Escoamentos externos

Aplicações

- Aeronaves
- Veículos terrestres
- Embarcações e submarinos
- Edificações

O colapso da ponte de Tacoma

Camada limite

• Camada limite: região delgada próxima à parede, onde as tensões viscosas são importantes

Camada limite

Camada limite

Características do escoamento na camada limite laminar

- Escoamento bidimensional
- $v \ll u$ e $\partial/\partial x \ll \partial/\partial y$
- u = v = 0 em y = 0 e $u \rightarrow U$ quando $y \rightarrow \infty$
- Pressão é imposta pelo escoamento externo à camada limite

Re=500

• Separação devida ao gradiente adverso de pressão

Fluid Element

Questão Conceitual 1

Em que região da superfície do cilindro a camada limite está mais propensa a separar?

• Separação devida ao gradiente adverso de pressão

• Separação devida ao gradiente adverso de pressão

 Separação devida ao gradiente adverso de pressão

• Separação devida à geometria

Degrau

Corpo axissimétrico

Devida à geometria

Devido ao gradiente adverso de pressão

Ponto de separação é fixo!

Ponto de separação depende das condições do escoamento!

Corpos rombudos e corpos aerodinâmicos

Dependência do número de Reynolds

Corpos aerodinâmicos

Área de influência das tensões viscosas diminui com o aumento de *Re*.

Dependência do número de Reynolds

Corpos rombudos

Re=0.16

Re=10.000

- Arrasto (*D*): força na direção do escoamento.
- Sustentação (L): força na direção perpendicular ao escoamento.

Origens: forças viscosas e forças de pressão

(a)

(b)

Cálculo das forças

$$\mathbf{F}_{s} = \int_{A} \mathrm{d}\mathbf{F}_{s} = \int_{A} \mathrm{d}\mathbf{F}_{\mathrm{pressao}} + \int_{A} \mathrm{d}\mathbf{F}_{\mathrm{cisalhamento}}$$

 $d\mathbf{F}_{\text{pressao}} = -p d\mathbf{A} \qquad d\mathbf{F}_{\text{cisalhamento}} = \boldsymbol{\tau}_w dA$

$$D = F_{sx} \qquad \qquad L = F_{sy}$$

• Forma adimensional – Coeficientes:

Coeficiente de arrasto:

$$C_D = \frac{D}{\frac{1}{2}\rho U^2 A}$$

• Coeficiente de sustentação: $C_L = \frac{L}{\frac{1}{2}\rho U^2 A}$

• Dependência:

$$C_D$$
 ou $C_L = \Phi$ (forma, $Re, \epsilon/l$)

Exercícios

1. A distribuição de pressões na parte frontal de um disco de 2 m de diâmetro é aproximada pela expressão $p(r) = p_0(1-r^2)$. Se V = 20 m/s neste escoamento de ar atmosférico a 20 °C ($\rho = 1,20$ kg/m³), estime a força de arrasto e o coeficiente de arrasto para este disco. Suponha que a pressão na parte posterior seja zero e que o arrasto devido ao cisalhamento seja desprezível.

Exercícios

2. Uma chaminé cilíndrica com 1 m de diâmetro e 25 m de altura está exposta a um vento uniforme de 55 km/h numa condição tal que $\rho_{\rm ar} = 1,23 \text{ kg/m}^3$ e $\mu_{\rm ar} = 1,79 \times 10^{-5} \text{ kg/(m \cdot s)}$. Estime o momento fletor na base da chaminé devido à força do vento.

Arrasto - dependência da forma

- As principais responsáveis pelo arrasto são:
 - As forças de cisalhamento (viscosas),
 para corpos aerodinâmicos.
 - As forças de pressão, para corpos rombudos.

 $10^4 < Re < 10^6$

Arrasto - dependência da forma

Arrasto - dependência de Reynolds

- A dependência com Re = VL/v está relacionada:
 - 1. Com as tensões viscosas na camada limite;
 - 2. Com o caráter do escoamento (laminar ou turbulento) na camada limite.
- As tensões de cisalhamento na camada limite turbulenta são maiores que na laminar devido às tensões turbulentas.
- O escoamento na camada limite turbulenta tem mais quantidade de movimento que na laminar, devido às flutuações aleatórias na velocidade.

Questão Conceitual 2

O que acontece com o coeficiente de arrasto desses corpos quando a camada limite passa do regime laminar para o turbulento (o escoamento é da esquerda para a direita)?

1) aumenta 2) permanece constante 3) diminui

• Dependência do número de Reynolds

 Dependência do número de Reynolds – corpos rombudos com separação devida a gradiente adverso de pressão

 Efeito da turbulência na camada limite – corpos rombudos com separação devida ao gradiente adverso de pressão

Separação tardia permite uma recuperação de pressão mais eficiente.

 Efeito da rugosidade – corpos aerodinâmicos

Arrasto é devido principalmente devido ao atrito do escoamento com o corpo

Placa plana

• Efeito da rugosidade – corpos rombudos

Esfera lisa

Esfera rugosa

• Efeito da rugosidade – corpos rombudos

Questão Conceitual 3

Considere duas medições de força de arrasto feitas com a mesma esfera, nas seguintes configurações

- A. Fluido: ar (μ = 1,8 × 10⁻⁵ m²/s, ρ = 1,05 kg/m³), velocidade: *V*
- B. Fluido: água+glicerina (20%) (μ = 1,8 × 10⁻³ m²/s, ρ = 1050 kg/m³), velocidade: 0,1*V*

Se a força de arrasto no experimento A foi *F*, aquela medida no experimento B será

0) Impossível responder 1) 0,01F 2) 0,1F

Sustentação

Fólios

Sustentação

Fólios

$$C_L = 2\pi \operatorname{sen}(\alpha + \beta)$$

Estol

