

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos

PSI 3212 – LABORATÓRIO DE CIRCUITOS ELÉTRICOS

Edição 2019 Cinthia Itiki, Inés Pereyra, Magno T. M. Silva

Experiência 5 – Cossenoides, Fasores e Impedâncias Introdução Teórica

Esta introdução à experiência apresenta inicialmente as diversas representações de cossenoides. Em seguida, ilustra uma aplicação da representação de cossenoides por números complexos, na obtenção da impedância de um bipolo desconhecido.

1. Representações de cossenoides

Uma tensão cossenoidal pode ser representada matematicamente de diversas formas. Por exemplo,

$$v(t) = V_p \cos(\omega_0 t + \theta_0) = V_p \cos(2\pi f_0 t + \theta_0) = V_p \cos\left(\frac{2\pi}{T}(t - t_0)\right),$$
(1)

em que V_p é a amplitude de pico em volts, ω_0 é a frequência da cossenoide em radianos por segundo, té o tempo em segundos, θ_0 é a fase em radianos, f_0 é a frequência em hertz, Té o período da cossenoide e t_0 é o deslocamento em segundos.

Essa tensão cossenoidal (cujas amplitude de pico, frequência e fase são invariantes no tempo) pode ser representada pelas seguintes triplas de constantes reais: $\{V_p, \omega_{0,}\theta_0\}$, $\{V_p, f_{0,}\theta_0\}$ ou $\{V_p, T, t_0\}$.

Da equação (1), tem-se as relações entre as frequências

$$\omega_0 = 2\pi f_0,\tag{2}$$

e entre período e frequências

$$T = \frac{1}{f_0} = \frac{2\pi}{\omega_0}.$$
 (3)

Também se obtém a relação entre o deslocamento (em segundos) e a fase (em radianos)

$$t_0 = -\frac{\theta}{2\pi}T.$$
(4)

A figura 1 representa uma tensão cossenoidal em função de três parâmetros reais: amplitude de pico, período e deslocamento.

Figura 1 – Sinal cossenoidal de amplitude de pico V_p (volts), período T (segundos) e atraso t_0 (segundos).

Observe que valores positivos do deslocamento $t_0 > 0$ indicam um atraso e que valores negativos do deslocamento $t'_0 = -(T - t_0) < 0$ fornecem um adiantamento em relação ao cosseno padrão (de fase nula). Além disso, na figura 1, é patente que um atraso de t_0 segundos equivale a um adiantamento de $(T - t_0)$ segundos. Normalmente, utiliza-se o menor dentre os valores absolutos do atraso e do adiantamento, ou seja, a funçãomin{ $|t_0|, |-(T - t_0)|$ } define se a tensão está atrasada ou adiantada. Por exemplo, para sinais cossenoidais de período de 2,5 segundos, a tensão poderia ser considerada atrasada de 1,0 segundo em relação à corrente, ou então, adiantada de 1,5 segundo. Nesse caso, seria preferível dizer que a tensão estivesse atrasada de 1,0 segundo em relação à corrente, porque 1,0 é menor que 1,5.

A equivalência entre um atraso de t_0 e um adiantamento de $(T - t_0)$ pode ser representada matematicamente por

$$v(t) = V_p \cos\left(\frac{2\pi}{T}(t - t_0)\right) = V_p \cos\left(\frac{2\pi}{T}(t + (T - t_0))\right).$$
(5)

Deslocamentos adicionais de múltiplos de *T* segundos resultam em alterações múltiplas de 2π radianos na fase que, por sua vez, não afetam a tensão cossenoidal. Isso ocorre porque a função cossenoidal tem período 2π radianos.

Uma outra representação da amplitude da cossenoide utiliza o valor eficaz. A cossenoide pode ser representada pela tripla de constantes reais $\{V_{ef}, T, -t_0\}$ com valor eficaz, período e deslocamento, conforme a equação abaixo

$$v(t) = \sqrt{2}V_{ef}\cos(\omega_0 t + \theta_0) = \sqrt{2}V_{ef}\cos(2\pi f_0 t + \theta_0) = \sqrt{2}V_{ef}\cos\left(\frac{2\pi}{T}(t - t_0)\right).$$
(6)

A cossenoide também pode ser representada pelas triplas $\{V_{ef}, \omega_0, \theta_0\} \in \{V_{ef}, f_0, \theta_0\}$.

Por fim, podem-se usar números complexos para representar cossenoides. Aplicandose a fórmula de Euler na equação (1) obtém-se

$$v(t) = \frac{V_p e^{j\theta_0} e^{j\omega_0 t} + V_p e^{-j\theta_0} e^{-j\omega_0 t}}{2},$$
(7)

em que $j = \sqrt{-1}$ é a constante imaginária¹. Expandindo-se as exponenciais complexas em suas partes real e imaginária, tem-se

$$v(t) = \frac{v_p}{2} \Re\{e^{j\theta_0} e^{j\omega_0 t}\} + j \frac{v_p}{2} \Im\{e^{j\theta_0} e^{j\omega_0 t}\} + \frac{v_p}{2} \Re\{e^{-j\theta_0} e^{-j\omega_0 t}\} + j \frac{v_p}{2} \Im\{e^{-j\theta_0} e^{-j\omega_0 t}\}.$$
(8)

Aplicando-se a simetria par da parte real $\Re\{e^{-j\theta_0}e^{-j\omega_0 t}\} = \Re\{e^{j\theta_0}e^{j\omega_0 t}\}$ e a simetria ímpar da parte imaginária $\Im\{e^{-j\theta_0}e^{-j\omega_0 t}\} = -\Im\{e^{j\theta_0}e^{j\omega_0 t}\}$, consegue-se uma forma alternativa de se representar a tensão cossenoidal (Phadke e Thorp, 2008)

$$v(t) = \Re\{V_p e^{j\theta_0} e^{j\omega_0 t}\}$$
(9)

Essa representação de uma cossenoide como sendo a parte real de uma exponencial complexa induz à utilização de fasores.

Em Circuitos Elétricos, define-se o fasor da tensão cossenoidal \hat{V} como uma dupla $\{\dot{V}, \omega_0\}$ formada por uma constante real ω_0 (que é a própria frequência da cossenoide) e por uma constante complexa $\dot{V} = V_p e^{j\theta_0}$ (que inclui a amplitude de pico e a fase da cossenoide). Em outras áreas da Engenharia e das Ciências Exatas, usam-se definições alternativas com o uso dos valores eficazes e até de vetores girantes.

Mas em Circuitos Elétricos, a utilização de fasores permite substituir a tripla de números reais pela dupla formada por um número real (frequência) e um número complexo (que engloba amplitude de pico e fase). A representação de cossenoides pela frequência e pelos números complexos pode facilitar a compreensão da segunda lei de Kirchhoff, conforme explicação ao final da próxima seção.

Mas antes disso, um resumo das representações de cossenoides é ilustrado na tabela 1.

2. Impedâncias

Em muitos circuitos elétricos, a alimentação é um sinal cossenoidal. Se o circuito for linear e invariante no tempo, as tensões e correntes nos bipolos também serão cossenoidais da mesma frequência ω_0 que à da alimentação. As diferenças entre as tensões e correntes se restringem então às defasagens e às amplitudes. Como a frequência é constante e igual para todos os componentes do circuito, a representação por fasores pode então ser substituída pela representação por constantes complexas. Nesse caso, a frequência da alimentação fica implícita.

As relações entre as amplitudes e as diferenças de fase (defasagens) podem ser facilmente calculadas para os bipolos ideais e são apresentadas na tabela 2.

¹ Diferentemente da representação usual da constante imaginária pela letra *i*, em Engenharia Elétrica usa-se a letra *j* para que não haja conflito de notação com a corrente, que é tradicionalmente associada a i(t).

amplitude	fase ou deslocamento	frequência ou período	representação
$V_p[V]$	θ_0 [rad]	ω_0 [rad/s]	$V_p \cos(\omega_0 t + \theta_0)$
$V_p[V]$	θ_0 [rad]	<i>f</i> ₀ [Hz]	$V_p \cos(2\pi f_0 t + \theta_0)$
$V_p[V]$	t[s]	<i>T</i> [s]	$V_p \cos\left(\frac{2\pi}{T}(t-t_0)\right)$
$V_{ef}[V]$	<i>t</i> [s]	<i>T</i> [s]	$\sqrt{2}V_{ef}\cos\left(\frac{2\pi}{T}(t-t_0)\right)$
$V_p[V]$	θ_0 [rad]	ω_0 [rad/s]	$\Re\{V_p e^{j heta_0} e^{j\omega_0 t}\}$
V॑p[V, rad]		ω_0 [rad/s]	$\Re\{\dot{V_{p}}e^{j\omega_{0}t}\}$
V॑ _p [V, rad]		ω_0 [rad/s]	$\Re{\sqrt{2}}\dot{V_{ef}}e^{j\omega_0t}$

Tabela 1 – Representações de cossenoides.

Tabela 2 – Relações da amplitude e fase da tensão e corrente cossenoidal nos bipolos ideais.

Bipolo	Razão tensão-corrente	Defasagem
Resistor ideal	$ Z_R = V_R / I_R = R$	$ heta_{VR} - heta_{IR} = 0$
Capacitor ideal	$ Z_C = V_C/I_C = 1/(\omega_0 C)$	$\theta_{VC} - \theta_{IC} = -\pi/2$
Indutor ideal	$ Z_L = V_L / I_L = \omega_0 L$	$\theta_{VL} - \theta_{IL} = +\pi/2$

Observe que a razão entre as amplitudes de pico fornece o módulo da impedância do bipolo. E a defasagem entre a tensão e a corrente no bipolo fornece a fase da impedância do bipolo. Portanto, a impedância do bipolo $Z_B é$ uma constante complexa (para o circuito com alimentação cossenoidal de frequência constante ω_0) e é fornecida por

$$Z_{\rm B} = \mid Z_B \mid e^{j\theta} \tag{10}$$

No caso de bipolos ideais, a impedância é facilmente obtida pelas relações da tabela 2. Porém, quando se deseja determinar a relação entre as tensões nos bipolos não-ideais, as defasagens envolvidas são desconhecidas e, portanto, não correspondem exatamente a 0, $-\pi/2e + \pi/2radianos$ como nos resistores, capacitores e indutores ideais. Uma forma de obter essas defasagens seria medi-las com um osciloscópio. Outra forma utiliza a segunda lei de Kirchhoff e algumas relações geométricas entre as amplitudes calculadas a partir das medidas com um multímetro, conforme descrito a seguir.

Considere um circuito elétrico alimentado por uma tensão cossenoidal e composto por dois bipolos em série, conforme a figura 2.

Pela segunda lei de Kirchhoff a tensão de alimentação instantânea será igual à soma das tensões instantâneas nos bipolos. No entanto, não se pode aplicar a segunda lei de Kirchhoff diretamente às amplitudes de pico das tensões cossenoidais. Para o caso em que a defasagem entre as tensões dos bipolos for não-nula, podem-se representar as amplitudes e as fases, conforme a figura 3a. Observe que a tensão cossenoidal no gerador é representada pelo número complexo $\dot{V_E}$. Este, por sua vez, corresponde à soma dos números complexos $\dot{V_B}e$ $\dot{V_R}que$ representam respectivamente as tensões no bipolo e no resistor.

Suponha que, a partir dos valores eficazes medidos com o multímetro, se obtenham as três amplitudes de pico, denominadas V_E (tensão no gerador), V_R (tensão no resistor) e V_B (tensão no bipolo desconhecido). Sem perda de generalidade, pode-se atribuir a fase nula à tensão no resistor. Isso equivaleria a tomar-se a tensão no resistor como sinal de referência, de tal forma que $v_R(t) = V_R \cos(\omega_0 t + 0)$. Portanto, as tensões no bipolo e no gerador seriam dadas respectivamente por $v_B(t) = V_B \cos(\omega_0 t + \theta_B)$ e $v_E(t) = V_E \cos(\omega_0 t + \theta_E)$.

Pelas relações geométricas da figura 3a, obtém-se a fase da tensão no bipolo

$$\mid \theta_B \mid= \arccos\left(\frac{V_E^2 - V_R^2 - V_B^2}{2V_R V_B}\right). \tag{11}$$

A fase da tensão de alimentação V_E também pode ser obtida a partir da figura 3a. Sabe-se que a altura dos triângulos retângulos é igual a V_E sen (θ_E) , que é também igual a V_B sen (θ_B) . Portanto, obtém-se que a fase da tensão de alimentação é dada por

$$\mid \theta_E \mid = \arccos\left(\frac{V_E^2 + V_R^2 - V_B^2}{2V_R V_E}\right). \tag{12}$$

Uma limitação das equações acima é que elas fornecem os módulos das fases, sem indicação de que a fase seja positiva ou negativa. Isso decorre da ambiguidade ilustrada nas figuras 3a e 3b. Tanto fases positivas quanto negativas fornecem as mesmas relações.

Portanto, o conhecimento prévio de que os bipolos tenham comportamento indutivo ou capacitivo na frequência das medidas é fundamental para a definição de que a defasagem do bipolo em relação ao resistor seja positiva (atraso negativo ou adiantamento) ou negativa (atraso positivo) nessa frequência.

A amplitude da corrente no circuito pode ser determinada pela razão entre a amplitude da tensão no resistor e o valor da resistência (medida com um ohmímetro, por exemplo). Em seguida, o módulo da impedância do bipolo pode ser obtida pela razão entre a amplitude da tensão no bipolo e a amplitude da corrente calculada anteriormente. Dessa forma, a impedância do bipolo na frequência ω_0 seria fornecida por $Z_B = |Z_B| e^{\pm j |\theta_B|}$, em que o

módulo da impedância é calculado por $|Z_B| = R V_B / V_R$, a fase por $|\theta_B| = \arccos\left(\frac{V_E^2 - V_R^2 - V_B^2}{2V_R V_B}\right)$ e o sinal ('+' ou '-') da fase é definido como positivo para bipolos com comportamento indutivo e negativo para bipolos com comportamento capacitivo.

Figura 2 – Circuito com um bipolo em série com um resistor.

(a)

Figura 3 – Relações geométricas entre as amplitudes e as fases das tensões. No primeiro caso, (a) as fases $\theta_B e \theta_E$ são positivas e indicam um bipolo indutivo, enquanto que no segundo caso, (b) as fases são negativas e representam um bipolo capacitivo. A frequência ω_0 está implícita.

(b)

Bibliografia

Phadke. A.G.; J S Thorp ,J.S. *Synchronized Phasor Measurements and their Applications*, New York: Springer, 2008.