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Organ transplantationappears today tobe thebest alternative to replace the lossofvital organs
induced by various diseases. Transplants can, however, also be rejected by the recipient. In
this review, we provide an overview of the mechanisms and the cells/molecules involved
in acute and chronic rejections. T cells and B cells mainly control the antigen-specific rejec-
tion and act either as effector, regulatory, or memory cells. On the other hand, nonspecific
cells such as endothelial cells, NK cells, macrophages, or polymorphonuclear cells are also
crucial actors of transplant rejection. Last, beyond cells, the high contribution of antibodies,
chemokines, and complement molecules in graft rejection is discussed in this article. The
understanding of the different components involved in graft rejection is essential as some
of them are used in the clinic as biomarkers to detect and quantify the level of rejection.

DIFFERENT TYPES OF REJECTION

Several types of rejection of vascularized or-
gans can be defined according to their un-

derlying mechanisms and tempos, the major
types being hyperacute, acute, and chronic re-
jection. In allogeneic context and in the absence
of preformed antidonor antibodies, cells and
tissues are mainly rejected by acute cellular re-
jection mechanisms.

Hyperacute rejection appears in the first
minutes following transplantation and occurs
only in vascularized grafts. This very fast rejec-
tion is characterized by vessels thrombosis lead-
ing to graft necrosis. Hyperacute rejection is
caused by the presence of antidonor antibodies
existing in the recipient before transplantation.
These antibodies induce both complement ac-
tivation and stimulation of endothelial cells to
secrete Von Willebrand procoagulant factor, re-

sulting in platelet adhesion and aggregation.
The result of these series of reactions is the gen-
eration of intravascular thrombosis leading to
lesion formation and ultimately to graft loss.
Today, this type of rejection is avoided in most
cases by checking for ABO compatibility and
by excluding the presence of antidonor human
leukocyte antigen (HLA) antibodies by cross-
match techniques between donor graft cells
and recipient sera. This type of rejection is also
observed in models of xenotransplantation of
vascularized organs between phylogenetically
distant species when no immunosuppressive
treatment is given to the recipients.

Acute rejection is caused by an immune
response directed against the graft and occurs
between 1 week and several months after trans-
plantation. Acute rejection is diagnosed on his-
tological analysis of a graft biopsy according to
an international classification system, the Banff
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classification for the kidney (Mengel et al. 2012).
Acute rejection is thought to result from two
immunological mechanisms that may act alone
or in combination: (1) a T-cell-dependent pro-
cess that corresponds to acute cellular rejection,
and (2) a B-cell-dependent process that gener-
ates the acute humoral rejection. With current
immunosuppressive treatment, acute rejection
occurs in less than 15% of the transplants
(Port et al. 2004) in nonsensitized patients.

Chronic rejection, on the other hand, is now
the leading cause of graft rejection. Chronic re-
jection can be mediated by either humoral or
cellular mechanisms linked to memory/plasma
cells and antibodies. The presence of tertiary
lymphoid organs in the graft is a characteristic
of this form of rejection.

INNATE AND ADAPTIVE IMMUNE
RESPONSES

Two major immunological mechanisms occur
during allograft rejection: the nonspecific innate
response that predominates in the early phase of
the immune response, and the donor-specific
adaptive response that results from alloantigen
recognition by host T cells.

The Innate Response and Allograft Rejection

Although the adaptive response plays a central
role in the mechanisms of allograft rejection,
early proinflammatory signals (arising before
the initiation of the T-cell response) are also
considered as important factors of graft rejec-
tion. Inflammation is caused by the innate im-
mune response induced independently of the
adaptive response (Christopher et al. 2002; He
et al. 2002, 2003; Land 2005). In fact, it was
shown that 1 day after a heart transplant, the
expression of genes coding for molecules linked
to inflammation (proinflammatory cytokines,
chemokines, components of the cellular infil-
trate) was similar in normal mice and in mice
deficient for T and B cells, but with normal NK
and myeloid compartments (Rag1 or Rag2
knock-out mice) (He et al. 2003). These inves-
tigators also showed that the innate response
is antigen independent, develops early after

transplantation, and conditions the develop-
ment of the adaptive response (He et al. 2003).

Innate immune responses are the conse-
quence of several events associated with clini-
cal transplantation, such as ischemia-reperfu-
sion injury and infections, and lead to the
release of damage-associated molecular patterns
(DAMPs) and pathogen-associated molecular
patterns (PAMPs) (Chong and Alegre 2012).
DAMPs and PAMPs are recognized by so-called
pattern-recognition receptors (PRRs) expressed
by hematopoietic cells.

The specificity of PRRs is genetically deter-
mined and several subgroups can be classified
based on their structure. The transmembrane
group of PRRs includes several families of mol-
ecules such as toll-like receptors (TLRs), C-type
lectins, RAGE (receptor for advanced glycation
endproducts), complement receptors, scavenger
receptors, and mannose receptors. The cytosol-
ic PRR group includes retinoic acid-inducible
gene-I-like receptors and nucleotide-binding
domain and leucine-rich repeat-containing re-
ceptors (Iwasaki and Medzhitov 2010).

Immediatelyafter transplantation, PRR-me-
diated danger signals activate dendritic cells
(DCs) (LaRosa et al. 2007) leading to antigen-
presenting cell (APC) maturation, up-regula-
tion of costimulatory molecules, and secretion
of proinflammatory cytokines. In this context,
donor APCs migrate to the T cell areas of sec-
ondary lymphoid organs and induce the activa-
tion and differentiation of alloreactive naı̈ve
T cells into effector T helper cells. These effector
cells migrate into the graft where they activate
macrophages and granulocytes (neutrophils, eo-
sinophils, and basophils) that have infiltrated the
graft in response to inflammatory stimuli. The
latter cells contribute to lesion formation, either
directlyor through the production of proinflam-
matory cytokines and chemokines. They also
help boost and maintain the adaptive immune
T-cell response. Another cell type involved in
innate immunity is the NK cell. In a proinflam-
matory context, NK cells become activated and
are able to kill target cells (Pratschke et al. 2009).

The complement system plays a central role
in the effector mechanisms occurring during the
innate response. The three complement path-
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ways (classical, alternative, and mannose lectin)
can be activated by DAMPs as well as by the
inflammatory environment that develops dur-
ing ischemia reperfusion injury (Castellano et al.
2010). Moreover, the intermediate product of
complement, C5a, is able to bind to APC recep-
tors, leading to Th1 activation and development
of the adaptive immunity (Zhou et al. 2000).

Initiation of the Adaptive Response
and Allograft Rejection

The adaptive immune response appears later
than the innate response, its main characteristic
being antigen specific. The initiation of the
adaptive response is made possible by the pre-
sentation of alloantigens by APCs, mainly DCs
and their allorecognition by recipient T cells.
Three main pathways of allorecognition are de-
scribed in the literature. The first is the direct
pathway, in which donor DCs present in the graft
act as passenger leukocytes. In the context of a
proinflammatory environment, these cells ma-
ture and migrate to secondary lymphoid organs
where they prime host T cells. The maturation of
these cells is induced by proinflammatory sig-
nals such as IL-1b, TNF-a, and CD40. The sec-
ond is the indirect allorecognition pathway in
which recipient DCs capture, process, and pre-
sent alloantigens as peptides on their host MHC
molecules, and then prime T cells (Ochando
et al. 2006). As dendritic cells express both
MHC class I and class II, donor antigens can
be presented to either CD4þ or CD8þ T cells.
The third pathway is that of semidirect allorec-
ognition, characterized by the dual ability of re-
cipient DCs: (1) to present intact donor major
histocompatibility complex (MHC) molecules
acquired by cell-to-cell contact or fusion with
donor exosomes, and (2) to internalize and pro-
cess donor MHC as peptides on recipient MHC
molecules. In this pathway, alloreactive CD8þ

and CD4þ T cells are stimulated by direct and
indirect allorecognition (Herrera et al. 2004;
Smyth et al. 2006).

Using the two-photon microscopy tech-
nique, a recent elegant study by Bousso’s group
(Celli et al. 2011) provided a better understand-
ing of the adaptive immune response by clarify-

ing several different issues that until then had
remained hypothetical. In a murine model of
skin transplantation, they showed that donor
dermal DCs disappeared rapidly from the graft
and migrated to draining lymph nodes (LNs).
However, these donor DCs were found to be
dead in the secondary lymphoid organs. This
is consistent with a previous study demonstrat-
ing that donor DCs are eliminated by NK cells
(Garrod et al. 2010). It has been suggested that
these dying cells could be a source of alloanti-
gens for recipient APCs present in the draining
LNs that stimulate T cells by the indirect path-
way. Moreover, these experiments showed that
host inflammatory monocytes and DCs act
as antigen-transporting cells. These recipient
graft-infiltrating cells indeed have the ability to
reach the draining LNs and cross-prime CD8þT
cells by the indirect pathway (Celli et al. 2011).

Initiation of the innate and adaptive im-
mune response leads to acute and chronic graft
rejection. Cellular and humoral responses, but
also chemokines and innate cells, are present
in both types of rejection and are described in
this article.

ACUTE REJECTION

The Components of Acute Rejection

Chemokines

Chemokines are chemoattractant cytokines that
influence immune cell migration. In transplan-
tation settings, chemokines act during four key
phases: (1) recruitment of mononuclear cells to
the site of inflammation, (2) migration of APCs
to draining LNs, (3) interaction between un-
primed T cells and APCs in LNs, and (4) migra-
tion of primed alloreactive T cells to the graft
(Belperio and Ardehali 2008). The roles of some
chemokines in allograft rejection have been in-
vestigated directly by analyzing chemokine ex-
pression by immune cells as described in Figure
1. Furthermore, the function of these chemo-
kine receptors and ligands has been shown using
knockout (KO) mice or blocking antibodies.

One example is that of CCR5, which was
shown to be expressed by mononuclear cells,
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suggesting that this chemokine helps their
migration to inflammatory sites. Prolongation
of cardiac allograft survival was obtained in
CCR5 – / – mice, demonstrating a major role
for this chemokine (Gao et al. 2001). However,
more recently, in a similar heart transplant mod-
el, Nozaki et al. (2007) only detected a modest
effect of CCR5 on graft rejection using CCR5 – / –

mice. Involvement of CCR5 in graft rejection
was also shown in murine models of pancreatic
islet transplantation (Abdi et al. 2002). More
recently, in a cardiac transplantation model in
rhesus monkeys, cotreatment with a CCR5 an-
tagonist and cyclosporine Awas able to prolong
heart survival. This prolongation was associated
with a delay in alloantibody response, a lower
graft infiltration, and a decrease in alternatively
activated macrophages (Li et al. 2011). In addi-
tion to the recruitment of mononuclear cells to
the graft, CCR5 polarizes T cells toward a type 1
response, and promotes the trafficking of T cells
to LNs and favors DC/T-cell interaction within
the LNs (Amano et al. 2005). Furthermore,

Y-box protein-1, a molecule that acts as a tran-
scription regulator of CCL5, one CCR5 ligand
also called RANTES, expression in T cells, and
monocytes/macrophages, was shown to be up-
regulated during rejection in human kidney
transplant biopsies (Raffetseder et al. 2009).
Contrary to these studies, in a rat model of kid-
ney transplant tolerance following CD28 block-
ade, CCL5 recruited CD4þTregs to the graft via a
graft-to-periphery CCL5 gradient (Dilek et al.
2012).

Another well-described chemokine involved
in graft rejection is CXCR3. In a murine model,
absence of CXCR3 in graft recipients was shown
to prolong cardiac transplant survival (Hancock
et al. 2000). However, as for CCR5, a more recent
study obtained controversial results showing
no delay in graft rejection between controls
and CXCR3 KO mice (Kwun et al. 2008). Anal-
ysis of CXCR3 and its ligands, CXCL9 and
CXCL10, was performed in biopsies from trans-
plant patients undergoing acute rejection.
Fahmy et al. (2003) showed an up-regulation

Graft

Lymphoid organs

Infiltration of immune cells

DCs/ T-cell interactions

Priming/polarization of CD4+
 T cells

Priming/polarization of CD8+
 T cells

CCR5 (CD4+ and CD8+ T cells and
macrophages)
CXCR3 (CD4+ and CD8+ T cells)

CCR4 (NK cells)

CCR5, CCR2

CCR7, CXCR3, CCR2

CCR5, CCR7, CCR4

Recruitment of
mononuclear cells

CCR4/CCR5/CXCR3

CCR2 (CD11c+ cells)

Figure 1. Chemokines: Homing of immune cells and role in acute rejection. Mononuclear cells are able to
migrate into the graft or into the lymphoid organs in response to chemokine gradients. Experiments on animal
models of transplantation and analysis of human samples from transplant recipients allow a better understand-
ing of the involvement of chemokines in graft rejection.
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of CXCL10 in endomyocardial biopsies, whereas
an increase in CXCL10 was detected in macro-
phages of lung biopsies (Agostini et al. 2001).
Furthermore, the number of CXCR3þ cells
present in human kidney transplant biopsies
was reported to increase with graft rejection
and to decrease with immunosuppressive treat-
ment, suggesting that CXCR3 might be a good
target to treat rejection (Hoffmann et al. 2006).
Other recent studies have highlighted the role of
chemokines as biomarkers of clinical rejection
and are described in Table 1.

In mouse models of cardiac and pancreatic
islet transplantation, expression of CXCR3 was
detected in Tregs, memory CD4þ and CD8þ T
cells, NKT, and NK cells (Uppaluri et al. 2008).
Zhai et al. (2006) showed that CXCR3 is involved
in the recruitment of CXCR3þCD4þ T cells fol-
lowing ischemia-reperfusion injury in a model
of rat syngeneic orthotopic liver transplanta-
tion. Similarly, expression of CXCR3 by Tregs
resulted in their recruitment to peripheral sites
of inflammation, and a high number of circulat-
ing CXCR3þTregs was detected in kidney trans-
plant patients treated with an mTOR inhibitor
as their immunosuppressive therapy (Hoerning
et al. 2011). In addition to the role of CXCL9/
CXCL10 in the recruitment of T cells to the al-
lograft, Rosenblum et al. (2010) recently showed
that these chemokines regulate donor-specific
CD8þT-cell priming. As such, in a murine mod-
el of cardiac transplantation using KO mice for
either the CXCL9 or CXCL10 gene, CXCL9 pro-
moted, whereas CXCL10 inhibited the differ-
entiation of IFN-g-producing donor-specific
CD8þ T cells.

A new molecule called TAK-779 was identi-
fied as a blocking agent for both CCR5 and
CXCR3. This molecule was shown to prevent
cardiac allograft rejection in mice (Akashi et al.
2005) as well as kidney rejection in rats (Kakuta
et al. 2012). In the latter study, prolongation of
graft survival correlated with a decrease in mac-
rophage infiltration (Kakuta et al. 2012). Last,
coexpression of CXCL10 and fractalkine or
CX3CL1 by endothelial cells was shown to be
involved in effector memory T-cell recruitment
(Manes et al. 2007; Manes and Pober 2008).
Fractalkine acts as a chemoattractant and adhe-

sion molecule for cells that express CX3CR1,
including certain immune cells such as mono-
cytes/macrophages, NK cells, and T cells (Imai
et al. 1997; Fong et al. 1998; Foussat et al. 2000).

Some studies have also been performed to
analyze other chemokine receptors. For exam-
ple, CCR2 was shown to be an important che-
moattractant receptor for mononuclear cells.
This is because CCR2 induced mobilization of
monocytes from bone marrow to blood and an
accumulation of CD11cþ cells in the allograft in
a mouse model of lung allotransplantation (Gel-
man et al. 2010). Interaction of CCR2 with
its ligand (CCL2) also caused T-cell clonal ex-
pansion and differentiation (Lee et al. 2003).
In CCR2 – / – mice, an increase in graft survival
was observed after pancreatic islet transplanta-
tion (compared to control mice) and associated
with the absence of CD8þ effector T cells in these
mice (Abdi et al. 2004).

CCR4 is an important chemokine for hom-
ing of memory T cells (Campbell et al. 1999) and
was shown to be crucial for the recruitment of
FoxP3þTregs in a model of tolerance induced by
donor-specific transfusion/CD154 therapy (46)
as no tolerance was achieved in CCR4-deficient
mice (Lee et al. 2005). Inhibition of CCR4 and
its ligands led to an increase in heart graft sur-
vival associated with a decreased in DC/T-cell
interactions and an inhibition of monocytes and
NK cells present in the graft (Alferink et al. 2003;
Huser et al. 2005). Last, CCR7 is known to be
involved in the localization of both DCs and T
cells in the T-cell-rich zones of the LNs, indicat-
ing a role for CCR7 in T-cell homing and prim-
ing (Hopken et al. 2004). Recently, Liu et al.
(2011) showed that a lack of CCR7 prevented
tolerance induction in a cardiac murine model
of transplantation. This impairment of toler-
ance was partially rescued by adoptive transfer
of wild-type plasmacytoid DCs to the CCR7-
deficient mice (Liu et al. 2011).

As discussed before, some of these chemo-
kines and chemokine receptors might be useful
as markers of acute rejection. In the case of renal
transplantation, rejection could be monitored
via noninvasive urine sampling. The most well-
known urine marker is IP-10 or CXCL10. An
increase in IP-10 mRNA and protein in the
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urine of a kidney transplant recipient was shown
to correlate with incidence of acute rejection ep-
isodes (Matz et al. 2006). Moreover, high levels
of CXCL3 (Tatapudi et al. 2004) and CD103
mRNA (Ding et al. 2003) were present in a re-
cipient undergoing acute rejection. Neverthe-
less, chemokines are not the only markers of
rejection. In fact, other proteins, such as gran-
zyme B and FoxP3, miRNAs, and cells could also
be used as predictive biomarkers of rejection
(Table 1).

Nonspecific Effector Cells (NK Cells,
Macrophages, Monocytes, DCs, and
Neutrophils)

Despite the finding that NK cell detection in the
graft infiltrate was a negative prognostic factor
(Sorrentino et al. 2006), this cell type does not
appear to be necessary or sufficient to mediate
allograft rejection. Some recent studies have
even highlighted the involvement of NK cells
in the phenomenon of tolerance (van der
Touw et al. 2012). NK cells seem to act mainly
as a bridge between innate and adaptive immune
responses. This has been underlined by exper-
iments using CD28-deficient mice. For exam-
ple, by depleting NK1.1þ cells using antibodies
in CD28-deficient mice, some groups showed
that absence of NK cells reduce cardiac allograft
rejection in mice (Maier et al. 2001; McNerney
et al. 2006). In this model, NK cells, but not NKT
cells, were required for rejection by promoting T-
cell expansion and effector function (McNerney
et al. 2006). This effect was independent of the
NK-cell activator NKG2D receptor.

In contrast, several studies have highlighted
the role of the NKG2D receptor in rejection. In a
model of cardiac transplantation in CD28-defi-
cient mice, blocking NKG2D prevented graft re-
jection (Kim et al. 2007). Zhang and coworkers
confirmed the involvement of NKG2D in graft
rejection as they showed that the NKG2D recep-
tor present on NK cells recognizes renal tubular
epithelial cells, leading to their killing by a per-
forin-dependent pathway during ischemia re-
perfusion injury (Zhang et al. 2008). Promotion
of CD4þ T-cell activation by the indirect allo-
recognition pathway is another mechanism of

action of NK cells investigated by NK-cell deple-
tion and NKG2D blockade in a murine skin graft
model (Ito et al. 2008). Two ligands of NKG2D,
namely RAEL1 and RRLT, were found to be ex-
pressed in rat liver allograft and to be linked to
acute rejection (Zhuo et al. 2010). Moreover, in
human kidney transplant biopsies, an elevated
level of NKG2D mRNAwas also associated with
acute rejection (Seiler et al. 2007). NK cells pro-
duce a variety of cytokines, including IFN-g,
TNF-a, and TGF-b, as well as colony-stimulat-
ing factors (Cuturi et al. 1987, 1989; Anegon
et al. 1988). IFN-g produced by NK cells is
known to induce an up-regulation of MHC class
I and class II molecules by endothelial cells lead-
ing to their killing by CD8þ T cells (McDouall
et al. 1997; Ayalon et al. 1998). More recently, a
role for IL-15 in NK-cell-mediated mechanisms
was shown, as in vivo stimulation of NK cells
with IL-15 was found to induce skin graft rejec-
tion in RAG – / – mice (Kroemer et al. 2008).
Last, an interesting effect of NK cells on donor
DCs has been described. Coudert et al. (2002)
showed that interaction of NK cells with donor
DCs in the absence of CD8þ T cells promoted
CD4þ T-cell priming and regulated the Th bal-
ance. In a more recent study performed in a
model of CD4þ T-cell-mediated allogeneic
skin graft rejection, NK cells killed donor DCs
in draining LNs by a perforin-dependent path-
way that avoided T-cell activation (Laffont et al.
2008) thereby confirming that NK cells favor
indirect allorecognition (Garrod et al. 2010).

Macrophages constitute another innate cell
population that contributes to the tissue dam-
age observed in rejected organs. In humans,
macrophages were found to represent 40%–
60% of the cellular infiltrate in renal allotrans-
plants (Hancock et al. 1983). A large number
of monocytes were also detected in infiltrates
from the graft biopsies of kidney transplant re-
cipients under T-cell-depleting therapy (anti-
CD52 and FK506 monotherapy) (Salama et al.
2007). These cells were recruited to inflamma-
tory sites by monocyte chemoattractant pro-
tein-1 (MCP-1). Blockade of MCP-1 was shown
to increase pancreatic islet transplant survival
in rodents (Lee et al. 2003). In addition, block-
ade of macrophage colony-stimulating factor-
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reduced macrophage proliferation and accumu-
lation in the graft leading to a decrease in the
severity of kidney transplant rejection in mice
(Jose et al. 2003). Other studies have confirmed
in macrophages a decreased infiltration and an
increase in graft survival in murine models of
both kidney (Qi et al. 2008) and heart (Takeiri
et al. 2011) transplantation. Furthermore, in
the context of human kidney transplantation,
CX3CR1 expression by macrophages was asso-
ciated with acute rejection, and was a negative
prognostic factor in human kidney graft (Hoff-
mann et al. 2010).

There are several macrophage subsets, and
specialized tissue-resident macrophages are
widely distributed across the body including
the liver (Kupffer cells) and bone (osteoclasts).
Macrophages can also display heterogeneity in
terms of their functional phenotype as well as
their activation state. In the same terms, acti-
vated macrophages are classified as classically
or alternatively activated macrophages, named
M1 and M2 macrophages, respectively, referring
to T-cell nomenclature (Mantovani et al. 2004).

M1 macrophages are activated by a combi-
nation of IFN-g and TNF released by Th1 cells.
M1 macrophages have the capacity to present
antigen to T cells and express high levels of
costimulatory molecules (CD86 and CD80)
(Mantovani et al. 2004). These cells also express
large amounts of the proinflammatory cytokine
IL-12 and promote the development of the Th17
immune response by secreting IL-1, IL-6, and
IL-23. M1 macrophages are thought to play a
role in the defense against bacteria or viruses
as well as tumor resistance. However, in several
conditions, this macrophage subset can take
part in chronic inflammation and autoimmune
diseases (Mosser and Edwards 2008).

M2 macrophages, on the other hand, are
associated with immunoregulation. Macrophage
phenotype and function are thought to differ
according to the chemokine environment at
the time of their activation (Mantovani et al.
2004). In fact, macrophages develop a regulatory
profile when activated by IL-10 or immune com-
plexes associated with a second stimulus. These
cells act as regulatory cells by producing high
levels of IL-10 and other anti-inflammatory cy-

tokines such as TGF-b, for example (Mosser and
Edwards 2008). Alternatively, if resident macro-
phages are activated in the presence of IL-4 and
IL-13, they are considered as M2a, or wound-
healing macrophages, as they promote tissue re-
pair. The latter cells are characterized by an up-
regulation of mannose receptor and production
of polyamine (Mantovani et al. 2004; Mosser
and Edwards 2008).

However, depending on the context, activat-
ed macrophages are able to switch their pheno-
type and change their function too (Mosser and
Edwards 2008). One example of this is the dif-
ferentiation of M1 to hybrid macrophages that
share the characteristics of both regulatory
and wound-healing macrophages. Unfortunate-
ly, these cells are tumor-associated macrophages
and inhibit antitumor immunity (Duluc et al.
2007). Another example is in the context of the
autoimmune disease diabetes, inwhich adipose-
tissue-associated macrophages with a wound-
healing phenotype polarize toward a phenotype
similar to classically activated macrophages (Lu-
meng et al. 2007).

A recent study performed in a rat model of
lung transplantation showed that CD68þ mac-
rophages were the most abundant cell type ob-
served during acute rejection, whereas CD163þ

cells were distributed around vessels and bron-
chioles (Jungraithmayr et al. 2010). Regarding
their tissue localization, macrophage infiltration
was significant in the interstitium, but also in the
arterial intima of vascularized grafts (Sun et al.
2011). Infiltration was also observed in the glo-
meruli of kidney transplants.

In contrast to the arterial intima in which no
correlation between antibody-mediated rejec-
tion (AMR) and macrophage infiltration was
shown (Kozakowski et al. 2009), macrophages/
monocytes were associated with AMR when
present in the glomeruli. Moreover, presence
of focal or diffuse C4d deposits was associated
with macrophage/monocyte infiltrates, whereas
T cells predominated when no C4d deposits
were detected (Magil 2005; Magil and Tinckam
2006). These results were confirmed by Fahim
et al. (2007), who showed an abundant recruit-
ment of monocytes to peritubular and glomer-
ular capillaries during humoral rejection. More-
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over, in a murine model of hepatocellular allo-
transplantation in which rejection is mediated
by a CD4-dependent alloantibody response, de-
pletion of macrophages delayed hepatocyte re-
jection and inhibited in vivo allocytotoxicity
(Horne et al. 2008).

Polymorphonuclear cells are also efficient
producers of chemokines (Molesworth-Kenyon
et al. 2005). As described in the previous section,
chemokines act on T-cell activation, prolifera-
tion, and function. One type of polymorpho-
nuclear cell, the neutrophil, was detected in
large numbers among the cells infiltrating mu-
rine skin allografts during acute rejection (Celli
et al. 2011). Neutrophils have also been shown to
contribute to allograft rejection in models of
costimulation blockade (El-Sawy et al. 2005),
or in the absence of IFN-g (Miura et al. 2003)
and IL-4 (Surquin et al. 2005). There is also ev-
idence of eosinophil involvement in models of
rejection and their activation was shown to be
dependent on a Th2 CD4þ T-cell response (IL-
4-dependent) (Braun et al. 2000; Surquin et al.
2005). Eosinophils were also abundant in intes-
tinal graft infiltrates on T-cell elimination (Wu
et al. 2006).

Recently, the role of platelets has been shown
in allograft rejection, as these cells are able to
induce immune stimulation. In this context,
platelets are believed to act by recruiting mono-
nuclear cells by secreting cytokines/chemokines
and by stimulating monocytes, macrophages,
and T cells by interaction with them via P-selec-
tin/PSGL-1 or CD40/CD40L pathways (Xu et
al. 2006; Kirk et al. 2009).

Last, endothelial cells are also able to induce
allogeneic CD4þ and CD8þ T-cell activation
and proliferation, favoring IFN-g and IL-2 se-
cretion and leading to graft rejection (Epperson
and Pober 1994). In a recent review, Taflin et al.
(2011, 2012) described how in the context of
inflammation, such as observed in transplanta-
tion, endothelial cells are activated by proin-
flammatory cytokines and TLR ligands. This
activation leads to memory CD4þ T-cell prolif-
eration and Th1/Th17 expansion by endothelial
cell secretion of proinflammatory cytokines and
chemokines (such as CXCL10, IL-6, and IL-1a)
and overexpression of costimulatory molecules

(such as LFA-3 or OX-40L) or adhesion mole-
cules (such as ICAM-1) (Griffin et al. 2012). In
humans, three nonclassical MHC class I anti-
gens exist: HLA-E, HLA-F, and HLA-G. Coupel
et al. (2007) showed that HLA-E is expressed
only by leukocytes, such as NK cells, B and
T lymphocytes, macrophages, and by endothe-
lial cells. Moreover, they show that endothelial
cells up-regulate HLA-E in inflammatory con-
ditions, and endothelial cells produce a soluble
form of HLA-E. Coupel’s group additionally
showed that increased expression of the mem-
brane-bound form of HLA-E protected IFN-g-
activated endothelial cells from CD94/NKG2A-
mediated cytolysis, whereas the soluble form of
HLA-E protected other cell types. Endothelial
cells expressed the MHC class-I related chain
A, MICA, which is a ligand for NKG2D. NK
cells and cytotoxic T cells express this activating
receptor. Under inflammatory stimulation by
TNF-a, human endothelial cells up-regulate
the expression of MICA (Lin et al. 2012). These
results are consistent with previous data suggest-
ing that MICA is expressed by kidney macro-
vascular endothelial cells in kidney transplant
recipients (Sumitran-Holgersson et al. 2002).
Moreover, this study showed that MICA acts as
an antibody target, which confirmed anti-MICA
antibodies are associated with the reduction of
graft survival (Zou et al. 2007).

Acute Cellular Response

T-Cell Activation and Effector T Cells

Effector T cells can mediate cell lysis either via
cytokine or chemokine secretion, which induces
necrosis of transplant tissue, or via direct contact
with epithelial or endothelial cells and various
mechanisms of cytotoxicity. However, T cells
can also stimulate B cells to initiate humoral
rejection, or other cells such as macrophages or
neutrophils, whose role in transplant rejection is
described above.

On activation by DCs, naı̈ve alloreactive
CD4þT cells can differentiate into T helper cells,
including Th1, Th17, Th2, or into regulatory T
cells (Tregs). In a proinflammatory environ-
ment, naı̈ve CD4þ T cells differentiate mainly
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into Th1 and Th17 cells. Th1 cells produce IFN-
g and IL-2 and are involved in cytotoxic T lym-
phocyte (CTL) priming, stimulation of the
humoral response, and activation of other cell
types such as NK cells. IL-17 produced by Th17
cells stimulates the production of inflammatory
cytokines and chemokines leading to the recruit-
ment of neutrophils and macrophages to the
graft. In a Th1-depleted environment, Th17 cells
(Yuan et al. 2008) or Th2 cells (Barbara et al.
2000) can efficiently promote graft rejection.
Th2 cells release anti-inflammatory cytokines
such as IL-10 and IL-4 T follicular helper cells
and Th9 helper cells have not yet been described
in detail, but they have been shown to induce B-
cell maturation and mast cells recruitment, re-
spectively.

In contrast, CD4þ Tregs have been shown to
be involved in the tolerance process and to pre-
vent graft rejection in mice (Kingsleyet al. 2002).
These cells are able to suppress CD4þ and CD8þ

effector T cells and can also target APCs, decreas-
ing their capacity for antigen-presentation and
costimulation (Shevach 2009). A recent study
performed using humanized mice showed the
superiority of donor alloantigen-specific CD4þ

Tregs over their polyclonal counterparts to sup-
press alloimmune responses (Sagoo et al. 2011).
In tolerant liver transplant patients, an increase
in peripheral blood CD4þ Tregs has been ob-
served by several groups (Li et al. 2004; Marti-
nez-Llordella et al. 2007; Pons et al. 2008; Na-
fady-Hego et al. 2010). Although this Treg
signature does not seem to be present in the pe-
ripheral blood of kidney transplant patients, an
increase in intragraft Tregs was detected in such
patients (Bestard et al. 2007).

CD8þ T cells can differentiate into CTLs,
which themselves can be classified as Tc1, Tc2,
or the more recently described Tc17 (Yuan et al.
2009). Although, naı̈ve CD8þ cells can only be
activated by DCs, CD4þT cells have been shown
to facilitate CD8þT-cell differentiation either by
cell-to-cell contact or by secretion of IL-2/IFN-
g cytokines. In the latter case, both APCs and
CD4þ helper T cells have been shown to be in-
volved in CTL differentiation (Ridge et al. 1998).
CTLs subsequently migrate to the graft where
they recognize target cells via their allogeneic

MHC class I molecules. Killing by CTLs is me-
diated mainly by the secretion of perforin and
granzyme B, or by the Fas/FasL pathway. These
two pathways induce target cell apoptosis. CTLs
are also able to secrete soluble mediators such as
TNF-a. In terms of the dynamics of CTL action,
in a model of skin graft rejection, an accumula-
tion of CTLs surrounding the graft was detected,
followed by an early phase of killing in small
areas of the dermis/epidermis junction. The
CTLs were shown to disseminate to the whole
graft and induce tissue destruction (Celli et al.
2011).

Compared to their naı̈ve counterparts,
memory T cells induce a faster and more effec-
tive immune response with lower antigen stim-
ulation (Rogers et al. 2000; Veiga-Fernandes
et al. 2000). This is supported by data in humans
showing that the pretransplant frequency of do-
nor-specific memory cells correlates with the
posttransplant risk of developing acute rejection
episodes (Heeger et al. 1999). These results were
confirmed in liver transplant patients in whom
the presence of a high number of CD8þ cells
with a memory phenotype before transplanta-
tion was associated with reduced graft survival
(Tanaka et al. 2006). More recently, in a model of
kidney allotransplantation in nonhuman pri-
mates, Nadazdin et al. (2011) showed that the
presence of memory T cells before transplanta-
tion was a barrier to transplantation tolerance.

Despite CD8þ Tregs being of considerable
interest in transplantation, their subsets and
mechanisms of action are less understood in
comparison to their CD4þ Treg counterparts
(Guillonneau et al. 2010). Understanding the
function and mechanisms of action of the dif-
ferent CD8þ Treg subsets is essential. In rodent
models, several studies have shown the role of
CD8þ Treg subsets in the suppression of trans-
plant rejection. For example, donor-antigen-
specific CD8þCD45low Tregs were shown to de-
velop in a fully mismatched heart allograft mod-
el in rat on treatment with CD40Ig (Guillonneau
et al. 2007). The therapeutic potential of these
regulatory cells has also been highlighted in hu-
man studies; in liver and cardiac transplant re-
cipients, expansion of CD8þCD282 Tregs was
shown to correlate with low exposure to immu-
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nosuppressive drugs and a decrease in acute and
chronic allograft rejection (Guillonneau et al.
2010).

Memory T Cells

The presence of memory T cells able to react
with alloantigens was shown in healthy individ-
uals by Lombardi’s group in 1990 (Lombardi
et al. 1990). Memory T cells showed a faster pro-
liferation, in accordance with observations in
vivo during secondary-type immune responses
(Akbar et al. 1990). Memory CD8þ T cells act as
CTLs as they are able to directly kill target cells,
mainly via the granzyme/perforin pathway
(Barber et al. 2003).

Two distinct subsets of memory T cells have
been identified, and are termed central and
effector memory cells (Brook et al. 2006). Cen-
tral and effector memory cells are CD45ROþ

CD45RA2, but differ by their expression of the
CD62L/CCR7 markers. Contrary to central
memory cells, effector memory cells express
more b1 and b2 integrins. Moreover, the two
subsets differ in their localization because cen-
tral memory T cells express intermediate levels
of CCR4 and CCR6, whereas effector memory T
cells express high levels of CCR1, CCR3, and
CCR5. Although central memory T cells require
restimulation, this subset is more efficient in
their killing function (Sallusto et al. 1999; Barber
et al. 2003; Hengel et al. 2003).

In sensitized patients, the presence of mem-
ory T cells specific for alloantigens can be caused
by prior blood transfusion, pregnancy, or trans-
plant rejection. The presence of allospecific
memory T cells is more difficult to explain in
nonsensitized individuals, but may be the result
of heterologous immunity or homeostatic pro-
liferation.

Heterologous immunity is defined as the
ability of alloreactive memory T cells specific
for a microbial antigen to cross-react with allo-
geneic MHC molecules through direct allo-
recognition. This affinity of the T-cell receptor
for allogeneic MHC molecules can be higher
than that for self-antigens. Heterologous immu-
nity has been shown both in mice and in humans
(Smith et al. 2012). Homeostatic proliferation

occurs in lymphopenic conditions (such as
those caused by certain immunotherapies) and
in the absence of an antigenic stimulus. In these
conditions, peripheral T cells rapidly proliferate
and acquire a memory phenotype that sponta-
neously skews toward a Th1 phenotype (Mox-
ham et al. 2008). Certain cytokines, such as IL-7,
have been shown to mediate this homeostatic
proliferation (Schluns et al. 2000).

Memory T cells generated in the context of
viral infections or by homeostatic proliferation
may prevent tolerance induction, as shown us-
ing well-established rodent models of tolerance
(Valujskikh et al. 2002; Zhai et al. 2002; Wu et al.
2004). These results show that memory T cells
can act as barriers to tolerance induction. It is
therefore necessary to develop therapies to pre-
vent memory T-cell generation or to eliminate
such cells. The effect of immunosuppressive
drugs on memory T cells has started to be stud-
ied. So far, it is known that CD4þmemory T cells
are resistant to steroids, deoxyspergualin, and
sirolimus. In contrast, calcineurin inhibitors ta-
crolimus and cyclosporine A inhibit their pro-
liferation and in vitro activation (Pearl et al.
2005). Optimal activation of memory T cells
requires costimulatory molecules, which are dif-
ferent from those acting on naı̈ve cells, such as
ICOS/ICOSL, OX40/OX40L, and CD27/CD70
(Croft 2003; Wu et al. 2004). Consequently,
blockade of the CD27/CD70 pathway prolongs
the survival of heart transplant in mice (Yamada
et al. 2005). Moreover, IL-7 inhibition blocks
allograft rejection mediated by memory T cells
without affecting Tregs (Wang et al. 2006).

Acute Humoral Response

Although T cells have been considered for many
years as playing a predominant role in graft re-
jection, it is now known that the acute humoral
response is the main cause of acute graft loss
(Terasaki 2003). In fact, acute humoral rejection
accounts for 15% to 20% of graft rejection with-
in the first posttransplant year, despite immu-
nosuppressive therapies (Montgomery et al.
2004; Lucas et al. 2011).

The criteria for the diagnosis of acute hu-
moral rejection of kidney transplants were ini-
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tially established by the Banff working group in
2003 (Racusen et al. 2003). At least one of the
following criteria must be present for a diagno-
sis of acute humoral rejection to be made: (1)
morphological criteria: presence of neutrophils
and/or monocytes/macrophages in peritubu-
lar capillaries (PTC) and/or glomeruli, fibri-
nous arterial necrosis, thrombosis in the glo-
merular capillaries, arterioles, and/or small
arteries and acute tubular damage; (2) immu-
nohistological criteria: C4d deposits in PTC,
presence of immunoglobulins, or complement
in the fibrinous necrosis of the arteries; (3) se-
rological criteria: presence of circulating anti-
donor (HLA and non-HLA) antibodies called
donor-specific antibodies (DSA).

These criteria were optimized during the
9th Banff conference by including the quanti-
fication of C4d deposition (Solez et al. 2008).

Generally, detection of DSA and C4d depos-
its is associated with an increase in AMR and an
inferior graft outcome (Kedainis et al. 2009).
Nevertheless, although the presence of C4d de-
posits in kidney biopsies appears to be a good
marker of AMR, during the last Banff meeting it
was agreed that AMR can also be diagnosed in
the absence of C4d detection (Mengel et al.
2012).

The new objectives of the Banff committee
are therefore to characterize AMR by defining:
(1) thresholds for microvascular injury and for
DSA in AMR, noting that all injuries are specific
and all patients with DSA develop AMR, (2)
C4d-negative AMR before adding this category
to the Banff classification, (3) acute versus
chronic AMR, and (4) the significance of intimal
arteritis in the absence of necrosis as a histolog-
ical criteria (Mengel et al. 2012).

B Cells

The importance of B cells in allograft rejection
was shown using B-cell-deficient mice. Several
groups, including Brandle and coworkers, as
well as Wasowska and colleagues showed that
acute allograft rejection was delayed in B-cell-
deficient mice and could be restored by the ad-
ministration of hyperimmune sera (Brandle
et al. 1998; Wasowska et al. 2001). In humans,

the primary role of B cells as amplifiers of the
alloresponse is suggested by the positive reports
of B-cell depletion therapy (rituximab) as in-
duction for ABO-incompatible renal transplant
recipients (Tyden et al. 2009). However, ritux-
imab-induction therapy was reported to lead to
acute cellular rejection in some kidney trans-
plant recipients (Clatworthy et al. 2009). It is
therefore thought that B-cell depletion may be
quicker at depleting the B cells that contribute
to tolerance than those that promote rejection,
thereby temporarily amplifying the allore-
sponse.

The abilityof B cells to present antigen and to
produce antibodies and cytokines means that
these cells can take part in allograft rejection
by different mechanisms. B cells have the abili-
ty to promote T-cell activation/differentiation
through costimulatory pathways, or cytokine re-
lease (Constant 1999; Zarkhin et al. 2010). B cells
have also been shown to promote alloreactive
T-cell differentiation into memory T cells (Ng
et al. 2010). Moreover, a deficiency in B-cell an-
tigen presentation can prolong graft survival
(Noorchashm et al. 2006).

More recently, several groups suggested that
B cells might be involved in tolerance. For ex-
ample, Deng and coworkers showed that anti-
CD45RB-induced tolerance to heart transplants
requires the presence of B cells (Deng et al. 2007).
Furthermore, resting B cells expressing donor
antigen indefinitely prolonged heterotopic
heart transplant survival (Niimi et al. 1998). In
rats, long-term allograft tolerance is character-
ized by an accumulation of B cells expressing
genes such as BANK-1, which are associated
with tolerance (Le Texier et al. 2011). In addi-
tion, anti-CD20-mediated depletion of B cells in
mice was shown to accelerate skin graft rejection
(DiLillo et al. 2011). A specific population of B
cells expressing TIM-1 was identified as having
regulatory properties in mouse models of islet
transplantation (Ding et al. 2011). Furthermore,
a B-cell signature was described in immunosup-
pressant-free transplant patients whowere spon-
taneously tolerant to their HLA mismatched
kidney transplant (Newell et al. 2010; Pallier
et al. 2010; Sagoo et al. 2010; Silva et al. 2012).
In contrast, spontaneously tolerant liver trans-
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plant recipients were reported to display an NK
cell signature (Martinez-Llordella et al. 2008).
These results were confirmed by the analysis of
PBMC from kidney and liver transplant patients
by the same laboratory, showing that the B-cell
signature was only detectable in kidney in im-
munosuppressant-free kidney transplant pa-
tients (Lozano et al. 2011).

Antibodies

Halloran’s group showed the role of alloantibod-
ies in acute humoral rejection in the 1990s. They
described a correlation between the prognosis of
acute rejection and the production of antidonor
antibodies after transplantation (Halloran et al.
1990). In presensitized patients, the presence of
DSA at the time of transplantationwas identified
as a high risk factor for AMR and patients who
develop anti-HLA DSA tend to have inferior
long-term graft survival compared to those
that do not (Lefaucheur et al. 2008, 2010). In
support of these results, a recent study by Coo-
per et al. (2011) also showed that patients who
develop de novo DSA after transplantation have
an inferior graft outcome.

Alloantibodies that develop against the do-
nor organ can recognize several types of antigens
(for review, see Dragun 2008): HLA antigens
class I and II (Terasaki and Ozawa 2004; Terasaki
and Cai 2005), MICA and MICB antigens
(MHC class I-related molecules A and B) (Zou
et al. 2007; Li et al. 2010), minor histocompati-
bility antigens and non-HLA antigens including
the angiotensin II type 1 receptor (Dragun et al.
2005), vimentin (Mahesh et al. 2007), myosin,
the ABO blood group antigens (Montgomery
et al. 2012), perlecan, type IV and VI collagen,
agrin, unknown endothelial antigens (Jackson
et al. 2011b), and ICAM-1 (Lawson et al. 2005).

Alloantibodies mainly induce AMR by com-
plement-dependent mechanisms. In fact, the al-
loantibodies that fix C1q complement are asso-
ciated with a worse outcome that does not fix
complement (Yabu et al. 2011). A greater risk
of acute humoral rejection was clearly shown
when C4d deposits were associated with DSA
and, more specifically, anti-HLA class I but not
anti-HLA class II antibodies (Cosio et al. 2010).

However, in the absence of C4d staining, associ-
ation of DSAwith altered expression of endothe-
lial genes was also found to be a marker of AMR
in kidney patients, as the alloantibodies modi-
fied the microcirculation (Sis et al. 2009). NK
cells and macrophages were also involved in
AMR in patients with DSA. On stimulation by
alloantibodies, NK cells cause endothelial injury
and act as effector cells by killing target cells
through the antibody-dependent cellular cyto-
toxicity pathway (Hidalgo et al. 2010). The role
of NK cells is particularly well-defined as
NKG2D is a receptor for stress-inducible MICA
and, as described previously, this molecule is also
highly efficient at stimulating NK cells and cer-
tain T-cell subsets (Bauer et al. 1999).

Several desensitizing protocols have been
tested to reduce the DSA that cause AMR, in-
cluding plasmapheresis or IVIg, as well as treat-
ments targeting complement C5 molecules, pro-
teasome, or CD20þ cells (Gueler et al. 2008;
Raedler et al. 2011; Yoo et al. 2012). A combina-
tion of these treatments was shown to improve
graft survival outcome (Lefaucheur et al. 2009;
Montgomery et al. 2011).

CHRONIC REJECTION

The Origins and Mechanisms of Chronic
Rejection

Since the early 1980s, 1-year graft survival
of kidney allografts has increased significantly,
reaching more than 90% (Hariharan et al. 2000;
Pascual et al. 2002). Nevertheless, the graft sur-
vival in the long term has changed minimally,
and the percentage of grafts lost annually after
the first year has not changed (Meier-Kriesche
et al. 2004). Death with a functioning graft and
chronic allograft nephropathy (CAN) are the
main causes of graft loss (Halloran et al. 1999;
Ojo et al. 2000; Matas et al. 2002; Pascual et al.
2002). The predominance of CAN is 60%–70%
in the first year posttransplant (Solez et al. 1998;
Nankivell et al. 2003). CAN is an entity that en-
compasses several different mechanisms that in-
clude interstitial fibrosis and tubular atrophy.
The natural history of CAN suggests that it can
result from both immunological and nonimmu-
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nological phenomena, including calcineurin in-
hibitors (CNI) toxicity (Nankivell et al. 2003).
Chronic dysfunction is also observed in other
organ transplants and is often responsible for
premature graft loss.

In recent years, significant efforts have been
made to describe and classify CAN. In 1990,
analyses based in histological studies were per-
formed in the field of kidney transplantation,
resulting in the description of a classification
system for chronic allograft dysfunction (Classi-
fication “Banff 97”) (Racusen et al. 1999). This
classification is revisited regularly to incorporate
the latest scientific data and to try to differentiate
lesions associated with chronic rejection (CR)
from those observed in response to cardiovascu-
lar risk factors or CNI toxicity. The 2005 Banff
meeting differentiated the lesions suggestive of
chronic allograft rejection (including antibody-
dependent complement activation lesions) and
cell arteritis from the less specific lesions of
interstitial fibrosis/tubular atrophy (IF/TA)
(Solez et al. 2007, 2008). IF/TA lesions can ap-
pear very early after transplantation. At 1 year
posttransplant, .80% of kidneys have minimal
lesions of IF/TA that will deteriorate over time,
reaching .50% of kidneys with severe lesions
at 5 years. The 2011 Banff meeting focused on
refining the diagnostic criteria for AMR. As
such, C4d-negative AMR was recognized, in
which NK cells and endothelial activation were
proposed to play a role (Mengel et al. 2012).

The Histological Lesions

Significant progress has been made in under-
standing the mechanisms involved in the onset
of CR, with the description of arteritis lesions in
animal models (Yuan et al. 2002). One predom-
inant observation made during chronic allograft
rejection is an increase in the thickness of the
intima, resulting in a decrease in vessel caliber
with destruction of the internal elastic lamina.
This thickening is also because of an accumula-
tion of extracellular matrix and proliferation of
myofibroblasts (Pedagogos et al. 1997; Pilmore
et al. 2000; Ramirez et al. 2006). An accumula-
tion of macrophages and CD4þ T cells has been
observed at the peripheryof the vessels (Thaunat

and Nicoletti 2008; Thaunat et al. 2005, 2006,
2008), whereas CD8þ T cells are rarely present.
The involvement of T cells in the pathogenesis of
CR has been investigated through the study of
genetically invalidated mice. In a mouse model
of cardiac allotransplantation in which the genes
encoding CD40 or CD40L were invalidated, CR
was not observed, suggesting that activated T
lymphocytes are required to initiate the phe-
nomenon of CR. Nevertheless, in a rat model
of cardiac allotransplantation in which animals
were treated with CD40Ig (a molecule interfer-
ing with CD40-CD40L interaction), acute rejec-
tion was successfully inhibited, but CR occurred
in long-term-surviving animals (Guillot et al.
2002). In this same model, the development of
CR was prevented by simultaneous blockade of
other costimulation pathways, such as RANK
and ICOS (Guillonneau et al. 2004, 2005).

In some cases, the graft infiltrate has been
found to adopt an organization resembling
that of ectopic lymphoid tissues, with the infil-
trating B cells capable of producing antidonor
antibodies. These lesions of tertiary lymphoid
tissue have been identified in kidney transplants,
and the process is referred to as lymphoid neo-
genesis, which is analogous to the ontogenic
program triggered during embryo development,
the ectopic germinal centers (eGCs) (Thaunat
et al. 2010; Cheng et al. 2011). The eGCs partic-
ipate in the mechanisms of CR maintaining lo-
cal memory Tand B cells capable of synthesizing
cytokines and antibodies. Interestingly, there is
minimal overlap between the intragraft humoral
response, suggesting a local antibody repertoire.
Recently, Thaunat and coworkers showed that a
breakdown of B-cell tolerance occurs within the
graft during CR (Thaunat et al. 2012). It is
thought that the micrograft environment inter-
feres with peripheral deletion of autoreactive
immature B cells that, in turn, produce autoan-
tibodies. Recent studies have shown an impor-
tant role for autoimmunity in the pathogenesis
of CR suggesting a cross talk between the alloim-
mune response and autoimmunity (Sarma et al.
2012). Although all types of Th polarization
profiles can lead to terminal CR, Thaunat and
coworkers (Deteix et al. 2010) reported on a cor-
relation between shorter graft survival and the
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presence of Th17 cells that produce IL-17 and IL-
21 in human transplant patients. The latter
group hypothesized that IL-21 promotes intra-
graft lymphoid neogenesis, which in turn sup-
ports the development of a local humoral im-
mune response. Moreover, Burlingham et al.
(Burlingham et al. 2007; Keller and Burlingham
2011) showed that the alloimmune response is
partly responsible for the development of a Th17
autoimmune response. In this context, Fukami
et al. (2009) showed that an anti-IL-17 therapy
decreases the production of autoantibodies and
the development of CR in a murine model.

The Role of Antibodies and Endothelial Cells

The involvement of antibodies directed against
the graft in chronic rejection has been suggested
by several groups showing a negative correlation
between the appearance of antidonor antibodies
and graft survival (Mao et al. 2007a,b; Sis et al.
2007). The emergence of new techniques to
identify antibodies by fluorescence-activated
cell sorting, flow cytometry, ELISA (enzyme-
linked immunosorbent assay), and the most sen-
sitive Luminex technique (flow cytometry with

microbeads coated with peptides) now enables a
better analysis of the humoral component (Pei
et al. 2003). Moreover, recent data showing the
existence of deposits during CR suggest the in-
volvement of anti-HLA antibodies with the abil-
ity to activate complement (Nickeleit et al. 2002;
Regele et al. 2002). However, observations from
ABO-incompatible transplants, a context in
which complement activation occurs, suggest
the existence of adaptation mechanisms, allow-
ing endothelial cells to resist complement acti-
vation (Gloor et al. 2006).

However, the effects of antibodies are diverse
as described in Figure 2, and not limited to com-
plement activation. Antibodies can also bind to
the surface molecules of target cells and recruit
other cells by interactions via their constant do-
main (Rebellato et al. 2006; Won et al. 2006).
Recently, Hirohashi et al. described a new role
for NK cells in chronic allograft rejection in
which donor-specific antibodies interact with
NK cells in the absence of complement and trig-
ger transplant vasculopathy (Hirohashi et al.
2012; Li and Baldwin 2012). Last, there is some
in vitro data showing that the culture of endo-
thelial cells with antidonor antibodies results in

Target cells

Target cells

NK cells

EC activation and proliferation

NKG2D

Fc binding

MICA

EC

Complement
activation

Antidonor
Abs

Release of GF

Loop of EC
activation

Induction of
endothelial injury

Platelets
adhesion

Expression of
GF receptors

Figure 2. Induction of endothelial cells activation by antidonor antibodies. Antidonor antibodies (Abs) are
known to induce chronic allograft rejection by several mechanisms of action involving their constant domain
(Fc) or their capacity to induce activation of complement. Antidonor Abs also induce endothelial cell activation.
Activated ECs secrete notably growth factors (GF) that induce the recruitment and activation/proliferation of
several cells implicated in allograft rejection.
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the activation and proliferation of endothelial
cells (Bian and Reed 1999).

This activation step of endothelial cells is
associated with the expression of various recep-
tors on their cell surface (PDGF-R, EGF-R, FGF-
R), as well as the synthesis of numerous growth
factors (PDGF, EGF, FGF, VEGF, TGF-b, etc.)
and synthesis of endothelin I (Bian and Reed
2001; Chen et al. 2001; Rossini et al. 2005).
The local presence of growth factor is increased
by the platelet adhesion that occurs during en-
dothelial-cell activation, resulting in the gener-
ation of a local amplification loop with the re-
lease of many growth factors such as PDGF and
TGF-b (MacDermott 1996; Yang et al. 2005).
This phase of endothelial-cell activation pro-
motes the stimulation of smooth muscle cells
via release of endothelin I, and indirectly via
the local synthesis of angiotensin II. It also caus-
es local recruitment of inflammatory cells
through the release of chemokines (MCP-1,
IP-10), local activation of complement, local co-
agulation activation, promoting platelet adhe-
sion, and releasing thromboxane A2. Finally,
endothelial-cell activation stimulates the dif-
ferentiation and proliferation of myofibroblast
cells that synthesize the extracellular matrix in-
volved in CR (Abbate et al. 2002; Cogan et al.
2002; Dewald et al. 2005; Li et al. 2007; Frango-
giannis 2008; Haurani et al. 2008; Kennard et al.
2008; Wynn 2008). Myofibroblastic cells are im-
portant constituents of CR as they infiltrate the
vessel wall and interstitial space. These cells ex-
press different cytoskeletal proteins (vimentin,
a smooth muscle actin) as well as the myosin
light chain, but do not express markers of lym-
phoid or epithelial cells (E-cadherin, ZO-1)
(Badid et al. 2002). The origin of these cells is
diverse. They originate from circulating stem
cells capable of differentiating into endothelial
cells or myocardiocytes (Direkze et al. 2003; Li
et al. 2007). They can also originate from the
transdifferentiation of endothelial cells or from
renal tubular epithelial cells that transdifferenti-
ate into myofibroblasts (Gressner 1996; Sommer
et al. 2005; Hertig et al. 2006). The mechanisms
involved remain poorly understood. However,
the changes induced by ischemia/reperfusion
or during CR appear to promote epithelial-

mesenchymal transdifferentiation. TGF-b was
also shown to be important for the promotion
of epithelial-mesenchymal transdifferentiation
(Fan et al. 1999; Mezzano et al. 2003; Lindert
et al. 2005; Jiang et al. 2006; Meyer-ter-Vehn
et al. 2006). Cell differentiation into myofibro-
blasts and expansion involves various growth
factors including TGF-b, FGF, PDGF, IGF-1, an-
giotensin II, MCP-1, RANTES, TNF-a, IL-15,
and connective tissue growth factor.

The Antigenic Targets of Antigens (Antidonor
and Autoantibodies)

One of the independent risk factors for the de-
velopment of chronic rejection is the presence of
anti-HLA class I and especially class II antibod-
ies (Ozawa et al. 2007). More than 80% of pa-
tients with transplant glomerulopathy have
anti-HLA antibodies, 85% being directed
against class I or class II antigens (Gloor et al.
2007; Sis et al. 2007; Issa et al. 2008). Less than
half of biopsies (40%) display deposits of C4d,
suggesting that mechanisms other than comple-
ment activation may be associated with CR
(Solez et al. 2008). Apart from antibodies direct-
ed against the major histocompatibility complex
HLA, other non-HLA antibodies may also con-
tribute to the structural changes observed dur-
ing chronic rejection. These include anti-MICA,
anti-MICB (MHC class I-related molecules A
and B), antiendothelial cells, antivimentin, and
other autoantibodies directed against angioten-
sin II receptor (Dragun et al. 2005, 2008; Hil-
brands et al. 2005; Zafar et al. 2006; Panigrahi
et al. 2007; Zou et al. 2007; Baid-Agrawal and
Frei 2008; Kamoun and Grossman 2008; Sumi-
tran-Holgersson 2008).

Tissue Fibrosis

During the various immunological and nonim-
munological rejection processes, several cell
types, particularly endothelial cells, are respon-
sible for the development of an extracellular ma-
trix through the release of growth factors or cy-
tokines such as endothelin I, angiotensin II,
TNF, PDGF, TGF, etc. (Coupes et al. 1994; Lu
et al. 2002; el-Agroudy et al. 2003; Baczkowska
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et al. 2005; Summers et al. 2005; Roos-van Gro-
ningen et al. 2006). Extracellular matrix accu-
mulation is a lesion of fibrosis. In recent years,
it has become apparent that tissue fibrosis is a
dynamic equilibrium. Activation of different
tissue protease, such as metalloproteinases, or
the use of blocking molecule should prevent fi-
brosis and degrade extracellular matrix. These
approaches must be validated in clinical models.

In conclusion, although significant progress
has been made in developing immunosuppres-
sive therapies that reduce the occurrence of
acute rejection and improve allograft survival
at 1 year, little progress has been made regarding
graft survival in the longer term. Long-term
survival is limited by complex and intricate
mechanisms including chronic rejection, im-
munosuppressive drug toxicity, cardiovascular
factors, dyslipidemia, diabetes, and so on. Un-
derstanding the mechanisms involved in the
onset of chronic rejection should be promoted
by approaches such as DNA chips or protein
chips to better understand the different stages
of development of chronic rejection and the
different factors involved. This understanding
should help develop new preventive and/or
therapeutic approaches in organ transplanta-
tion.
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