation, and many
shapes were proposed. Current models use the shape
that provides the best fit of macroscopic mechanical
properties. We will present here, in a simplified manner,
how these concepts are derived. The Boltzmann law of
energy distribution is the most important equation of
statistical mechanics. The basic premise is that energy is
quantized and that the smallest quantity is h�, where h
is Planck’s constant and � is the frequency of vibration
of oscillator.

We consider N dislocations which are arrested by
obstacles; each dislocation is considered to be an oscil-
lator. The dislocations have different energy levels, and
the energy levels are quantized, i.e. they are discrete.
Each level is filled up with a specific number of disloca-
tions ni. It can be shown that the distribution of ni

dislocations, at energy levels �i, is an exponential func-
tion that is represented in Fig. 1 and is given by

ni=Ae−��i (2)

This is the Boltzmann distribution. The terms A and
� are parameters that express the distribution.

The probability that a dislocation has an energy
equal to or greater than E (the hatched region in Fig. 1)
is given by

pE=
A
��

E

e−��i d�i

A
��

0

e−��i d�i

=e−�E (3)

We now introduce the fundamental postulate of
statistical mechanics.

S=k ln W (4)

where S is the entropy, k is Boltzmann’s constant, and
W is the number of ways in which N objects (in our
case, dislocations) can be arranged. If we consider that
dislocations can occupy i energy levels, and that all ni

dislocations at a level i are undistinguishable, we have:

S
k

= ln
N !

n1!n2!n3!…
= ln

N !
�ni !

(5)

Using Stirling’s approximation:

ln W=
S
k

=N ln N−� ni ln ni (6)

Using Eqs. (2) and (3) and thermodynamic relation-
ships (see Meyers [21]), we show that �=1/kT and
arrive at the probability that a dislocation has an
energy greater than E :

Fig. 1. Boltzmann’s distribution of energy states applied to disloca-
tions.
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Fig. 2. Schematic of a dislocation overcoming barriers with the
assistance of thermal energy.

orientation parameter. The total transit time of a dislo-
cation is equal to the sum of the waiting time (at an
obstacle) and the travel time between obstacles. We
now assume that the transit time is negligible. This
waiting time, �t= tw, is the inverse of the successful
jump frequency, �1. When Eq. (10) is substituted in Eq.
(11), the strain rate becomes

d�

dt
=

�0�b�lA
M�

exp
�−�G

kT
n

(12)

The terms before the exponential term can be
grouped together and called �� 0:

�� =�� 0 exp
�−�G

kT
n

(13)

By solving for �G, one can obtain the equation

�G=kT ln
�� o
�� (14)

Remember that there are different barrier shapes that
can be considered and one would assume that different
shapes would give different constitutive equations. Fig.
2 shows a generic barrier and the assistance of thermal
energy as the temperature is increased from 0 K.
Whereas Seeger initially proposed a rectangular barrier,
Ono [12] compared square, triangular, parabolic, expo-
nential, etc. Kocks et al. [14] proposed a generalized
equation for these shapes with two parameters, p and q.
They said that their equation could fit any shape. Their
equation is of the form:

�G=�G0
�

1−
� �

�0

�pnq

(15)

By equating Eqs. (14) and (15), we arrive at a general
constitutive equation relating stress, strain rate, and
temperature. The stress is often decomposed into an
internal component due to long-range barriers, �G, that
cannot be assisted by thermal energy, and an effective
component, due to short-range barriers, �*, which is
thermally assisted.

In order to understand quantitatively the deforma-
tion behavior of metals, a constitutive description is
needed; the Zerilli–Armstrong model is used here for
illustration purposes. It has the advantage of being
simple and readily implementable, while capturing the
essential physical phenomena. Zerilli and Armstrong
[18,19] correctly pointed out that the activation vol-
umes in BCC and FCC metals are quite different, in
view of the different rate controlling mechanisms: in
FCC metals, the cutting of dislocations by forests is the
principal mechanism, whereas the overcoming of
Peierls–Nabarro barriers is the principal mechanism in
BCC metals. In FCC metals, the activation volume
decreases with plastic strain because of the increase in
dislocation density; in BCC metals, it is constant. Thus,
the constitutive equations take different forms. Zerilli

pE=e−E/kT (7)

We assume that the dislocation will overcome the
obstacle when its energy exceeds the height of the
obstacle, E. The PV (pressure multiplied by volume)
term is small in condensed solids and therefore the
internal energy E and enthalpy �H are approximately
equal. Thus:

p=exp
�

−
�H
kT

�
=exp

�
−

�G−T�S
kT

�
=exp−

�G
kT

exp−
�S
k

=A exp
�

−
�G
kT

�
(8)

The term exp(�S/k) is designated A.
All the modern constitutive equations are really

based on this expression. Basically, it says that, given a
barrier of a height �G, the probability that an entity (in
our case, a dislocation) will jump over the barrier is p.
As the temperature goes up, the probability increases
because thermal energy will provide the ‘kick’ that
allows the entity to jump over the barrier. The fre-
quency of successful jumps is related to the probability
by:

p=�1/�0 (9)

where �0 is the vibrational frequency of the dislocation
(considerably lower then the vibrational frequency of
an atom) and �1 is the frequency of successful jumps.
So:

�1=�0A exp
�

−
�G
kT

�
(10)

The Orowan equation (with an orientation factor M)
can now be applied to relate the strain to the movement
of the dislocations:

d�

dt
=

1
M

�b
�l
�t

(11)

where � is the dislocation density, b the Burgers vector,
�l the distance between dislocation barriers, and M an
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and Armstrong [18] developed a constitutive equation
for BCC metals and applied it to tantalum, based on
the results by Bechtold [22], Hoge and Mukherjee [23],
and Mitchell and Spitzig [24]. The constitutive equation
is given below:

�=�G+C1 e− (C3− C4, ln �� )T+K�n+kd−1/2 (16)

�G is the athermal portion of the stress, n the work
hardening, d the grain size, and C1, C3, C4, K, and k are
parameters. Tantalum was also used in our research
[25,26]. Because of the different chemistry and process-
ing history of material used in our research, a new set
of parameters for this model had to be determined from
experiments. The thermal and strain rate responses
were experimentally determined and are given in Table
1, along with the data of Hoge and Mukherjee [23]. To
minimize the deviation at high strain rates, the strain
hardening parameters were determined at a strain rate
of 3500/s and room temperature.

At high strain rates, there are interrupted tests de-
scribed by Meyers et al. [25] which provide a quasi-
isothermal curve, from which the adiabatic curve can
be obtained. These interrupted experiments were intro-
duced by Wittman et al. [27]. Fig. 3 presents the
experimental results and Z–A predictions. The continu-
ous lines in Fig. 3 a and b represent the application of
the Zerilli–Armstrong equation to the various tempera-
tures and strain rates of interest. Fig. 3c shows the
stress strain curves predicted from the Zerilli–Arm-
strong model under both isothermal and adiabatic con-
ditions at various temperatures and 3500/s. The
adiabatic temperature of the plastically deformed speci-
men was estimated by assuming the conversion of 90%
plastic work into heat. The adiabatic curves go through
a maximum beyond which the material softens. The
instability strain is taken as the maximum in the adia-
batic stress–strain curve and is mathematically ex-
pressed by:

d�

d�
= −C1(C3−C4 ln �� ) dT

d�
e− (C3−C4 ln �� )T+Kn�n−1=0

(17)

This equation has to be solved numerically. The
instability strain increases with temperature, as shown
in Fig. 3c; this is the direct result of the interplay

among the various parameters. In this particular case,
both the higher thermal softening rate (d�/dT) and
lower heat capacity, contribute significantly to a lower
instability strain at low temperatures. It also decreases
with increasing strain rate at 298 K, as shown by Fig.
3d. The Z–A predictions are corroborated by experi-
ment. Fig. 4 shows the cross-section of a specimen
tested at a strain of –0.6 in a Kolsky–Hopkinson bar,
at a strain rate of 5500 s−1 and temperature of 77 K.
There is clear and irrefutable evidence of shear localiza-
tion, in accordance with the predictions of Fig. 3 c and
d. The predicted strain for instability (a requirement for
localization) decreases with increasing strain rate and
decreasing temperature. It is concluded that physically-
based constitutive equations are essential components
of modern research on the mechanical behavior of
materials. The implementation of these equations into
codes, such as DYNA-2D, in the example shown in
Fig. 5, illustrates the realistic effects obtained. The
break-up of the material removed by the cutting tools
into discrete chips, due to adiabatic heating and shear
localization, is clearly shown.

At low temperatures and high strain rates, the Zer-
illi–Armstrong model prediction of yield stress is
higher than the experimental results; this is indicated by
an arrow in Fig. 3b. This is attributed to the change of
the predominant deformation mechanism from disloca-
tion slip to twinning at low temperatures and high
strain rates. Mechanical twinning was observed in high
strain rate testing at both 77 and 190 K. The current
constitutive models do not take the slip– twinning tran-
sition into effect, and Zerilli and Armstrong [28] have
recently discussed the importance of including twinning
into the constitutive response. The mechanical twins
formed at low temperatures are significantly different
from shock-induced twins reported by Murr et al. [29]
in the same tantalum. The low temperature twins are
usually larger in size and have a lower frequency in
occurrence. In shock compression, the high stress (45
GPa) provided a large driving force for mechanical
twinning which results in a high nucleation rate. The
size of twins was limited by the large number of twins
themselves (twin– twin intersections) and by the limited
time of pulse duration (1.8 �s); in contrast, the duration
of the stress pulse in the Hopkinson–Kolsky bar is
�100 �s.

Table 1
Parameters of Zerilli–Armstrong equation for tantalum

nC1 C3 C4 K�G+kd−1/2

197Chen et al. [25,26] 122 0.005251330 0.000308 0.5

0.443100.003270.00535112530Hoge-Mukherjee [23]
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Fig. 3. Variation of yield stress (a) with temperature for tantalum; (b) with strain rate for tantalum; (c) isothermal and adiabatic stress–strain
curves predicted from Zerilli–Armstrong equation with instability points marked; (d) instability strain as a function of strain rate (assuming
adiabaticity).

3. The slip–twinning transition

A constitutive approach was recently developed
[30,31] that predicts the critical stress for twinning as a
function of external (temperature, strain rate) and inter-
nal (grain size, stacking-fault energy) parameters. Plas-
tic deformation by slip and twinning being competitive
mechanisms (it is, of course, recognized that twinning
requires dislocation activity), the twinning constitutive
relationship is equated to a slip relationship based on
the plastic flow by thermally assisted movement of
dislocations over obstacles; this leads to the successful
prediction of the slip– twinning transition. Using an
Eshelby-type analysis, the critical twin nucleus size and
twinning stress were correlated to the twin-boundary
energy, which is directly related to the stacking-fault
energy for FCC metals [30]. It will be shown here that
the constitutive description of the slip– twinning transi-

tion can be incorporated into the Weertman–Ashby
deformation mechanism maps, thereby enabling the
introduction of a twinning domain; this is illustrated
for titanium with a grain size of 100 �m. A summary of
the salient aspects of this work is presented below.

Fig. 4. Tantalum specimen tested in compression to a total strain of
–0.6 at 77 K and 5500 s−1.
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Fig. 5. Computational prediction of chip formation through adiabatic
shear localization in machining.

distribution of twinning stresses, similar to a Weibull
distribution for ceramic strength, would be expected.
There are also reports of gradual decrease in the twin-
ning stresses with increasing temperature for FCC
metals. Christian and Mahajan [32] discuss this topic in
detail. Mahajan and Williams [33] suggested that BCC
metals have a negative dependence of twinning stress
on temperature, while FCC metals have a slightly posi-
tive temperature sensitivity. However, Reed-Hill [34,35]
concluded that whenever the deformation proceeds pri-
marily by twinning, the flow stress tends to have a
positive temperature dependence and a negative strain
rate dependence. For the purposes of the subsequent
calculations, it will be assumed that there is a critical
stress for twinning that is either temperature-indepen-
dent or has a very low temperature dependence. For the
FCC and HCP structures the strain rate dependence of
the twinning stress has not received the same degree of
attention, and the only account in which the strain rate
is varied over a very broad range is to the authors’
knowledge the work of Harding [36,37] on monocrys-
talline iron, shown in Fig. 6. The twinning shear stress
at 103 s−1 is approximately 220 MPa, whereas it is
equal to 170 MPa at 10−3 s−1. This result is used in a
simple constitutive equation for twinning presented
later, but additional experiments are clearly necessary
to establish the strain rate dependence.

Another highly unique characteristic of twinning,
first pointed out by Armstrong and Worthington [38], is
the larger grain size dependence of the twinning stress,
as compared with the slip stress. For most cases, a
Hall–Petch relationship is obeyed, but with a slope, kT,
that is higher than the one for slip, kS:

�T=�0T+kTd−1/2 (18)

3.1. Effects of temperature, grain size, stacking-fault
energy, and texture

Fig. 6 shows a compilation of twinning stresses ver-
sus temperature for a number of metals (both mono
and polycrystals). The striking aspect is that there
seems to be a critical stress that is temperature-insensi-
tive. This issue has been debated in the literature, and
there are diverging results. A large scatter has been
observed in single crystals. This could, however, be
attributed to stress concentration sites other than pile
ups (surface notches, internal flaws, etc.). Hence, a

Fig. 6. Twinning stress as a function of temperature for a number of metals (both mono and polycrystals).
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Fig. 7. Twinning stress as a function of stacking fault energy for
copper and copper solid solutions.

sence of texture these differences do not manifest them-
selves. The twinning and slip stresses are the same in
compression and tension. In the presence of texture,
however, the twinning stresses in compression and ten-
sion are different. The analysis presented here applies
only to an isotropic (untextured) polycrystalline
aggregate.

3.2. Constituti�e description

Meyers et al. [30] and Meyers and Vöhringer [31]
arrive at a relationship between twinning stress, temper-
ature, and strain rate, starting with the basic Johnston–
Gilman equation. This equation is:

�0T=M
�n*lE

2A
�1/m+1

�� 1/m+1 eQ/(m+1)RT

=K�� 1/m+1 eQ/(m+1)RT (19)

where parameter m is the exponent in the Johnston–
Gilman [45] dislocation dynamics equation. This equa-
tion is applied to iron in order to establish the strain
rate and temperature dependence of twinning. The ex-
perimental results of Stein and Low [46] for Fe–3 wt. Si
are used for m (=36) and Q (=51.66 kJ/mol). The
activation energy was obtained by plotting the disloca-
tion velocity (at a constant stress) as a function of 1/T.
The term K=M(n*lE/2A)1/(m+1) is obtained by fitting
Eq. (19) to the experimental results reported by Hard-
ing [36,37] for the twinning stress. The following equa-
tion is obtained:

�(in MPa)=380�� 1/37 e0.17/T (20)

The equation for slip is:

�=�G+C1 exp(−C3T+C4T ln �� ) (21)

It can be seen that the slip and twinning response
differ drastically. Twinning exhibits a very weak tem-
perature dependence; below 20 K, the Johnston–
Gilman equation breaks down, because the stress goes
to infinity. We now establish the critical condition: the
onset of twinning occurs when the, slip stress, �S,
becomes equal to the twinning stress, �T:

�T=�Y (22)

This rationale will be applied to typical metals repre-
sentative of the three crystalline systems of greatest
importance for metals: Fe (BCC), Cu (FCC), Ti (HCP).

3.2.1. Iron (BCC)
The constitutive equations given in Eqs. (19) and (21)

are applied to Eq. (22), with the addition of the Hall–
Petch terms for slip and twinning, kS and kT, respec-
tively. This leads to

−�G+K�� 1/m+1 eQ/(m+1)RT−C1 e− (C3−C4 ln �� )T

+ (kT−kS)d−1/2=0 (23)

The Hall–Petch slope for twinning found by
Vöhringer [39,40] significantly exceeds the one for slip
for copper; kT=0.7 MPa m1/2 and kS�0.35 MPa m1/2.
Similar differences are observed for BCC, FCC, and
HCP metals from a number of sources. The reason for
this difference is not fully understood, but Armstrong
and Worthington [38] suggest that twinning is associ-
ated with microplasticity, i.e. dislocation activity occur-
ring before the onset of generalized plastic deformation,
whereas the yield stress is associated with generalized
plastic deformation. It is very plausible that microplas-
ticity and overall deformation are controlled by differ-
ent mechanisms, i.e. elastic anisotropy, incompatibility
stresses, and barriers to slip.

It is well known that the twinning stress increases
with increasing stacking-fault energy. This is true
mostly for FCC metals, where the classic plot by Ven-
ables [41] shows this effect very clearly. Fig. 7 shows a
compilation of results by Venables [41] and Vöhringer
[39,40]. The twinning stress for a number of copper
alloys is shown to vary with the square root of the
stacking-fault energy, 	SF. Recently, El-Danaf et al. [43]
and Asgari et al. [42] reanalyzed the effect of stacking-
fault energy on the twinning stress.

Gray et al. [44] have shown that texture is especially
important in low-symmetry metals. They demonstrated
this effect for Ti and Zr. There is an intrinsic difference
between slip and twinning that leads to significant
differences in the effect of texture. A dislocation moves
in opposite senses (one direction contains two senses)
when the applied stress sign is reversed; one can con-
sider the critical resolved shear stress to be independent
of the sense of motion of a dislocation. A twin, on the
other hand, has a definite twin plane and a twinning
sense (a well defined direction of motion). In the ab-
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Fig. 8a shows the slip– twinning transition for differ-
ent grain sizes. This plot, in the temperature–strain rate
space, defines two domains: slip and twinning. The lines
represent the boundaries between these domains. The
effect of grain size is clearly seen and is due to the fact
that kT�kS. The values for kT and kS are equal to 124
and 20 MPa m1/2, respectively. This explains why the
twinning domain for monocrystalline iron is much
larger than for polycrystalline iron. An increase in grain
size predisposes iron to twinning.

3.2.2. Copper (FCC)
It was not possible to apply the constitutive equation

[Eq. (19)] for twinning to copper. Therefore, it was

decided to simply use the twinning stress determined
experimentally. Thornton and Mitchell [47] report a
shear twinning stress for monocrystalline copper of 150
MPa and this value is taken. The Hall–Petch slope for
twinning was obtained by Vöhringer [39,40,48]; it is
equal to 0.68 MPa m1/2. The slip response was modeled
by the Zerilli–Armstrong equation for FCC metals.
The equation is:

�=�G+C2�
n exp(−C3T+C4 ln �� )+kSd−1/2 (24)

The slip– twinning transition as a function of grain
size was also established [30,31]. The effect of grain size
is dramatic and it influences the occurrence of twinning
in a significant way. The effect of plastic strain is clearly

Fig. 8. (a) Calculated slip– twinning transition for iron of different grain sizes. (b) Calculated slip– twinning transition for copper (d=10 �m), at
different plastic strain levels: 0.3, 0.5, 0.8.
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Fig. 9. (a) Calculated slip– twinning transition for polycrystal Cu–Zn
brasses with grain size 50 �m; (b) calculated slip– twinning transition
for titanium with different grain sizes.

Gray [51] reported a greater propensity for mechani-
cal twinning of large grain sized (240 �m) than smaller
grain sized (20 �m) Ti in dynamic testing, in agreement
with the assumption that kT�kS. Conrad et al. [52]
report similar effects. The critical twinning stress is
reported by Zerilli and Armstrong [50]. It is known that
interstitials have a major effect on the mechanical re-
sponse of Ti [52]. For instance, the yield stress of Ti at
RT increases from 150 to 600 MPa, when the oxygen
equivalent (O+N+C) percentage is increased from
0.1 to 1.0%. This effect is more important than the
grain size, where the yield stress increases from 450 to
600 MPa when the grain size is decreased from 1.5 mm
to 1.5 �m (for 1%Oeq.). The Hall Petch slope for slip
was obtained by Okazaki and Conrad [53] and was
found to be relatively insensitive to interstitial content.
Conrad et al. [52] report twinning shear stresses in
monocrystalline Ti, for (101� 2) and (112� 1) planes, be-
tween 420 and 380 MPa, respectively. These twinning
stresses decrease with decreasing temperature. Taking a
value of 800 MPa for the normal stresses, the slip–
twinning transition was estimated for grain sizes of 3,
10, and 100 �m. These values are given in Fig. 9a. It
should be noted that the calculations were carried out
for Marz titanium, with 0.1% Oeq. and not with the
material given by Zerilli and Armstrong [50], which has
Oeq. �1% and a yield stress at ambient temperature
and 10−3 s−1 of 400 MPa. The interstitial content has
a significant effect on the twinning stress, as discussed
by Conrad et al. [52]. The rise in the twinning stress
with interstitial content is more significant than the slip
stress; this explains why the tendency for twinning
decreases with interstitial increase. The effect of intersti-
tials manifests itself in both the thermal and athermal
components of the stress, and Conrad et al. [52] gives a
value of ��=0.02 C i

1/2 at 300 K, where Ci is the atomic
concentration of the interstitials.

3.2.4. Brasses
Fig. 7 shows the significant effect of the stacking-

fault energy, 	, on the twinning stress for FCC metals.
As an illustration of the effect of SFE on the incidence
of twinning, the Cu–Zn system is analyzed. Vöhringer
[54] correlated the SFE to the e/a ratio in copper alloys
and arrived at the following expression:

ln �= ln �Cu+K1
� C/Cmax

1+C/Cmax

�2

(27)

where 	Cu is the stacking fault energy for copper and C
is the concentration of solute atoms. Cmax is the maxi-
mum concentration of the solute. The best fit was
obtained with K1=12.5; 	Cu=57�8 mJ/m2. Eq. (27)
can be combined with the mathematical representation
of Fig. 7:

seen in the slip– twinning transition plot of Fig. 8b.
These calculations were done for a constant grain size
of 10 �m and strains of 0.3, 0.5, and 0.8. A plastic
strain of 0.3 is necessary to initiate twinning. At ambi-
ent temperature, a strain rate of 5×103 s−1 and strain
of 0.8 are required to produce twinning.

3.2.3. Titanium (HCP)
Zerilli and Armstrong [49,50] have demonstrated that

the constitutive response of BCC metals can represent
the behavior of titanium, with a few modifications to
incorporate the decrease in work hardening rate as the
temperature is increased. The equation is:

�=�G+C1
��� 0

��
�−C3T

+
C2

e−C4T �n+kSd−1/2 (25)

The term e−C4T decreases the work hardening as T
increases. The twinning stress is simply represented by:

�T=�T0+kTd−1/2 (26)
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�T=K2
� �

Gb
�1/2

(28)

A good fit is obtained with K2=6 GPa. Substitution
of Eq. (27) into Eq. (28) yields:

�T=
K2

(Gb)1/2 exp
�

ln �Cu+K1
� C/Cmax

1+C/Cmax

�2n1/2

(29)

The effect of solid solution (Zn, Ag, Al, Sn, Ge)
atoms on the mechanical response of Cu has been
established quite carefully; the effects of these solutes
on the Hall–Petch equation has also been established.
Vöhringer [13] proposed the following expression,
which is used for the yield stress:

�S=�G+�*+kSd1/2=�0+K3�L
4/3C2/3

+
�

(�*+K4�LC2/3)
�

1−
k ln �� 0/��

�G0

�1/p

T1/pn1/q

+kSd−1/2

(30)

Eq. (30) is based on the overcoming of short-range
obstacles, that have the shape dictated by the parame-
ters p and q. The effect of the solid solution atoms is
manifested (both in the thermal and athermal compo-
nents of stress) through the C2/3 relationship and the
Labusch parameter �L, which has different values for
different solid solution atoms. K3 and K4, are parame-
ters, and �� 0 is a reference strain rate, that was taken by
Vöhringer [13] as 1020 s−1. This parameter is defined as:

�L=�(�G)2+ (��b)2

where

�G=
1
G

dG
dc

�b=
1
b

db
dc

�G expresses the effect of solute atoms on the shear
modulus (G) and �b the effect on the Burgers vector (b).
The parameter 
 was found to vary between 9 and 16
[55].

The effect of work hardening can be incorporated
into Eq. (30) by adding the term C2�n to the thermal
component of stress.

The results of the calculations are represented in the
slip– twinning transition plots of Fig. 9b, in which Eqs.
(29) and (30) were used. These calculations were carried
out for different Cu–Zn alloys: 5, 10, 15, and 20% at
Zn, for a grain size of 50 �m. It is clear that the
addition of Zn increases the propensity for twinning,
displacing the slip– twinning transition upwards. By
using Eq. (30) with the addition of the term C2�n it is
possible to establish the onset of twinning after differ-
ent amounts of plastic deformation. Since Cu–Zn is
FCC, the occurrence of twinning can occur after signifi-
cant plastic deformation.

3.3. The Weertman–Ashby diagram

An immediate application of the constitutive descrip-
tion presented here is in the Weertman–Ashby defor-
mation mechanism maps. In one of these maps, shown
by Frost and Ashby [56], the axes are the strain rate
and temperature; this type of plot is less common than
the stress– temperature plot. It is directly applicable to
the dynamic deformation of metals. As an illustration,
Fig. 10 shows a map for titanium (G.S.=100 �m). The
original map had a domain called ‘obstacle controlled
plasticity’. The use of the constitutive equation de-
scribed herein enabled the separation of this region into
‘twinning’ and ‘slip’ domains. The same procedure can
be applied to any deformation-mechanism map, It
should be emphasized that the calculated predictions
presented in this section are not systematically com-
pared with experimental results, since the emphasis of
this report is on the methodology.

4. Grain size effects

Although considerable progress has been made in
our understanding of the effect of grain size on the
strength of metals, the early ideas of pile-ups, proposed
by Hall [57], Petch [58], Cottrell [59], and reviewed by
Armstrong [61], are still widely regarded as correct.
Nevertheless, there are other effects of great impor-
tance. Four principal factors contribute to grain-
boundary strengthening: (a) the grain boundaries act as
barriers to plastic flow (the original pile-up mechanism
[57–60]); (b) the grain boundaries act as dislocation
sources [61]; (c) elastic anisotropy causes additional
stresses in grain-boundary surroundings [65,66]; and (d)
multislip is activated in the grain-boundary regions,
whereas grain interiors are initially dominated by single
slip, if properly oriented [64–66,69]. As a result, the
regions adjoining grain boundaries harden at a rate
much higher than grain interiors. A phenomenological
constitutive equation predicting the effect of grain size
on the yield stress of metals is discussed and extended
to the nanocrystalline regime in Section 4.1. In Section
4.3, computational predictions are presented.

4.1. Analytical modeling

We present, in a succinct manner, the principal ele-
ments of a model proposed by Meyers and Ashworth
[66] and its recent application to the nanocrystalline
[67]. A polycrystalline aggregate, upon being subjected
to external tractions, develops a highly inhomogeneous
state of internal stresses, due to the elastic anisotropy of
the individual grains. Such inhomogeneous state of
stress can only be avoided if the anisotropy ratio is one.
For instance, for iron and copper, one has:
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CuFe

E100=125 GPa E100=67 GPa
E110=130E110=200 GPa
GPa
E111=190E111=272 GPa
GPa

Fig. 11 shows polar plots of Young moduli for iron
and copper. The effect of orientation on E is revealed in
a striking manner. This is a well known but often
ignored effect. This anisotropy generates additional
stresses in the regions adjoining the grain boundaries.
Plastic incompatibility [62,63] adds to the grain-
boundary constraints. As a result, plastic deformation
in the grain-boundary regions is more intense and
involves a greater number of slip systems than the grain
interiors. Fig. 12 shows a simplified schematic in which

the grain-boundary regions show closer spaced slip
bands and two operative slip systems, in contrast with
the grain interiors, which are undergoing single slip.
Mecking [68] developed the conceptual linkage of the
various regions within a polycrystalline aggregate and
there is a considerable experimental support for his
concepts. Recently, Gray et al. [69] observed a higher
dislocation density in the grain-boundary regions of
plastically deformed brass, supporting the ideas dis-
cussed here. Meyers and Ashworth [68] considered the
polycrystalline aggregate as a composite comprised of a
grain interior with flow stress �fG, and the grain
boundary regions with flow stress �fGB. They assigned a
thickness t to the grain boundaries. The thickness t was
assumed to vary with grain size D. The following
functional dependence was taken:
t=kMAD1/2 (31)

The rationale for this choice is as follows. A propor-
tionality between t and D would lead to; t=kD1. A
fixed, grain-size insensitive t would yield; t=kD0. The
geometric mean provides the 1/2 exponent, necessary
for the correct derivation, as will be seen below.

Fig. 10. Weertman–Ashby map for titanium (from Frost and Ashby [57], Fig. 17.4), d=100 �m, in which a twinning domain has been inserted
for 0.1% O2 eq. titanium.
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Fig. 11. Polar plots of E showing elastic anisotropy in (a) iron and (b)
copper.

As the grain size is decreased, the D−1 term becomes
progressively dominant, and the �y versus D−1/2 curve
goes through a maximum. This occurs at:

Dc= (4kMA)2 (34)

For values of D�Dc, it is assumed that the flow
stress reaches a plateau.

4.2. Comparison with experiments

The predictions of Eq. (32) are compared with the
most extensive experimental results available in the
literature, to the authors’ knowledge. Yield stresses for
nanocrystalline Fe and Cu, reported by Mallow and
Koch [70], and Weertman et al. [71], respectively, are
shown in Fig. 13. The experimental results in the
nanocrystalline range are complemented by Hall–Petch
slopes obtained by various investigators in the micro-
crystalline range. These slopes are reported in the litera-
ture. For iron, experimental results reported by
Armstrong [57] were used. For copper, experimental
results by Feltham and Meakin [72] are used. There are
other experimental results in the literature, that fall in
the range reported in Fig. 13. For iron, Abrahamson
[73] carried out experiments in the large grain size range
of the conventional Hall–Petch plot and started to
observe a deviation from the accepted slope. Two ex-
perimental points from Abrahamson [73] are shown in
Fig. 13a; the Hall–Petch slope starts to decrease.

It is clear, for both Fe and Cu, that the �y versus
D−1/2 relationship is not linear over the range millime-
ter–nanometer. The Hall–Petch line is an approxima-
tion that is effective in the mm–�m range. There is
strong evidence that the slope decreases and that the
curve asymptotically approaches a plateau when the

Fig. 12. Schematic configuration of slip in polycrystalline aggregate,
at the first stage of plastic flow: notice activation of multiple slip in
grain-boundary regions and single slip in grain interiors.

Substituting Eq. (31) into the composite equation,
with some orientation considerations, leads to:

�y=�fG+8kMA(�fGB−�fG)D� −1/2

−16kMA
2(�fGB−�fG)D� −1 (32)

For large grain sizes (the micrometer range) the
D−1/2 term dominates and a Hall–Petch relationship is
obtained. The Hall–Petch slope, kHP, is equal to:

kHP=8kMA(�fGB−�fG) (33)
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Fig. 13. �y versus D−1/2 relationship for (a) iron and (b) copper;
comparison of experimental results and predictions of Eq. (32).

regime, the grain boundaries (�fGB) dominate the
process.

The straight lines represent Hall–Petch fits. The
slopes k�C represent Hall–Petch values taken from the
literature for iron and copper. The line knC in Fig. 13a
represents a Hall–Petch slope that is reported for the
nanocrystalline regime. The slope in the nanocrystalline
regime is obviously lower than in the microcrystalline
regime. It is clear that there is a continuous variation in
slope with grain size; thus, the Hall–Petch equation is a
simplified representation valid in a limited range only.

There are many simplifications and assumptions in
this model. The most prominent are:
1. The work–hardened layer t is assumed to have a

grain size dependence of D−1/2. This assumption is
based on the �y versus D−1/2 dependence.

2. The flow stress of this layer is constant. In reality, a
gradient of work hardening is expected.

3. The grain boundary flow stress reaches the satura-
tion value �fGB at an early level of global plastic
strain.

In spite of these drastic assumptions, a good fit is
obtained and it is felt that the model captures the key
physical features.

4.3. Computational predictions

For computational calculations, realistic polycrystal
models were used and are shown in Fig. 14. Four grain
sizes were modeled: 100, 10, 1, 0.1, and 0.05 �m (the
latter not shown in Fig. 14). The thickness of the
grain-boundary layer, t, was varied and the respective

Table 2
Parameters used for M–A equation

kMA�fGB kHP�fG

(m1/2)(MPa m1/2)(MPa)(MPa)

100 2800Fe 0.48 2.2×10−5

Cu (1.6–2.4)×10−525 900 0.112–0.172

Fig. 14. Simulated polycrystalline aggregate used in computations;
D=100 �m, t=3.75 �m; (b) D =10 �m, t=0.75 �m; (c) D=1 �m,
t=0.15 �m; (d) D=0.1 �m, t=0.03 �m.

grain size is progressively reduced. Eq. (32) is successful
in representing the principal features observed experi-
mentally. Three parameters have to be established: �fG,
�fGB, and kMA. �fGB is the saturation stress and repre-
sents the flow stress of the work hardened grain-
boundary layer. It is taken as the maximum of the yield
stress. kMA is obtained by conversion of kHP according
to Eq. (33). This ensures a good match between HP and
MA for large grain sizes. Table 2 shows the parameters
used in the calculation. The curves in Fig. 13 represent
the application of Eq. (32); a reasonable fit is obtained
and the principal features are captured. For grain sizes
below the maximum of the flow stress in the MA
equation, a straight horizontal line is taken; in this
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Fig. 15. Crystallographic orientation and equivalent Young modulus
of crystalline (Adapted from Diehl [74]).

grain sizes and the results are reported in Fig. 18,
together with the predictions of the Meyers–Ashworth
equation. There is good correspondence between the
two results and the decrease in the Hall Petch slope, as
the grain size is decreased.

This confirms that elastic anisotropic effects, grain
boundary sources, and the activation of two or more
slip systems in polycrystals are responsible for the
formation of a work hardened layer along the grain
boundaries, early in the microplastic region. This grain
boundary work-hardened layer becomes increasingly
important as the grain size is decreased. Polycrystals are
modeled (both analytically and computationally) as a
composite of a work-hardened boundary layer sur-
rounding grain interiors comprised of an annealed ma-
terial having a essentially monocrystalline response.

5. The upper limit: shock compression

We first report on recent experimental results on
laser-induced shock compression experiments per-
formed on copper single crystals with orientation [100]
parallel to the shock front. These results, and the
associated analysis, will be reported elsewhere in greater
detail [78]. Copper has been the object of numerous
shock recovery experiments and its response is fairly
well understood. It has a stacking-fault energy of 57�8
mJ/m2. The shock-induced structure consists of disloca-
tion cells; at higher pressures, beyond a critical
threshold, twinning is prevalent. For single crystals, De
Angelis and Cohen [79] found that the twinning stress
was 14 GPa when the shock wave front was {100},
while it was 20 GPa when the orientation of the front
was {111}. This is consistent with the findings by
Nolder and Thomas [80,81] for nickel; they found a
threshold of 35 GPa. As will be seen below, the results
obtained generally confirm previous observations, albeit
at a pulse duration that is lower by a factor of 100 than
that applied by Murr [82].

After shocking to 10 GPa, the copper crystals exhib-
ited a cellular structure. Fig. 19a shows a characteristic
region. The dislocation cell size is approximately 0.4
�m, consistent with the results by Murr [82]: 0.5 �m
with 10 GPa and 0.3 �m with 15 GPa. They are also
consistent with Gray’s observations [83]: 0.5 �m with 10
GPa. However, the dislocation density, i.e. cell-wall
thickness, seems to be lower than in these previous
studies.

Increasing the pressure to 40 GPa revealed signifi-
cantly different features, as shown in Fig. 19b. Perpen-
dicular traces of planar features are seen when the
beam direction is �001�. These correspond to traces of
{111} on (100). These traces have orientations �220�.
These traces are characteristic of stacking-fault bundles
and twins and are analogous to previous observations
by Murr [82], especially, Figs. 20–23 of Murr [82].

values shown in Fig. 14 are 3.75, 0.75, 0.15, and 0.03
�m. The microstructures, already divided into grain
interiors and grain-boundary layers, are shown in Fig.
14. For the largest grain size modeled (100 �m), the
grain-boundary region is barely distinguishable,
whereas for the smallest grain size (0.1 �m), the grain-
boundary region occupies a significant portion. The
different mechanical responses of the two regions was
also incorporated. The grain-boundary region was con-
sidered to undergo a rapid work hardening, expressed
by a Voce equation, whereas the grain interiors were
modeled as monocrystals.

The crystallographic orientation and specimen di-
mensions have a profound effect on the mechanical
response of monocrystals. The different shades in Fig.
14 represent different possible crystallographic orienta-
tions. Three crystallographic orientations for the grain
interiors were considered and they are shown in Fig. 15.
The respective elastic moduli are also shown. Each
grain was considered isotropic, but having its own
Young’s modulus. Efforts at implementing fully an-
isotropic response are underway. The monocrystal
stress–strain response is taken from results reported by
Diehl [72] and extended from a best fit with data for
larger strains using results from Suzuki et al. [75]. The
corresponding stress–strain curves, for the orientations
C23, C26, and C30 are shown in Fig. 16a.

The rapidly work-hardening grain-boundary region
was assumed to respond by a Voce equation with a
saturation stress, �s, equal to 900 MPa. Four curves are
shown in Fig. 16b represent four work hardening rates.
The curve with �c=0.01 was chosen for the computa-
tions. These two stress–strain responses were incorpo-
rated into the code Raven, developed by Benson [76,77]
and calculations were successfully carried out. The re-
sults of one calculation for a grain size of 1 �m are
shown in Fig. 17. The deformation sequence is shown
for plastic strains of –0.009, −0.08, and –0.32. The
plastic strains are higher in the grain interiors. As
plastic deformation proceeds, the plastic strain in the
grain interiors tends to form shear localized layers. It
was possible to obtain stress–strain curves at various
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5.1. Prediction of dislocation densities

The observations made on recovered shock com-
pressed copper specimens can be compared with analyt-
ical calculations that use physically-based mechanisms.
Two aspects in particular can be predicted: the disloca-
tion density as a function of peak shock amplitude and
the threshold stress for twinning.

The first mechanism for shock induced dislocations is
due to Smith [84]. It assumed an array of edge disloca-
tions moving with the shock front. These dislocations
played a role similar to epitaxial films: they accommo-
dated the differences in lattice parameter. Hornbogen

[85] provided a significant improvement by considering
edge and screw components of loops. He also consid-
ered the different mobilities of edge and screw compo-
nents, determining the residual microstructure. A
homogeneous dislocation nucleation mechanism has
been proposed by Meyers [86]. It assumed that disloca-
tions are homogeneously generated at the front to
accommodate the deviatoric stresses. In contrast with
Smith’s model, however, they are left behind. Weert-
man [87] proposed a mechanism for strong shocks
using both a Smith interface and dislocations behind
the front. The homogeneous dislocation generation
mechanism is being improved by Meyers and

Fig. 16. (a) Plastic behavior of the grain interior: three grain orientations were taken from Diehl [74] curves; (b) grain-boundary region, modeled
by Voce equation.
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Fig. 17. Computation of plastic strains in 1-�m grain size specimen deformed to strains of –0.009, −0.08 –0.32; notice onset of shear localization
(red bands).

Ravichandran [88] and is described here; a detailed
account will appear somewhere else. The basic compo-
nents of the model are reproduced here for clarity. Fig.
20 shows an idealized configuration of dislocations
when a shock wave propagates through the lattice. The
planes are (111) and the dislocations are edge disloca-
tions. As the shock front advances, the dislocation
interface is left behind. As this occurs, elastic deviatoric
stresses build up. The initial calculations of resulting
dislocation densities produced values orders of magni-
tude higher than the observed results [86]. An improved
calculation, carried out by Meyers and Ravichandran
[88], predicts values that compare favorably with dislo-
cation densities measured from transmission electron
microscopy observations. Fig. 20 shows several layers
of interfacial dislocations that were generated and left
behind the shock front. Not seen in this section are the
screw components of the loops. The insertion of dislo-
cations relaxes the deviatoric stresses that elastically
distort an ideal cubic lattice to rhombohedral. Hence, a
reduced cubic lattice is restored by the insertion of
dislocations in the near vicinity of the interface. The
dislocation spacing along the front required to accom-
modate this is d2. This situation is analogous to the
epitaxial growth of films, in which the disregistry is
accommodated by interface dislocations, creating a
semi-coherent boundary. The dislocation spacing along
the front is calculated from the ratios of the original
and compressed lattices. The initial and compressed

specific volumes of the lattices being V and V0, respec-
tively, one has:�V

V0

�1/3

=
d2−d1

d2

(35)

d1 is related to the Burgers vector by:

b�2=d1 (36)

The dislocation density generated can be calculated
from d2, the distance between dislocations at the front,
and h, the spacing between successive dislocation loop
layers nucleated. Since each distance d2 corresponds to
two dislocations [on planes (111) and (111� )], the spacing
d2/2 is taken. Thus, the dislocation density, �, is:

Fig. 18. Yield stress variation with grain size D−1/2; notice decrease
in slope at smaller grain sizes.
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Fig. 19. Defect structures observed in copper monocrystal ([100]
orientation) after laser-induced shock compression at (a) 10 GPa and
(b) 40 GPa. Notice dislocation cell structure in (a) and twins/stacking
faults in (b).

tions are again generated. In order to calculate h, the
superposition principle was applied and the total stress
at a point on the front due to the dislocation array is
estimated. Assuming edge dislocations only:

�11�
Gb2�2

2�(1−�)nd2

� �
�

−�

1
n
=0 (38)

�22�
Gb

2�(1−�)
(−2h2)

2�2
n3d2

3 � �
�

−�

1
n3=0 (39)

�12�
Gb

2�(1−�)
2�2h
n2d2

2 � �
�

−�

1
n2=

�4

90
(40)

where n is an integer designating the position of the
dislocation (n= −�…�). The series converge and
lead to the estimate of the stresses.

Thus:

�11�0 �22�0

�12�
Gb

�2(1−�)

�3h
45d2

2 (41)

When the stresses at the front reach a level at which
homogeneous nucleation of dislocation loops can oc-
cur, then a new layer is formed. The dislocation density
can be obtained from the stress for homogeneous nucle-
ation of a partial dislocation:

�12

G
=0.054 (42)

Substituting Eq. (41) into Eq. (42):

h1=
1−�

b�2 d2
2 (43)

for stationary dislocations. If the dislocations are as-
sumed to move at the shear wave velocity, under the
influence of the high residual shear stresses, they try to
‘catch up’ with the front. This results in an increase in
h, given by the ratio between Us, the shock velocity,
and Vsf, the component of the shear wave velocity in
the compressed medium. It will be assumed, to a first
approximation, that the shock-wave velocity is equal to
the longitudinal elastic wave velocity in an unbounded
medium:

Us�C0=
�	+2


�0

�1/2

(44)

The dislocation velocity component along shock
propagation direction is Vdp:

Vdp=
�2

2
Cs=

1
2
�2


�

�1/2

(45)

where �0 and � are the initial and compressed densities,
respectively (equal to 1/V0 and 1/V, respectively). Thus,
for dislocations traveling at the shear wave velocity:

h2=h1

C0

Vdp

=2
�1−�

Vsf

��V0

V
�1/2�	+2


2


�1/2

d2
2 (46)

Fig. 20. Stress due to dislocations on a point at shock front.

�=
�d2h

2
�−1

(37)

The spacing between dislocation loop layers can be
calculated by using the stress fields around dislocations
and summation at one point at the front over the stress
field of all dislocations. This is shown in Fig. 20. Elastic
distortion at the shock front is balanced by the stress
fields due to the dislocation arrays. When the deviatoric
elastic stresses at the front reach a critical level, disloca-
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The dislocation density as a function of V/V0 is
obtained by substituting Eq. (46) into Eq. (37) and Eqs.
(35) and (36) into it:

�=
1

2b2=
� �2

1−�

��V
V0

�
1−

�V
V0

�1/3n�3

(47)

The dislocation density can be expressed as a func-
tion of pressure, P, through one of the equations
obtained directly from the Rankine–Hugoniot equa-
tions and the equation of state [20]:

P=
C0

2(1− (V/V0))
V0[1−S(1− (V/V0))]2

(48)

C0 and S are the equation of state parameters specific
to materials. Eq. (48) can be expressed as:

V
V0

=1−
1

2PV0S
2[2PV0+C0

��(2PV0+C0
2)2−4P2V0

2S2] (49)

If Eq. (49) is substituted into Eq. (47), the dislocation
density is directly expressed as a function of pressure.
Fig. 21a shows calculated dislocation densities for sev-
eral metals: Cu, Ni, Fe, Ta, and Ti. The dislocation
densities rise rapidly with increasing pressure and seem
to reach a plateau (except for Ti). The significant
differences in dislocation density observed for Fe and
Ta, both BCC metals, can be attributed to differences
in density and the shock parameter S ; the significance
of these differences is being evaluated. One should be
careful in interpreting these results, since recovery pro-
cesses occur at pressures much lower than the maxima
in the plot, and these high dislocation densities are not
reached. The predicted dislocation densities are plotted
in Fig. 21b and compared with observations by Murr
[77]. Two configurations are shown: dislocations mov-
ing at the shear wave velocity and stationary disloca-
tions. For the latter case, we just use Eq. (43), which is
substituted into Eqs. (35) and (37), and then into Eq.
(48). This is given by Eq. (50):

P=
C0

2{1−{1−�2[(b2(1−�)�)/2�2]1/3}3}

V0{1−S{1−�2[(b2(1−�)�)/2�2]1/3}3}2
(50)

The results presented in Fig. 21b are encouraging,
since the calculated densities ‘bracket’ the experimental
results. This approach can lead to realistic predictions
of dislocation densities.

5.2. Prediction of threshold amplitude for twinning

The methodology to be used in the prediction of the
threshold shock amplitude for twinning was delineated
by Murr et al. [89] and Meyers et al. [30]. The proce-
dure presented herein can be used to predict the critical
pressure for twinning in shock compression experi-
ments. It is known that different metals have different
threshold pressures for the initiation of twinning; it has

been established by Murr [90] that this pressure is a
function of stacking-fault energy, for FCC metals. Fig.
22 shows a normalized plot adapted from Murr [90].
The pressure was divided by the bulk modulus and the
stacking-fault energy by the Gb product. The Murr plot
(which assumes a linear relationship between P and 	,
predicts, for instance, the critical twinning pressure for
Al (	=166 mJ/m2, G=26.1 GPa, b=0.28 nm). This
value is PC/H=0.5 or PC=38 GPa. The twinning
propensity is increased by decreasing the shock com-
pression temperature and increasing the grain size. The
following is proposed to verify the correctness of this
hypothesis: a shock compression experiment at 40 GPa,
on an aluminum monocrystal with a [100] orientation
at 77 K, should yield twinning.

This methodology is extended and generalized here.
Slip and twinning are considered as competing mecha-
nisms; whereas plastic deformation by slip has a strain
rate and temperature dependence well described by the
theory of thermally-activated obstacles; it is assumed
that the strain rate and temperature dependence for slip
are much lower. This is corroborated by experimental
evidence presented in Section 3. Setting �T=�s, one
can obtain the critical twinning stress as a function of �,
�� , and T. The application of this criterion to the shock
front necessitates the knowledge of the strain rate. The
strain rate at the shock front has been established by
Swegle and Grady [91] to be:

P=kSG�� 1/4 (51)

Fig. 23 shows a Swegle–Grady plot in which the axes
were normalized in order to provide a better superposi-
tion of data. The data has not entirely collapsed onto a
single line, but the scatter is reduced. One could, to a
first approximation, define a single kSG parameter.

Two separate aspects have to be considered in the
analysis: (a) shock heating and (b) plastic strain at the
shock front. Both shock heating and plastic strain by
slip (and associated work hardening) alter the flow
stress of material by slip processes and need to be
incorporated into the computation. The total (elastic+
plastic) uniaxial strain, e, at the shock front is related to
the change in specific volume by:

V
V0

=e � (52)

Inserting Eq. (52) into Eq. (48), we obtain:

P=
C0

2(1−e �)
V0[1−S(1−e �)]2

(53)

The shock temperature is a thermodynamic function
of pressure [92]. It is represented by a fundamental
formulation that uses the internal energy of the shocked
material and convert it into heat through the heat
capacity and density.
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T=
(V0−V)

2C�

P

+
exp[(−�0/V0)V ]

2C�

� V

V 0

P · exp[(�0/V0)V ]

�
2−

� �0

V0

�
(V0−V)

n
dV (54)

The constitutive response of the copper monocrystal
is represented by the modified MTS expression below;

the parameters are taken from Follansbee and Gray
[94]. The MTS equation is obtained from Eq. (15), with
values of p=1/2 and q=3/2, respectively [93]. The
value of g0 is 0.8 [94].

�=�0 f(�)
�

1−
� kT

Gb3g0

ln
��� 0

��
��2/3n2

(55)

The work hardening ( f(�)) was incorporated by tak-
ing a polynomial representation of the stress strain

Fig. 21. (a) Calculated dislocation densities as a function of pressure for representative metals; (b) experimental and computed results for shock
compression of copper.
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Fig. 22. Normalized pressure/stacking fault energy plot showing twinning and dislocation domains (adapted from Murr [90]).

curve shown for orientation C30 in Fig. 16a. This
orientation is the closest to [100], which has the lowest
threshold pressure for twinning. This polynomial is:

f(�)=45 510�6−86 899�5+63 406�4−21 834�3

+2901.8�1−1.92 (56)

The grain size effects were incorporated by adding a
Hall–Petch term to Eq. (55).

The procedure used is to first obtain the threshold
pressure through Eqs. (22), (24), and (51). The value of
this stress is then used to calculate the shock strain and
temperature through Eqs. (53) and (54), respectively.
These values are then fed back into Eqs. (22), (24), and
(51) and a second pressure is calculated. This iterative
process converges to the critical twinning stress. Fig. 24
shows the application of this method to copper. The
plot shows how the initial temperature and grain size
affect the threshold shock pressure. There is a signifi-
cant increase in the threshold stress when the grain size
is decreased from 10 mm to 1 �m. The shock tempera-
ture has a small effect on the threshold pressure. The
calculated threshold pressure for a monocrystal (mod-
eled by a 10-mm grain size) shocked from an initial
temperature of 300 K is 17 GPa. This compares favor-

ably with experimental results by De Angelis and Co-
hen [79]: 14 GPa. This approach, which was not opti-
mized here, yields results that are close to actual
observations. They represent the first prediction of
twinning threshold in shock compression. It is expected
that in the near future we will be able to predict the
effect of other microstructural parameters, such as the

Fig. 23. Modified Swegle–Grady plot with normalized axes (Adapted
from Swegle and Grady [91]).
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Fig. 24. Threshold shock pressure for twinning in copper as a function of grain size at different initial temperatures (100, 200, 300 and 400 K).

stacking-fault energy, especially the twinning threshold,
and substructures generated in shock compression.

6. Conclusions

We presented, in Sections 2–5, four interrelated re-
search lines in which we apply or develop constitutive
descriptions for predicting the mechanical behavior of
metals. The following aspects were investigated: (a)
instability (Section 2); (b) the slip– twinning transition(-
Section 3); (c) grain-size effects (Section 4); and (d)
shock compression (Section 5). The rapid development
and dissemination of computational capabilities in-
creases significantly the usefulness of these constitutive
equations and guides the evolution of research themes.
The quantitative treatment of mechanical response of
metals is evolving into accurate constitutive equations.
The constitutive description is moving away from phe-
nomenological equations toward physically-based equa-
tions, as the computational capabilities increase.

The following principal phenomena and effects are
currently captured:
� work hardening/softening;
� thermal softening;
� strain rate effects;
� grain size effects;
� texture effects;
� creep;
� pressure dependence; and
� fracture.

Efforts are underway to incorporate the following
effects into codes:
� dynamic recovery and recrystallization;
� dynamic strain aging;
� twinning;

� alloying effects; and
� environmental effects.

It is the feeling of the authors that physically-based
constitutive equations, incorporating a greater and
greater complexity of the physics of deformation and
damage, will evolve in the near future. It behooves us
Materials Scientists and Engineers to transform our
intuitive ‘feel’ into quantitative analyses that can be
effectively implemented into large-scale computations.
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[40] O. Vöhringer, Z. Metallkunde 65 (1974) 352.
[41] J.A. Venables, Phil. Mag. 6 (1961) 379.
[42] S. Asgari, E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Met. Mat.

Trans. 28A (1997) 1781.
[43] E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Met. Mat. Trans. A

30A (1999) 1223.
[44] G.T. Gray III, G.C. Kaschner, T.A. Mason, P.J. Maudlin, S.R.

Chen, in: S. Ankem, C.S. Pande (Eds.), Advances in Twinning,
TMS-AIME, Warrendale, PA, 1999, p. 157.

[45] W.G. Johnston, J.J. Gilman, J. Appl. Phys. 30 (1959) 129.
[46] D.F. Stein Jr., J.R. Low, J. Appl. Phys. 31 (1960) 362–369.
[47] P.R. Thornton, T.E. Mitchell, Phil. Mag. 7 (1962) 361.
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