
Dinâmica Elementar dos Fluidos
Equação de Bernoulli

Continuaremos a considerar casos onde τ = 0, para os quais, conforme
vimos em Estática, a 2a Lei de Newton pode ser escrita como

−∇p+ ρ~g = ρ~a

1 Linhas de corrente e coordenadas de li-
nha de corrente

Para regime permanente, as linhas de corrente (LC) coincidem com as
trajetórias.
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As a fluid particle moves from one location to another, it usually experiences an acceleration or de-
celeration. According to Newton’s second law of motion, the net force acting on the fluid particle
under consideration must equal its mass times its acceleration,

In this chapter we consider the motion of inviscid fluids. That is, the fluid is assumed to have zero
viscosity. If the viscosity is zero, then the thermal conductivity of the fluid is also zero and there
can be no heat transfer 1except by radiation2.

In practice there are no inviscid fluids, since every fluid supports shear stresses when it is
subjected to a rate of strain displacement. For many flow situations the viscous effects are rela-
tively small compared with other effects. As a first approximation for such cases it is often possi-
ble to ignore viscous effects. For example, often the viscous forces developed in flowing water
may be several orders of magnitude smaller than forces due to other influences, such as gravity or
pressure differences. For other water flow situations, however, the viscous effects may be the dom-
inant ones. Similarly, the viscous effects associated with the flow of a gas are often negligible, al-
though in some circumstances they are very important.

We assume that the fluid motion is governed by pressure and gravity forces only and exam-
ine Newton’s second law as it applies to a fluid particle in the form:

The results of the interaction between the pressure, gravity, and acceleration provide numerous use-
ful applications in fluid mechanics.

To apply Newton’s second law to a fluid 1or any other object2, we must define an appropri-
ate coordinate system in which to describe the motion. In general the motion will be three-
dimensional and unsteady so that three space coordinates and time are needed to describe it. There
are numerous coordinate systems available, including the most often used rectangular and
cylindrical systems shown by the figure in the margin. Usually the specific flow geometry
dictates which system would be most appropriate.

In this chapter we will be concerned with two-dimensional motion like that confined to the
x–z plane as is shown in Fig. 3.1a. Clearly we could choose to describe the flow in terms of the
components of acceleration and forces in the x and z coordinate directions. The resulting equations
are frequently referred to as a two-dimensional form of the Euler equations of motion in rectan-
gular Cartesian coordinates. This approach will be discussed in Chapter 6.

As is done in the study of dynamics 1Ref. 12, the motion of each fluid particle is described
in terms of its velocity vector, V, which is defined as the time rate of change of the position of the
particle. The particle’s velocity is a vector quantity with a magnitude 1the speed, 2 and di-
rection. As the particle moves about, it follows a particular path, the shape of which is governed
by the velocity of the particle. The location of the particle along the path is a function of where
the particle started at the initial time and its velocity along the path. If it is steady flow 1i.e., noth-
ing changes with time at a given location in the flow field2, each successive particle that passes
through a given point [such as point 112 in Fig. 3.1a] will follow the same path. For such cases the

V ! 0V 0

1r, u, z2 1x, y, z2

1particle mass2 " 1particle acceleration21Net pressure force on a particle2 # 1net gravity force on particle2 !

F ! ma

3.1 Newton’s Second Law

Inviscid fluid flow
is governed by
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F I G U R E  3.1 (a) Flow in the x–z plane. (b) Flow in terms of streamline and normal
coordinates.
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1.1 Coordenadas de linha de corrente

96 Chapter 3 ■ Elementary Fluid Dynamics—The Bernoulli Equation

Consider the small fluid particle of size by in the plane of the figure and normal to the
figure as shown in the free-body diagram of Fig. 3.3. Unit vectors along and normal to the stream-
line are denoted by and respectively. For steady flow, the component of Newton’s second law
along the streamline direction, s, can be written as

(3.2)

where represents the sum of the s components of all the forces acting on the particle, which
has mass and is the acceleration in the s direction. Here, is
the particle volume. Equation 3.2 is valid for both compressible and incompressible fluids. That
is, the density need not be constant throughout the flow field.

The gravity force 1weight2 on the particle can be written as where is
the specific weight of the fluid Hence, the component of the weight force in the
direction of the streamline is

If the streamline is horizontal at the point of interest, then and there is no component of
particle weight along the streamline to contribute to its acceleration in that direction.

As is indicated in Chapter 2, the pressure is not constant throughout a stationary fluid  
because of the fluid weight. Likewise, in a flowing fluid the pressure is usually not constant. In gen-
eral, for steady flow, If the pressure at the center of the particle shown in Fig. 3.3 is
denoted as p, then its average value on the two end faces that are perpendicular to the streamline are

and Since the particle is “small,” we can use a one-term Taylor series expansion
for the pressure field 1as was done in Chapter 2 for the pressure forces in static fluids2 to obtain
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F I G U R E  3.3 Free-
body diagram of a fluid particle for
which the important forces are those
due to pressure and gravity.

surroundings on the particle are indicated by the appropriate forces present, and so forth.
For the present case, the important forces are assumed to be gravity and pressure. Other forces,
such as viscous forces and surface tension effects, are assumed negligible. The acceleration of grav-
ity, g, is assumed to be constant and acts vertically, in the negative z direction, at an angle rela-
tive to the normal to the streamline.

u

F1, F2,

In a flowing fluid
the pressure varies
from one location
to another.
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Sistema de coordenadas 2d com um dos eixos tangente à LC (s) e outro
normal à LC (n).

O movimento da partícula é descrito em termos da distância percorrida
ao longo da LC, s(t), e do raio de curvatura local da LC, R(s).

V = ds
dt e R(s) está relacionada com a forma da LC.

~a = d~V
dt Componentes:


as = dV

dt = ∂V

∂s

ds
dt = ∂V

∂s
V

an = V 2

R



2 Integração da 2a Lei nas direções s e n

2a Lei de Newton na direção s, sabendo que gs = g sen θ:

−γ sen θ − ∂p

∂s
= ρV

∂V

∂s

Ao longo de uma linha de corrente, sen θ = dz/ds. Além disso,

V
dV
ds = 1

2
dV 2

ds

Ao longo de uma linha de corrente n é constante, consequentemente:

dp = ∂p

∂s
ds+ ∂p

∂n
�
�>

0
dn = ∂p

∂s
ds



Portanto, ao longo de uma linha de corrente p = p(s). Dessa forma

−γdz
ds −

dp
ds = 1

2ρ
d(V 2)

ds ⇒ dp+ 1
2ρ d(V 2) + γ dz = 0

Assumindo g constante, pode ser integrada resultando em
∫ dp

ρ
+ V 2

2 + gz = C

onde C é uma constante de integração que pode ser determinada
conhecendo-se as condições em algum ponto da linha de corrente.

Se o escoamento for incompressível (ρ constante):

p+ 1
2ρV

2 + ρgz = C Equação de Bernoulli



A equação de Bernoulli é válida se

• efeitos viscosos são desprezíveis;

• o escoamento é permanente;

• o escoamento é incompressível;

• aplicada ao longo de uma linha de corrente.

Uma forma alternativa da eq. de Bernoulli pode ser obtida dividindo a
forma original por g:

p

γ︸︷︷︸
carga de pressão

+ V 2

2g︸︷︷︸
carga de velocidade

+ z︸︷︷︸
carga de elevação

= constante

Cada termo desta equação tem dimensão de comprimento, e representam
um tipo de carga (energia por unidade de peso).



2a Lei de Newton na direção n, sabendo que gn = g cos θ = g dz/dn:

−γ dz
dn −

dp
dn = ρV 2

R

∗

∗A equação de Bernoulli também pode ser interpretada como o Teorema da Ener-
gia Cinética: o trabalho realizado sobre a partícula por todas as forças agindo sobre
ela (no caso, forças de pressão e força peso) é igual à variação de energia cinética da
partícula.



3 Pressões estática, de estagnação, dinâ-
mica e total

p︸︷︷︸
pressão estática

+ 1
2ρV

2︸ ︷︷ ︸
pressão dinâmica︸ ︷︷ ︸

pressão de estagnação

+ ρgz︸︷︷︸
pressão hidrostática

= pressão total
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With the above assumptions and the fact that for the por-
tion from A to B, Eq. 3.14 becomes

The constant can be determined by evaluating the known variables at
the two locations using and to give

(Ans)

Note that since the radius of curvature of the streamline is infinite,
the pressure variation in the vertical direction is the same as if the
fluid were stationary.

However, if we apply Eq. 3.14 between points 132 and 142we ob-
tain 1using 2

p4 ! r !
z4

z3 

 
V 2

r
 1"dz2 ! gz4 # p3 ! gz3

dn # "dz

p1 # p2 ! g1z2 " z12 # p2 ! gh2–1

z2 # h2–1p2 # 0 1gage2, z1 # 0,

p ! gz # constant

r # $ With and this becomes

(Ans)

To evaluate the integral, we must know the variation of V and 
with z. Even without this detailed information we note that the in-
tegral has a positive value. Thus, the pressure at 132 is less than the
hydrostatic value, by an amount equal to 
This lower pressure, caused by the curved streamline, is neces-
sary to accelerate the fluid around the curved path.

COMMENT Note that we did not apply the Bernoulli equa-
tion 1Eq. 3.132 across the streamlines from 112 to 122 or 132 to 142.
Rather we used Eq. 3.14. As is discussed in Section 3.8, applica-
tion of the Bernoulli equation across streamlines 1rather than
along them2 may lead to serious errors.

r " z4
z3

 1V 2%r2 dz.gh4–3,

r

p3 # gh4–3 " r !
z4

z3

 
V 2

r
 dz

z4 " z3 # h4–3p4 # 0

SOLUTION

A useful concept associated with the Bernoulli equation deals with the stagnation and dynamic pres-
sures. These pressures arise from the conversion of kinetic energy in a flowing fluid into a “pres-
sure rise” as the fluid is brought to rest 1as in Example 3.22. In this section we explore various results
of this process. Each term of the Bernoulli equation, Eq. 3.13, has the dimensions of force per unit
area—psi, The first term, p, is the actual thermodynamic pressure of the fluid as it
flows. To measure its value, one could move along with the fluid, thus being “static” relative to the
moving fluid. Hence, it is normally termed the static pressure. Another way to measure the static
pressure would be to drill a hole in a flat surface and fasten a piezometer tube as indicated by the
location of point 132 in Fig. 3.4. As we saw in Example 3.5, the pressure in the flowing fluid at 112
is the same as if the fluid were static. From the manometer considerations of Chap-
ter 2, we know that Thus, since it follows that 

The third term in Eq. 3.13, is termed the hydrostatic pressure, in obvious regard to the hy-
drostatic pressure variation discussed in Chapter 2. It is not actually a pressure but does represent the
change in pressure possible due to potential energy variations of the fluid as a result of elevation changes.

The second term in the Bernoulli equation, is termed the dynamic pressure. Its in-
terpretation can be seen in Fig. 3.4 by considering the pressure at the end of a small tube inserted
into the flow and pointing upstream. After the initial transient motion has died out, the liquid will
fill the tube to a height of H as shown. The fluid in the tube, including that at its tip, 122, will be
stationary. That is, or point 122 is a stagnation point.

If we apply the Bernoulli equation between points 112 and 122, using and assuming
that we find that

p2 # p1 ! 1
2rV 2

1

z1 # z2,
V2 # 0

V2 # 0,

rV 2%2,

gz,
p1 # gh.h3–1 ! h4–3 # hp3 # gh4–3.

p1 # gh3–1 ! p3,

lb%ft2, N%m2.

3.5 Static, Stagnation, Dynamic, and Total Pressure

Each term in the
Bernoulli equation
can be interpreted
as a form of pres-
sure.

F I G U R E  3.4 Measurement
of static and stagnation pressures.
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4 Fluxo de massa

Vazão mássica: ṁ = lim
∆t→0

∆m
∆t

Vazão volumétrica: Q = lim
∆t→0

∆V
∆t = ṁ

ρ

Velocidade média: V̄ = Q

A
⇒ ṁ = ρV̄ A

Conservação da massa (V .C. com uma entrada e uma saída, sem fontes):

ṁ1 = ṁ2 ⇒ ρ1V̄1A1 = ρ2V̄2A2

Se ρ = constante: V̄1A1 = V̄2A2

and because there may be a net nonzero flow of that parameter across
the control surface 1the term2.

For the special unsteady situations in which the rate of inflow of parameter B is exactly
balanced by its rate of outflow, it follows that and Eq. 4.19 reduces to

(4.21)

For such cases, any rate of change in the amount of B associated with the system is equal to the
rate of change of B within the control volume. This can be illustrated by considering flow through
a constant diameter pipe as is shown in Fig. 4.18. The control volume is as shown, and the system
is the fluid within this volume at time We assume the flow is one-dimensional with 
where is a function of time, and that the density is constant. At any instant in time, all
particles in the system have the same velocity. We let system momentum
where m is the system mass, so that the fluid velocity. The magnitude of
the momentum efflux across the outlet [section 122] is the same as the magnitude of the momentum
influx across the inlet [section 112]. However, the sign of the efflux is opposite to that of the influx
since for the outflow and for the inflow. Note that along the sides
of the control volume. Thus, with on section 112, on section 122, and

, we obtain

It is seen that for this special case Eq. 4.21 is valid. The rate at which the momentum of the system
changes with time is the same as the rate of change of momentum within the control volume. If

is constant in time, there is no rate of change of momentum of the system and for this special
case each of the terms in the Reynolds transport theorem is zero by itself.

Consider the flow through a variable area pipe shown in Fig. 4.19. In such cases the fluid
velocity is not the same at section 112 as it is at 122. Hence, the efflux of momentum from the control
volume is not equal to the influx of momentum, so that the convective term in Eq. 4.20 [the integral
of over the control surface] is not zero. These topics will be discussed in considerably
more detail in Chapter 5.
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4.4 The Reynolds Transport Theorem 175
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F I G U R E  4.18 Unsteady
flow through a constant diameter pipe.
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F I G U R E  4.19 Flow
through a variable area pipe.

For some flow situ-
ations, certain por-
tions of the Reynolds
transport theorem
are automatically
zero.
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5 Linhas piezométrica e de energia

p

γ
+ z︸ ︷︷ ︸

Linha piezométrica

+V
2

2g = Linha de energia

Each of the terms in this equation has the units of length 1feet or meters2 and represents a certain
type of head. The Bernoulli equation states that the sum of the pressure head, the velocity head,
and the elevation head is constant along a streamline. This constant is called the total head, H.

The energy line is a line that represents the total head available to the fluid. As shown in
Fig. 3.21, the elevation of the energy line can be obtained by measuring the stagnation pressure
with a Pitot tube. 1A Pitot tube is the portion of a Pitot-static tube that measures the stagnation
pressure. See Section 3.5.2 The stagnation point at the end of the Pitot tube provides a measure-
ment of the total head 1or energy2 of the flow. The static pressure tap connected to the piezometer
tube shown, on the other hand, measures the sum of the pressure head and the elevation head,

This sum is often called the piezometric head. The static pressure tap does not measure
the velocity head.

According to Eq. 3.22, the total head remains constant along the streamline 1provided the as-
sumptions of the Bernoulli equation are valid2. Thus, a Pitot tube at any other location in the flow
will measure the same total head, as is shown in the figure. The elevation head, velocity head, and
pressure head may vary along the streamline, however.

The locus of elevations provided by a series of Pitot tubes is termed the energy line, EL.
The locus provided by a series of piezometer taps is termed the hydraulic grade line, HGL. Un-
der the assumptions of the Bernoulli equation, the energy line is horizontal. If the fluid veloc-
ity changes along the streamline, the hydraulic grade line will not be horizontal. If viscous effects
are important 1as they often are in pipe flows2, the total head does not remain constant due to a
loss in energy as the fluid flows along its streamline. This means that the energy line is no longer
horizontal. Such viscous effects are discussed in Chapters 5 and 8.

The energy line and hydraulic grade line for flow from a large tank are shown in Fig. 3.22.
If the flow is steady, incompressible, and inviscid, the energy line is horizontal and at the eleva-
tion of the liquid in the tank 1since the fluid velocity in the tank and the pressure on the surface

p!g " z.
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F I G U R E  3.21 Representation of the energy line and the
hydraulic grade line.
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F I G U R E  3.22 The energy line
and hydraulic grade line for flow from a tank.
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