Dinâmica Populacional de Plantas

Disciplina BIE 0320 Ecologia de Populações e Comunidades Vegetais 2018

Módulo 1 (EP)

Módulo 4 (EC) Módulo 3 (DC)

Dinâmica Populacional Taxas vitais: Nascimento Taxa de Mortalidade crescimento Imigração populacional Emigração Crescimento individual

Algumas perguntas sobre dinâmica populacional:

Como as populações variam ao longo do tempo?

Variações similares são observadas em diferentes locais?

Quais fatores/processos explicam as variações populacionais?

Quais fatores/processos são mais importantes para cada taxa vital?

Qual a contribuição dos diferentes elementos da população?

Quais Fatores e Processos afetam a dinâmica de plantas?

Condições abióticas (solo, clima, luz, etc) ID

Interações com consumidores (predadores, herbívoros, patógenos) DD/ID

http://w3.marietta.edu

Daniela Zanelato

Dario Sanches

Interações com mutualistas (polinizadores, dispersores) DD/ID

http://artefotografiaideiasemarmotas.blogspot.com.br

Competição intraespecífica DD

Sabrina Russo

Robert Bagchi

Competição interespecífica DD

Kristi Silber

HilleRisLambers et al (2012)

https://myeducationofagardener.wordpress.com

Regulação Populacional e Dependência da densidade

Conceitos ecológicos muito antigos

"Balanço da natureza"

Condição essencial para a persistência de populações e coexistência de espécies

MODELO JANZEN - CONNELL

MODELO JANZEN - CONNELL

Versão simplificada (somente densidade)

Maior densidade de sementes próximas à planta mãe

maior mortalidade

espaço disponível para outras espécies

No modelo Janzen-Connell não basta haver regulação

Precisa haver "sobrecompensação"

Centenas de estudos realizados em campo Evidências conflitantes

Estudos experimentais de Bagchi et al (2010)

Plântulas de *Pleradenophora longicuspis* com ataque de patógenos em campo

Evidência importante de que o mecanismo pode ocorrer Mas, qual a importância em relação a todos os outros processos?

COMO SE FAZ NA PRÁTICA ?

Marcar, contar, medir e monitorar indivíduos ao longo do tempo

Projeto Litoral Norte - Labtrop

Projeto Litoral Norte - Labtrop

Geonoma schottiana (Portela, 2008)

Camcore projects

Importância de Parcelas Permanentes CTFS - Center for Tropical Forest Science

L Wabikon Lake, WI, USA	illy Dickey Woods, IN, USA Wytham Woods, UK	Dinghushan, China Nonggang, China Xishuangbanna, China Mo Singto, Thailand	Baotianman, China Donglingshan, China Changbaishan, China
Wind River, WA, USA Yosemite, CA, USA Santa Cruz, CA, USA *Hawaii, USA	Haliburton Forest, Canada Harvard Forest, MA, USA SERC, MD, USA SCBI, VA, USA	Doi Inthanon, Thailand ai Kha Khaeng, Thailand Khao Shong, Thailand Mudummaa, India	Tiantongshan, China Gutianshan, China Fushan, Taiwan Lienhuachih, Taiwan Nanjenshan, Taiwan
Panama La Planada, Colombia Yasuni, Ecuador Amacayacu, Colomt Manaus,	Luquillo, Puerto Rico Korup, Cameroon Rabi, Gabon Ituri, Dem. Rep. Cong Mpala, Ke Ilha do Cardoso, Brazil	Brun Sinharaja, Sri Lanka Pasoh, Malaysia Bukit Timah, Singapore	Hong Kong, China Palanan, Philippines Danum Valley, Malaysia Lambir, Malaysia Wanang, PNG
			NABA

Primeira Parcela CTFS Ilha de Barro Colorado, Panamá (desde 1980)

Muitos estudos populacionais importantes!

Foto: www.aqua-firma.co.uk/editorfiles/Image/Panama

Para populações de herbáceas - acompanhamento da % de cobertura

Giacomini Wetland Restoration Project

Existem parcelas permanentes também para gramíneas e arbustos

https://www.researchgate.net/profile/Jose_Fernandez-Garcia2/

http://www.dianthusarenarius.cz

Diferentes abordagens metodológicas

Estudos observacionais

Estudos experimentais

Modelos matemáticos

Associação de duas ou mais abordagens

Abordagem envolvendo modelos matemáticos

Real

Model

Abstract

Mathematical

Model

- Comparar com dados reais
- Segue o ciclo...

DO SIMPLES AO MAIS COMPLEXO

Descrição --> Previsões --> Processos

Modelo de Crescimento Exponencial

r = taxa intrínseca de crescimento

b = taxa de natalidade per capita

d = taxa de mortalidade per capita

TEMPO

Se r > 0, a população aumenta sem limites

Modelo de Crescimento Exponencial

- Premissas:
- População fechada
 - Taxas de natalidade e mortalidade constantes
- Ausência de estrutura na população
- Crescimento contínuo

Taxas vitais (**r**, **b** e **d**) podem variar ao longo do tempo

Modelo de Crescimento Logístico

K = Capacidade suporte do ambiente

 $N \rightarrow K$: taxa de crescimento (*r*) diminui

Como *r* diminui?

r = *b* - *d*

taxa de natalidade (**b**) e/ou taxa de mortalidade (**d**)

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings

Modelo dependente da densidade

Modelo de Crescimento Logístico

- Premissas:
- População fechada
 - Taxas de natalidade e mortalidade constantes

Ausência de estrutura na população

Cada estágio possui taxas diferentes

- Crescimento contínuo

Populações Estruturadas -> Modelos Matriciais

Probabilidade de transição diferente para cada elemento, mas constante

Populações Estruturadas - Modelos Matriciais

Avanços:

- Incorpora a importância relativa de cada estágio/classe
- Estima a estrutura estável de tamanhos/idade = Autovetor dominante

Podemos aprofundar um pouco...

Análises de Perturbação - Sensibilidade e Elasticidade

Como pequenas modificações nos valores de probabilidades afetam lambda (λ)

Euterpe edulis								
		λ:	= 1.25	9				
Matriz de transição original								
		tempo t						
Tempo t +1	ESTÁGIO	1	2	3	4	5	6	7
	1 (até 3 folhas)	0.512	0	0	0	0	0	98
	2 (4 folhas e DAS < 10.1 mm)	0.256	0.764	0	0	0	0	0
	3 (DAS = 10,1 a 20 mm)	0	0.109	0.737	0	0	0	0
	4 (DAS = 20,1 a 30 mm)	0	0	0.2	0.611	0	0	0
	5 (DAS = 30,1 a 60 mm)	0	0	0	0.387	0.801	0	0
	6 (DAS = 60,1 a 120 mm)	0	0	0	0	0.179	0.780	0
	7 (DAS > 120 mm)	0	0	0	0	0	0.190	0.995

Matriz de elasticidade: calcule aqui os valores de elasticidade									
		tempo t							
Tempo t +1	ESTÁGIO	1	2	3	4	5	6	7	
	1 (até 3 folhas)	0.037	0	0	0	0	0	0.052	
	2 (4 folhas e DAS < 10.1 mm)	0.045	0.091	0	0	0	0	0	
	3 (DAS = 10,1 a 20 mm)	0	0.039	0.082	0	0	0	0	
	4 (DAS = 20,1 a 30 mm)	0	0	0.044	0.053	0	0	0	
	5 (DAS = 30,1 a 60 mm)	0	0	0	0.046	0.102	0	0	
	6 (DAS = 60,1 a 120 mm)	0	0	0	0	0.043	0.093	-	
	7 (DAS > 120 mm)	0	0	0	0	0	0.042	0.237	

Uma análise adicional interessante!

Somar as elasticidades dentro de cada um dos três principais processos

F = Fecundidade S = Sobrevivência/Permanência G = Crescimento

		tempo t							
	ESTÁGIO	1	2	3	4	5	6	7	
	1 (até 3 folhas)	0.037	0	0	0	0	0	0.052	
Tempo t +1	2 (4 folhas e DAS < 10.1 mm)	0.045	0.091	0	0	0	0	0	
	3 (DAS = 10,1 a 20 mm)	0	0.039	0.082	0	0	0	0	
	4 (DAS = 20,1 a 30 mm)	0	0	0.044	0.053	0	0	0	
	5 (DAS = 30,1 a 60 mm)	0	0	0	0.046	0.102	0	0	
	6 (DAS = 60,1 a 120 mm)	0	0	0	0	0.043	0.093	0	
	7 (DAS > 120 mm)	0	0	0	0	0	0.042	0.237	

Proporção que cada processo representa ou ainda Proporção de cada estágio dentro de um dado processo

Ordenação triangular das elasticidades de F - G - S

Silvertown et al. (1996) Ecology

FIG. 1. The distribution of 102 species of perennial plants in elasticity space, as defined by the vital rates survival (S), growth (G), and fecundity (F). (a) Distribution of proportional values of elasticity. (b) (f) Rescaled elasticity values for each of five groups of plants: (b) semelparous plants, (c) iteroparous herbs from open habitats, (d) iteroparous forest herbs, (e) shrubs, and (f) trees.

Franco & Silvertown (2004)

Populações Estruturadas - Modelos Matriciais Simples

Premissas:

- População fechada

Taxas de natalidade e mortalidade constantes

Probabilidades de transição variáveis

Ausência de estrutura na população

- Crescimento contínuo

Adicionando complexidade a modelos matriciais simples

Probabilidades de transição não constantes

3 - Estocasticidade demográfica - Populações pequenas

Inserir dependência da densidade pode alterar muito a dinâmica populacional projetada

FIGURE 3. Two *M. flexuosa* harvest scenarios (both 75% every 10 yr) with density independence (DI) and density dependence (DD).

Analisando duas ou mais matrizes

Variação Espacial

Controle X Tratamento (estudos experimentais)

LTRE - Life Table Response Experiment

Estudo com matrizes temporais de *Helianthemum juliae* e relação com precipitação

Fig. 5 – Triangular ordination diagram representing the position of the nine matrices for *Helianthemum juliae* between 1992 and 2002 with respect to their relative contribution (=summed elasticities) of fecundity (F), Growth (G) and survival (L) to the population growth rate, λ . The matrices have been chronologically numbered from 1, 1992–1993 to 9, 2001–2002. Shaded areas enclose matrices that correspond to two precipitation classes, P < 350 mm, P > 350 mm.

Marrero-Gomez et al.(2007)

Modelos de Projeção Integral Não dividem os indivíduos em classes/estágios

Ajustam curvas de probabilidade

Cirsium canescens

Modelos de Projeção Integral

Aconitum noveboracense

MM

Easterling et al. (2000) - Ecology

Modelos são abstrações que nos a ajudam a entender a complexidade

Permitem avanços nas respostas para as perguntas ecológicas