Dinâmica Elementar dos Fluidos Equação de Bernoulli

Continuaremos a considerar casos onde $\tau = 0$, para os quais, conforme vimos em Estática, a 2^a Lei de Newton pode ser escrita como

$$-\nabla p + \rho \vec{g} = \rho \vec{a}$$

1 Linhas de corrente e coordenadas de linha de corrente

Para regime permanente, as linhas de corrente (LC) coincidem com as trajetórias.

1.1 Coordenadas de linha de corrente

Sistema de coordenadas 2d com um dos eixos tangente à LC (s) e outro normal à LC (n).

O movimento da partícula é descrito em termos da distância percorrida ao longo da LC, s(t), e do raio de curvatura local da LC, R(s).

 $V = \frac{\mathrm{d}s}{\mathrm{d}t} \in R(s)$ está relacionada com a forma da LC.

$$\vec{a} = \frac{\mathrm{d}\vec{V}}{\mathrm{d}t}$$
 Componentes:
$$\begin{cases} a_s = \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\partial V}{\partial s}\frac{\mathrm{d}s}{\mathrm{d}t} = \frac{\partial V}{\partial s}V\\ a_n = \frac{V^2}{R} \end{cases}$$

2 Integração da 2^{a} Lei nas direções $s \in n$

2ª Lei de Newton na direção s, sabendo que $g_s = g \sin \theta$:

$$-\gamma \sin \theta - \frac{\partial p}{\partial s} = \rho V \frac{\partial V}{\partial s}$$

Ao longo de uma linha de corrente, sen $\theta = dz/ds$. Além disso,

$$V\frac{\mathrm{d}V}{\mathrm{d}s} = \frac{1}{2}\frac{\mathrm{d}V^2}{\mathrm{d}s}$$

Ao longo de uma linha de corrente n é constante, consequentemente:

$$\mathrm{d}p = \frac{\partial p}{\partial s} \mathrm{d}s + \frac{\partial p}{\partial n} \mathrm{d}n = \frac{\partial p}{\partial s} \mathrm{d}s$$

Portanto, ao longo de uma linha de corrente p = p(s). Dessa forma

$$-\gamma \frac{\mathrm{d}z}{\mathrm{d}s} - \frac{\mathrm{d}p}{\mathrm{d}s} = \frac{1}{2}\rho \frac{\mathrm{d}(V^2)}{\mathrm{d}s} \quad \Rightarrow \quad \mathrm{d}p + \frac{1}{2}\rho \,\mathrm{d}(V^2) + \gamma \,\mathrm{d}z = 0$$

Assumindo g constante, pode ser integrada resultando em

$$\int \frac{\mathrm{d}p}{\rho} + \frac{V^2}{2} + gz = C$$

onde C é uma constante de integração que pode ser determinada conhecendo-se as condições em algum ponto da linha de corrente.

Se o escoamento for incompressível (ρ constante):

$$p + \frac{1}{2}\rho V^2 + \rho gz = C$$

Equação de Bernoulli

A equação de Bernoulli é válida se

- efeitos viscosos são desprezíveis;
- o escoamento é permanente;
- o escoamento é incompressível;
- aplicada ao longo de uma linha de corrente.

Uma forma alternativa da eq. de Bernoulli pode ser obtida dividindo a forma original por g:

Cada termo desta equação tem dimensão de comprimento, e representam um tipo de carga (energia por unidade de peso). 2^a Lei de Newton na direção n, sabendo que $g_n = g \cos \theta = g dz/dn$:

$$-\gamma \frac{\mathrm{d}z}{\mathrm{d}n} - \frac{\mathrm{d}p}{\mathrm{d}n} = \frac{\rho V^2}{R}$$

*

^{*}A equação de Bernoulli também pode ser interpretada como o Teorema da Energia Cinética: o trabalho realizado sobre a partícula por todas as forças agindo sobre ela (no caso, forças de pressão e força peso) é igual à variação de energia cinética da partícula.

3 Pressões estática, de estagnação, dinâmica e total

4 Fluxo de massa

Vazão mássica:
$$\dot{m} = \lim_{\Delta t \to 0} \frac{\Delta m}{\Delta t}$$

Vazão volumétrica: $Q = \lim_{\Delta t \to 0} \frac{\Delta \Psi}{\Delta t} = \frac{\dot{m}}{\rho}$

Velocidade média: $V = \frac{z}{A} \Rightarrow \dot{m} = \rho V A$

Conservação da massa (V.C. com uma entrada e uma saída, sem fontes):

$$\dot{m}_1 = \dot{m}_2 \Rightarrow \rho_1 \bar{V}_1 A_1 = \rho_2 \bar{V}_2 A_2$$

Se ρ = constante: $\bar{V}_1 A_1 = \bar{V}_2 A_2$
$$\hat{n}_{n=-\hat{1}} \underbrace{\downarrow}_{V_1} \underbrace{\downarrow}_{(1)} \underbrace{\downarrow}_{(1)} \underbrace{\downarrow}_{(2)} \underbrace{\downarrow}_{$$

y [

5 Linhas piezométrica e de energia

