Tratamento Estatístico de Dados em Física Experimental

Determinação do Tamanho Médio de Grãos de uma Cerâmica Policristalina

Professor Zwinglio Guimarães

André	Deborah	Elaine	Vinícius
8092526	8940852	10314916	10263552

Instituto de Física da Univerisidade de São Paulo Novembro de 2018

Sumário

- Objetivos
- Cerâmica BCTO
- Descrição Teórica
- A Microscopia de Força Atômica
- Análises e Resultados
- Conclusão e Considerações Finais

Objetivos

- ightarrow Determinar com a microscopia de força atômica o tamanho médio dos grãos de uma cerâmica policristalina BCTO
- → Análise das distribuição de dados

$Bi_{2/3}Cu_3Ti_4O_{12}$ (BCTO)

ВСТО

Forma estrutural do BCTO (Ref.1)

- ightarrow Cerâmica proposta em 1990 por Ingrid Bryntse e Per-Erik Werner
- \rightarrow Estrutura Perovsquita \rightarrow Permissividade elétrica gigante (2290 a 25°C e 1kHz)
 - Aplicações (Supercapacitores, Dispositivo de armazenamento de energia, Atuadores piezoelétricos)

$Bi_{2/3}Cu_3Ti_4O_{12}$ (BCTO)

IBLC - Internal Barrier Layer Capacitance

- Sinclair, et all (2002)
- Cerâmicas eletricamente heterogêneas que consistem de grãos semicondutores e contorno de grãos isolantes
- Permisividade elétrica gigante atribuída a barreira interna capacitiva do contorno de grão ao invés de propriedade intrínseca da estrutura do cristal

Método de Mendelson

- → Modelo para especificação do tamanho médio de grãos:
 - Forma dos grãos: Tetrakaidecahedron (octaedro truncado)
 - Seis faces quadradas {100} e oito faces hexagonais {111}
 - Parâmetro: S_v (Área superficial do contorno de grão em relação ao volume do grão)

$$S_{\nu}=2,3675\frac{I^2}{I^3}$$

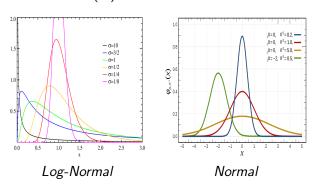
Esquema do Octaedro Truncado (Ref.2)

Método de Mendelson

• Parâmetro: $D(\theta)$ (distância perpendicular média entre dois planos tangentes paralelos, definida para qualquer orientação θ no grão)

$$D=\frac{1}{4}\sum I_i(i-\alpha_i)$$

• Calculou-se D = 3I (Ref.2)



Grão convexo mostrando a dimensão de calibre $D(\theta)$ como função da orientação (Ref.2)

Método de Mendelson

ightarrow A distribuição de dos tamanhos dos grãos na cerâmica é **Log-Normal**

$$f(D) = Ke^{-rac{1}{2}\left(rac{\ln D - \ln ar{D}}{\ln \sigma}
ight)^2}$$

Método de Mendelson

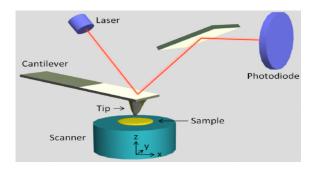
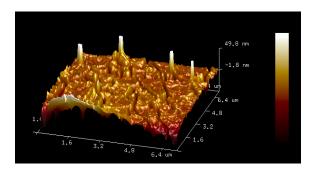
 \rightarrow A FDP nos dá que $S_{v}=\frac{7,1025}{\bar{D}}(e^{-2,5\ln^{2}\sigma})$, e conseguimos disso chegar que (onde \bar{L} é o tamanho médio de itercepto)

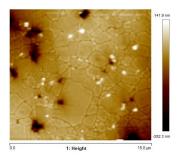
$$\frac{1}{\overline{L}} = \frac{1}{4}S_{v}$$

 \to A partir do tamanho dos interceptos na estrutura do BCTO, temos que o tamanho médio \bar{D} dos grãos são dados por

$$\bar{\mathbf{D}} = 1,7756 \cdot e^{-2,5 \cdot \ln^2 \sigma} \bar{\mathbf{L}}$$

A Microscopia de Força Atômica

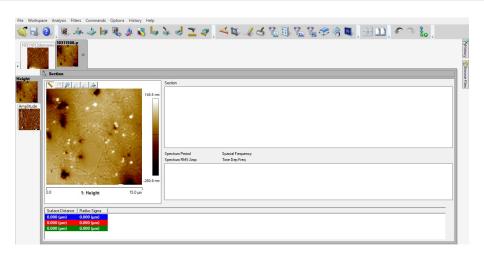




Ilustração da microscopia de força atômica

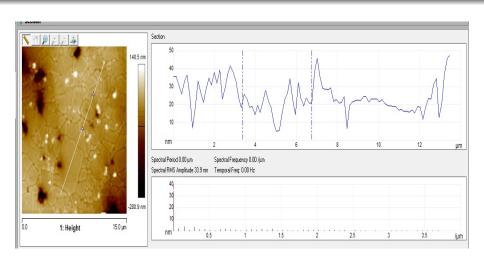
Vídeo Ilustrativo

A Microscopia de Força Atômica

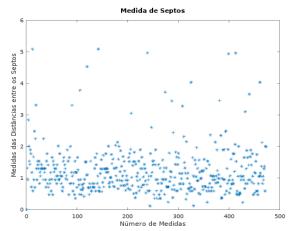
Esquemático da Imagem Tridimensional do BCTO obtido com NanoScope 8A



Topografia do BCTO obtida pelo NanoScope


ightarrow Utilizamos o NanoScope Analysis para realização das tomadas de dados

Software



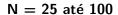
Software

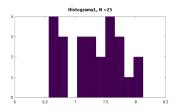
Software

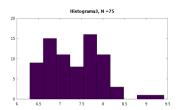
 Cada um de nós medimos 100 vezes distâncias e séptos aleatórios e independentes e obtivemos inicialmente a distribuição

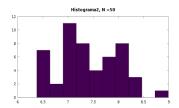
Parâmetros da Distribuição

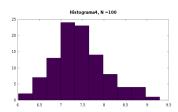
Número de Dados: 400

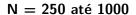

• Média (\bar{L}): 1,221 μ m

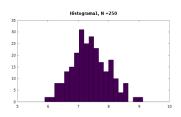

• Desvio Padrão: 0,739 μ m

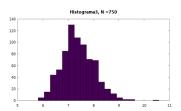

• Desvio Padrão da Média: 0,034 μ m

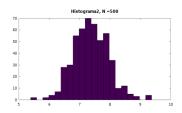

 \rightarrow A incerteza estatística da média é muito maior que a incerteza do aparelho $\sim 0,002 \mu \rm m$

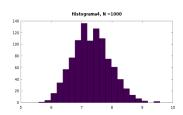

- → Distribuição teórica é **Log-normal**
- ightarrow Fizemos simulações com método Monte-Carlo para saber quantos N experimentos com 100 dados cada seriam necessários para se chegar ao teorema central do limite

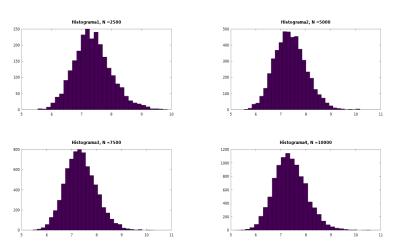


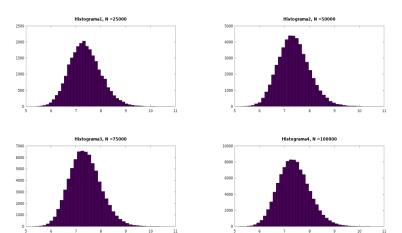






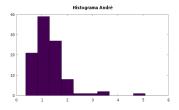


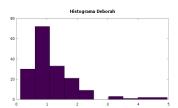


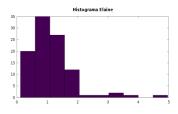


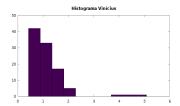
N = 2500 até 10000

N = 25000 até 100000

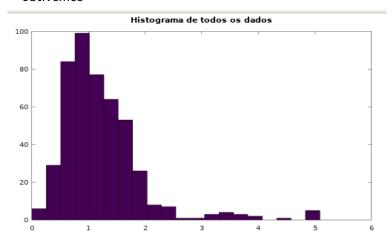

- ightarrow Impraticável trabalhar com a quantidade de experimentos demandada
- → Trabalharemos em cima da distribuição teórica

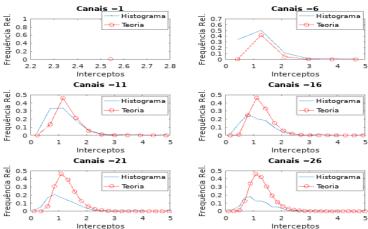

ightarrow Da distribuição **Log-Normal** temos que os parâmetros de kurtosis k e skewness s serão dados por


$$k = \frac{\mu_4^0}{\sigma^4} = 24 \pm 5$$


$$s = \frac{\mu_3^0}{\sigma^3} = 1,52 \pm 1,23$$

 Foram feitas quatro tomada de dados pelos integrantes do grupo. Segue abaixo os histogramas de cada uma das tomadas de medidas





 Juntamos todas as medidas num mesmo histrograma e obtivemos

 Verificamos qual o melhor número de canais para conseguirmos ajustar a a função FDP ao histograma da frequência relativa

• Em especial, para o histograma com 6 canais, e tirando o logaritmo natural dos dados para aplicar o teste normal, conseguimos o $\chi^2=2,373$. Pela calculadora do WebRoot, achamos, que para nossa distribuição,

$$0,001 \le \chi^2 \le 5,694$$

e o nosso valor está dentro, o que indica confiabilidade do ajuste.

Conclusão e Considerações Finais

• Chegamos assim que, a partir de propagação de incerteza que

$$\bar{D} = (2,07 \pm 0,47) \mu \mathrm{m}$$

- \bullet O ajuste aprensentou um comportamento log-normal dentro do χ^2 obtido
- A quantidade dados, embora n\u00e3o suficiente para atender as condi\u00f3\u00f3es do teorema central do limite, foi adequado para o desenvolvimento das an\u00e1lises

Agradecimentos

→ Agradecemos ao Laboratório de Filmes Finos pelo uso do equipamento de microscopia de força atômica no qual obtivemos as imagens para análise

Referências

- [1] LIU, Jianjun et al. Large dielectric constant and Maxwell-Wagner relaxation in Bi 2/ 3 Cu 3 Ti 4 O 12. Physical review B, v. 70, n. 14, p. 144106, 2004.
- [2] MENDELSON, Mel I. Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc., v. 52, n. 8, p. 443-446, 1969.
- [3] MultiMode NanoScope 8 Manual. Disponível em: https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/SurfaceAnalysis/AFM/Brochures/B072-RevCO-MultiMode_8-Brochure__LoRes_.pdf