Allele Frequencies,
Genotype Frequencies,
and Hardy—Weinberg
Equilibrium

MOST READERS OF THIS BOOK will be familiar with the terminol-
ogy of genetics. But since some terms are defined slightly differently in
population genetics than in other areas of genetics and molecular biology,
some definitions might be useful at the outset. A locus (plural: loci) is
a position in the genome where there might be one or more alleles seg-
regating. Some geneticists use the word locus as synonymous to coding
gene. However, in population genetics, the word locus is generally used
to represent any position in the genome. It could be a coding gene, such as
the MCIR gene; it could be a microsatellite; or it could be a single nucleo-
tide position in the genome, such as position 8,789,654 of chromosome
1 of the human genome. In general, any unit in the genome with one or
more alleles is a locus. A genotype is the combination of alleles carried
by an individual in a particular locus. For example, if an individual is
homozygous TT in position 8,789,654 of chromosome 1 of the human
genome, then we say that this individual has genotype TT at that locus. A
diploid species, such as humans, has two copies of all its chromosomes.
For a collection of N diploid individuals, there are 2N gene copies at each
locus, and there could be one or more alleles. !
A major objective of classical population genetics is to understand
how allele frequencies change through time. To simplify the analyses of
allele frequencies, we often use models where there are two alleles—say,
allele A and allele a. We call such models di-allelic models. The two
alleles could, for example, represent the normal and the red-hair ver-
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Figure 1.1 A hypothetical population with N = 10 individuals, 20 gene
copies, and a total of 7 copies of allele A (green) and 13 copies of al-
lele a (red), i.e., f, = 720 and f, = 13/20. The genotype frequencies are
dn = V10, f,_ = %0, and f_ = 10.

sion of the MCIR gene discussed in the introduction— or

8 two different versions of any other gene. Di-allelic models

® can also be used to model DNA sequences. At any position

® in the genome, there are four possible nucleotides, A, C, T,
® and G, but because mutations are rare in most organisms,

you will typically tend to see at most two nucleotides in
any particular position in the individuals of the population.
For example, in nucleotide position 478 of the MC1R gene in
humans, most individuals have a C, but some individuals have
a T; A and G have not been observed in this position. So we can,
at least as a first approximation, use a di-allelic model to describe
this position in the genome.

We sometimes depict a population as in Figure 1.1. The blue oval represents
the population, and the tan ovals within it represent individuals. The red and
green balls within the individual ovals represent two alleles segregating in
the population, alleles A and 4. The combination of alleles within each tan
oval represents the genotype of an individual; thus, an oval with a green and
a red ball represents a heterozygous individual of genotype Aa.

Allele Frequencies

The frequency of an allele is defined as the number of copies of the allele
in the population divided by the total number of gene copies in the popu-
lation. In a diploid population (in which all individuals carry two copies
of each chromosome) with N individuals, there are 2N gene copies. So the
frequencies of alleles A and a are:

e and: o Nz\a/ (1.1)

2N 2
where N, and N, are the numbers of A and a alleles segregating in the
population, respectively. Of course, the allele frequencies must add up to
L, sof,+f,=1. Much population genetic theory concentrates on describing
the changes of f, and f, with time. If we can describe how we expect allele
frequencies to change through time, we have learned a great deal about
evolution.

Genotype Frequencies

The allele frequencies in the population can be calculated from the genotype
frequencies. In a di-allelic locus, there are three possible genotypes: AA, Aa,
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and aa. If the number of copies of genotypes AA, Aa, and aa are N LOFNL,
and N, respectively, then the genotype frequencies are:

Naa
N

NAa _Naa
N faa‘ N

an=

faa= (1.2)

Notice that while the denominator in Equation 1.2 is N, the denominator in
Equation 1.1 is 2N, as there are 2N gene copies in a diploid population of
N individuals. The genotype frequencies will add uptol:f +f, +f =W

Individuals of genotype AA carry two copies of allele A and individuals
of genotype Aa carry one copy of allele A. The allele frequency of allele A
can, therefore, be calculated as:

Fiyes S ke
= 2N

Similarly,f =f +f, /2. The proportion of individuals that are heterozygous
in the population (f, ) is called the heterozygosity of the population. The
proportion that is homozygous (1 - f, =f 44 *1,), is the homozygosity of
the population.

= faasy, /2 (1.3)

K-allelic Loci

Alocus in which there are k different alleles, where k could be any positive
natural number, is usually referred to as a k-allelic locus. Microsatellite
loci often have more than two alleles. We can find expressions for allele
and genotype frequencies for a general k-allelic locus similar to the ones
we have already found for a di-allelic locus. For an allele, i e {1, 2,..., k,
with N, copies in the population, the allele frequency is f,= N./2N, and for a
genotype ij (= ji), the genotype frequency is f;=N,/N.The allele frequency
can then be calculated from the genotype frequencies as:

fi=fit X fy /2 (14)
joj#i
The concepts of homozygosity and heterozygosity can also be extended to

k-allelic loci, with Zﬁz being the homozygosity and Z fi being the
i (i, j)i<j

heterozygosity. In this book we will mostly concentrate on di-allelic loci,

because the mathematical notation is simpler for such loci. However, much

of the theory discussed easily extends to loci with more than two alleles,

Example: The MC1R Gene

Let us again consider position 478 of the MC1R gene. Suppose we obtain a
random sample of 30 individuals from the United States and find 25 indi-
viduals of genotype CC, 5 individuals of genotype CT, and 0 individuals
of genotype TT. The genotype frequencies can then be estimated as fec=
25/30 — 0.833;fCT —5/30—0.167 and f..=0/30 = 0. The allele frequencies
can be estimated as f_ = 0.833 + 0.167/2 = 0.917 and f, =1-0.917 = 0.083.
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Notice here that we used the word estimated. We cannot know the true
genotype or allele frequencies in the entire population without examining
all the individuals in the population, but we can hope that this sample of 30
individuals is representative. Had we taken another sample of 30 different
individuals, we might have obtained a slightly different answer.

Hardy-Weinberg Equilibrium

We have seen how allele frequencies can be calculated from genotype
frequencies. But can we also predict genotype frequencies from allele fre-
quencies? For example, knowing that the frequency of T in position 478 of
the MCIR locus is approximately 0.08, what proportion of the population
would we expect to have genotype TT?

We can answer this question, but only if we make some assumptions.
One particularly useful simplifying assumption is that mating is random, i.e.,
that individuals mate with each other without regard to genotype. Imagine
a pool of parental males and a pool of parental females that mate randomly,
i.e, the next generation is produced by randomly choosing the father and
the mother from these pools of potential parents independently of each
other for each individual in the offspring generation. For now, assume that
the allele frequency among males is the same as among females, and that
there are only two alleles, A and g, for the locus under consideration. Given
these assumptions, the chance that an individual offspring is of genotype
AA is given by the probability of receiving an A allele from the father and
an A allele from the mother. The probability that an A allele is transmitted
to the next generation is simply the frequency of the allele, f,, because all
gene copies have the same probability of transmission under Mendel’s First
Law. The assumption of random mating ensures that we can multiply the
probabilities from the father (f,) and the mother (f,), so the probability that
an individual in the population is of type of AA is simply f?.

Likewise, an individual offspring can be heterozygous by getting an A
allele from the father and an a allele from the mother—or by getting an a
allele from the father and an A allele from the mother. The probability than
an individual is of genotype Aa is then f, f, + £.f, = 2f,f,- Finally, using the
same logic, we find that the probability that an individual is homozygous,
aa, is f2. The expected proportion of individuals of a particular genotype

TABLE 1.1 Genotype frequencies under
Hardy-Weinberg Equilibrium

Genotype AA Aa aa
Frequency I 20T T
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in the population is simply the genotype probabilities we have calculated,
and we have arrived at the famous Hardy-Weinberg equilibrium theory:
The expected homozygosity in the population is then f? + f? and the ex-
pected heterozygosity is 2f, f .

The reader may previously have encountered Hardy—Weinberg Equilib-
rium (HWE) theory using the notation p?, 2pq, and g for the three genotype
probabilities, respectively. Notice that this result is exactly the same as
that stated in Table 1.1, with f, replaced by p and f, replaced by q. We use
our notation because it generalizes more easily. As required, the genotype
frequencies under HWE will add up to 1:

£+ 2L el = (ffP=1 (1.5)

The concept of probability used here to derive HWE is discussed in Box
1.1. Box 1.1 also discusses the concept of independence. The reader may
notice that the assumption of random mating implies that we draw alleles
independently from male and female parents, allowing us to multiply
the allele frequencies together in the offspring population. In terms of the
notation from Box 1.1, we could write:

Pr (offspring genotype = AA)
= Pr (paternal allele = A) x Pr (maternal allele = A) (1.6)

=fdatihe

While the basic ideas in Box 1.1 are not prerequisite to an understanding
of HWE, they will be used throughout this book, and should be reviewed
at this point if they are not already familiar.

An alternative derivation of HWE, based on enumerating all possible
matings, is shown in Box 1.2. We obtain the same result using that approach,
demonstrating that random mating is, in fact, equivalent to independent
sampling of paternal and maternal alleles.

Finally, notice that random mating in itself does not change the allele
frequencies. The frequency of allele A in the next generation (f,")

fo =12 + 26 0/2= 12+ 2/, £)/2=f, (17)

will be the same as in the previous generation.

The MC1R Gene Revisited

Now let’s revisit the question regarding prediction of genotype frequencies
in position 478 of the MC1R locus. With an allele frequency of 0.08 of allele T
in the US population, how many TT homozygotes might we expect? Using
HWE theory we will expect the proportions of individuals'with genotypes
CC, CT, and TT to be 0.922 = 0.8464, 2 x 0.92 x 0.08 = 0.1472, and 0.08> =
0.0064, respectively. Part of the interest in this gene is caused by the fact that
individuals with the TT genotype will likely have red hair (Introductory
Figure). However, a much larger proportion of the population has red hair
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BOX 1.1 Probability and Independence

Although there are different schools of thought regarding definitions of
probability, we will here think of probability as expressing belief in future
events, or outcomes of an experiment. For example, if we toss a coin and
make the statement, “The probability of observing a head is % and the prob-
ability of observing a tail is %,” then we believe heads and tails are equally
likely to occur in the next toss. Let X be a variable that indicates the outcome
of the coin toss. The variable X can take two different values: H for heads
and T for tails. We can then write

Pti(X=H)="%

where X = H denotes the event that the coin toss results in a H. A variable
such as X, that can take on different values with different probabilities, is
called a random variable. In words, we can read the equation above as:
“The probability that the random variable X takes on the value H equals
one-half,” a mathematical way of saying that we think heads and tails are
equally likely outcomes of the coin toss.

The sample space of a random variable is the set of possible values that
the random variable can take on. In the coin-toss case, the sample space is
{EL .

Two random variables are independent if the outcome of one variable
does not affect (our belief in) the outcome of the other variable. For exam-
ple, if we toss a coin twice, it is reasonable to assume that the result from the
first coin toss does not affect the second coin toss, so the two coin tosses are
independent of each other. Just because the first coin toss resulted in an H
does not mean that we think the next coin toss also will result in an H—as
long as the coin is not biased.

If two random variables are independent, we can multiply their prob-
abilities. In the coin toss example, if we let X be the result of the first coin
toss, and Y be the result of the second coin toss, we find that the joint prob-
ability is:

Pr(X=Hand Y =H)=Pr(X=H)xPr(Y = H) =05 x 0.5 = 0.25

However, imagine a bag full of fake coins that are biased, half of which give
H with probability 0.9 and half of which give T with probability 0.9. If we
randomly pick a coin from this bag and toss it twice, these two coin tosses
are correlated (not independent). The chance that the first coin toss gives H
is still 0.5, because half of the coins in the bag are biased toward H and half
are biased toward T. However, if the first coin toss gives H, it is likely that we
have picked an H-biased coin, and our belief that the second coin toss will
also result in H has increased. The two coin tosses are not, mathematically
speaking, independent, and the joint probability of observing an H on both
the first and the second coin toss is no longer 0.25. We can no longer obtain
the joint probability from the two coin tosses by multiplying the probabilities
from each coin toss. These concepts are expanded upon in Appendix A.

e
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BOX 1.2 Derivation of HWE Genotype Frequencies

In the text, we derived the Hardy-Weinberg genotype frequencies by assuming that gametes
inherited from the mother and father assorted independently. We derive the frequencies here by
considering all possible matings, show in the table below. The frequency of each type of mating is
the product of the genotype frequencies. That is what is meant by random mating. The geno-
types of the offspring then follow from Mendel’s First Law (random gamete assortment).

Offspring
Mother Father Frequency AA Aa aa
AA AA 2 1 0 0
AA Aa il % % 0
AA aa o 0 1 0
Aa AA Juafua % Y% 0
Aa Aa 2 Y % Y
Aa aa fuf. 0 % %
aa AA L 0 1 0
aa Aa L 0 % %
aa aa f= 0 0 1

The genotype frequencies in the offspring are found by adding over all the families:

faa= ) f24 + OO oo + A, foa + (A)F2 = (fou+ (L=f,, /2P =f>

Jas = OOfiafuu+ Ofiufua+ OO, S + CAYZ + GO, £+ (D fon + CAL. S,
F st b (ARE L L 12V=21

fu= CAFS, + OO fou+ OOf, o+ (V2= (f, + £, /2P =2

where the prime () indicates the frequencies among the offspring. No matter what the genotype
frequencies are, one generation of random mating will establish the HWE genotype frequencies.

than the expected 0.64% from this calculation, telling us that other factors
are important for the development of red hair than being homozygous TT
at position 478 of the MCIR locus. ‘

Tay-Sachs Disease

HWE has many applications, including analysis of allele frequencies that
impact health in humans: the frequency of individuals affected by diseases
caused by recessive deleterious mutations can be predicted from the allele
frequencies. An example is Tay-Sachs disease, which causes deterioration
of mental and physical abilities and usually ends in death by the age of
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four. Individuals homozygous for certain mutations in the HEXA gene will
be affected by this disease. A four-base-pair insertion in the gene, causing a
change in reading frame that essentially destroys the function of the gene,
is common among Ashkenazi Jews. In fact, the allele frequency of this mu-
tation among Ashkenazi Jews is as high as 2%. What is the proportion of
offspring of Ashkenazi Jewish couples that will be affected by Tay—Sachs
disease because they are homozygous for the disease mutation? Using
HWE, we find the answer to be 0.022 = 0.0004 or 0.04%. This disease risk
is sufficiently high that Ashkenazi Jewish couples in the United States and
Israel are often genetically screened for Tay—Sachs Disease.

Extensions and Generalizations of HWE

HWE shows that if the allele frequencies are identical in males and females,
after one round of random mating, the genotype frequencies can be obtained
simply by multiplying together the appropriate allele frequencies. If the
allele frequencies are different in males and females, it takes two genera-
tions before HWE is established. After one generation of random mating,
the allele frequencies in males and females will become the same. The next
generation of random mating then establishes HWE. (The demonstration of
this principle is left as an exercise at the end of the chapter.) In real popu-
lations, there is no real reason to expect that allele frequencies are initially
different in males and females, and any observed deviations from HWE
are unlikely to be caused by this very transient effect.

HWE can also be generalized to loci with more than two alleles. Imagine
a k-allelic locus with allele frequencies f, f,, . . . , f,, assumed to be equal
among males and females. After one generation of random mating, the
genotype frequencies can be obtained by multiplying the appropriate allele
frequencies together. So the expected genotype frequency of homozygous
individuals with genotype ii is f? for any allele i, and the genotype frequen-
cies of heterozygous individuals with genotype ij is 2ff, for any pair of
(different) alleles i and ;.

Deviations from HWE 1: Assortative Mating

There are many factors that can cause deviations from HWE equilibrium.
First, mating may not be random with respect to genotype. For example,
individuals may be more likely to mate with other individuals of the same,
or similar, genotype. This is called assortative mating. Clearly, if AA in-
dividuals prefer to mate with other AA individuals, aa individuals prefer
to mate with other aa individuals, and AA and aa individuals rarely mate,
there will be fewer heterozygous individuals in the next generation than
predicted by HWE. For example, consider a population initially in HWE
with an allele frequency of f, = 0.5 and genotype frequencies f,, = 0.25, f,_
= 0.5, and f_ = 0.25. If the population then undergoes one generation of
strong assortative mating in which individuals only mate with other indi-
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viduals of the same genotype, the genotype frequency of the AA genotype
willbecomef, , =0.25 +0.25 x 0.5 = 0.375. All offspring of AA x AA matings
(25% of all matings) will be of type AA and a quarter of all offspring of Aa
X Aa matings (50% of all matings) will be of type AA. Using similar argu-
ments we can also find the frequency of aa offspring to be f ' = 0.375, and
the frequency of heterozygous offspring will then be fu=1-f, . =65
The allele frequency is still f, = 0.5 in this example, but there are now only
half as many heterozygous individuals as under HWE. If this processes
continues for many generations, the population will eventually become
entirely depleted of heterozygous individuals.

The opposite situation, where individuals prefer not to mate with
individuals of their own genotype, is called negative assortative mating or
dis-assortative mating. Dis-assortative mating can result in numbers of
heterozygous individuals in excess of those expected under HWE.

Deviations from HWE 2: Inbreeding

Another mating pattern that can cause deviations from HWE is inbreed-
ing. Inbreeding occurs as a result of matings between individuals that are
related because they have one or more ancestors in common. The effect of
such matings is very much the same as for assortative mating. If these mat-
ings are more common than expected under random mating, the proportion
of heterozygous individuals will be smaller than under HWE. An extreme
type of inbreeding occurs when organisms reproduce by self-fertilization,
as many plants do. This type of inbreeding will quickly cause strong devia-
tions from HWE. Assortative mating and inbreeding have similar effects
on genotype frequencies: they both increase the proportion of homozygous
individuals. The difference is that inbreeding affects the whole genome,
while assortative mating affects only those loci that determine the trait
or traits that affect mating preference. Assortative mating does not affect
genotype frequencies at other loci.

In the early population genetic literature, deviations from HWE were
often thought to be a consequence of inbreeding in one way or another. For
this reason, we measure deviations from HWE in terms of an inbreeding
coefficient (F). We will discuss the inbreeding coefficient in more detail a
little later in this chapter.

Deviations from HWE 3: Population Structure

When deriving the HWE theory, we assumed that parents were sampled at
random from a population. But what if the population were structured so
that it really contained two or more subpopulations? Imagine, for example,
a species of lizards inhabiting different islands in the Caribbean.

If we obtained a sample from multiple islands, ignoring this structure
of the population, it clearly could not be true that the individuals in the
sample had been produced by random mating: individuals from different
islands are not likely to mate with each other. Consider the extreme case
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Figure 1.2 Two subpopulations Subpopulation 1 Subpopulation 2
with allele frequencies f,=0and
1, respectively. In the combined

p y fA =1 fA = 0

population, obtained by pooling . - *
individuals from subpopulation 1°

and subpopulation 2, all individu- @ ® &
als are homozygous and there is ® ® ®
an apparent deficit of heterozy- ® ® &
gous individuals compared to the @ , &
HWE expectation. & ® L ] 2
s & ® L
- % ® &
- ° &
&

where there are two subpopulations, subpopulation 1 and 2, and the fre-
quency of allele A in subpopulation 1 is 100%, while in subpopulation 2,
itis 0% (Figure 1.2). Even if there is random mating within subpopulation
1 and within subpopulation 2, all individuals will be of either genotype
AA (subpopulation 1) or aa (subpopulation 2). The combined population
will very much be out of HWE because it contains only homozygous
individuals. Clearly, if there are more than one subpopulation within a
larger population (population structure), there may be deviations from
HWE. This is also true in less extreme cases where allele frequencies differ
only marginally between subpopulations. Deviations from HWE will also
arise when there are no discrete subpopulations but a continuous spatial
distribution of individuals, or in cases when only one subpopulation has
been sampled but this subpopulation occasionally receives migrants from
another subpopulation. The effect is quite general and is not specific to
any particular model of population structure. In real populations, popula-
tion structure and inbreeding are likely the most important reasons for
observations of deviations from HWE. Even relatively small differences in
allele frequencies in different subpopulations can cause deviations from
HWE. The effects of population structure on deviations from HWE will be
discussed in more detail in Chapter 4.

Deviations from HWE 4: Selection

Natural selection occurs when there is differential survival or reproduc-
tion among individuals due to their genotypes. It is of such importance in
population genetics that we devote three chapters to it. For now, suffice
it to say that natural selection also can cause deviations from HWE. Take,
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for example, the genotype frequencies in the HEXA gene among adults.
As individuals homozygous for this disease-causing mutation die before
they reach adulthood, the adult population must be slightly out of HWE
with a modest excess of heterozygotes. At most, 0.04% of the population
is affected by disease, so you would need to examine many thousands of
individuals to actually detect this deviation from HWE. Most of the time,
we do expect natural selection to be strong enough in humans to cause very
severe deviations from HWE. Also worth noting is that deviations from
HWE due to selection only can be detected if the population is sampled
after selection has been acting. In the case of Tay—Sachs, we do not expect
natural selection to cause deviations from HWE among infants.

Some geneticists also include effects of small population sizes and
mutations among forces that can cause deviations from HWE. However, as
the effect of these factors are extremely small and cause only small random
deviations from HWE that do not accumulate over time, we do list them
among forces that can cause deviations from HWE.

The Inbreeding Coefficient

Although factors other than inbreeding (such as selection) can cause devia-
tions from HWE, the most common statistic we use to measure deviations
from HWE is called the inbreeding coefficient (F). To further confuse students,
population geneticists have a bad habit of using F to describe the degree to
which heterozygosity is reduced both in individuals and in populations as a
result of inbreeding. In this book we will use F solely to denote the decrease
in heterozygosity in a population beyond that expected under HWE. For
a di-allelic locus, we define F as:

o Bfata= faa) (18)

2fAfu

Notice that the first term in the numerator, 2f, f, is the proportion of indi-
viduals expected to be heterozygous under HWE. So F measures the differ-
ence between the expected and the observed heterozygosity, standardized
by the expected heterozygosity. If F = 0, the population is in HWE, and if F
= 1, there are no heterozygotes in the population. Also notice that if there
are more heterozygotes than expected under HWE, F is negative.

By rearranging Equation 1.4, we find:

Lo 22 ST~ F) (1.9)

which shows that, with this definition, the proportion of heterozygotes in
the population is reduced by a factor F from that expected under HWE. If we
know the value of F, and the allele frequencies, we can predict the propor-
tion of heterozygote individuals in the population without assuming HWE.

Many plant species are predominantly self-fertilizing and in those spe-
cies, genotype frequencies are typically far from HWE. For example, in a
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Figure 1.3 The flower of wild oats (Avena fatua) has
both male and female reproductive organs (stamens
and pistils) and is capable of self-fertilization, which
leads to high levels of inbreeding. Many plants are
capable of self-fertilization, but many are not, because
they are dioecious (having male and female flowers on
separate plants) or because they have evolved other
mechanisms to avoid self-fertilization— for example,
by separating the flowering times of male and female
flowers on the same plant or by evolving genetic self-
incompatibility.

population of wild oats, Avena fatua (Figure 1.3), the
genotype frequencies at one locus were found by
Marshall and Allard to be i) =058, an =0.07,and
f,a =0.35, which obviously deviates from HWE. This
species is self-fertile and extensive self-fertilization
accounts for the lower frequency of heterozygotes.
We can calculate F for this species using the formulas
given above. We first find the allele frequencies as
f,=058+0.07/2=0.615, f = 1 -0.615 = 0.385. We
then find F = (2 x 0.385 x 0.615 — 0.07) /(2 x 0.385 x
0.615) = 0.852.

Testing for Deviations from HWE

If we take a sample from a population, we may randomly tend to get a
few more homozygotes or heterozygotes than expected under HWE, even
though the population actually is in HWE. To determine if the population
is out of HWE, we need a formal statistical test. In such a test, we wish to
test the null hypothesis that genotype frequencies follow those predicted by
HWE (e.g., Table 1.1 in the di-allelic case). One way of doing this is to use
a chi-square test (Box 1.3). To perform a chi-square test, we need to obtain
the observed and expected values, and to find the degrees of freedom. The
genotype counts in the data are the observed values. The expected values
are given by the HWE theory and can be calculated by the allele frequencies.
There is just one degree of freedom, because there are three categories and
two constraints. The first constraint is the same as in the coin toss example
in Box 1.1: the genotype counts must add to the total number of observa-
tions. The second constraint comes from the fact that the allele frequencies
under the expected genotypes should equal the observed allele frequencies.

As an example, consider a locus with the following genotypic counts
for forty individuals: N, , = 20, N 1= 10, N, =10. The genotype frequencies
are fA 4 =% f, =%, and faa = Y and the allele frequencies are then fo=
+(Y4)/2 =8 and f = % + (%) /2 = 8. We next need to find the expected
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BOX 1.3 The Chi-Square Test

A chi-square test, in the definition used in this book, is used to test the
goodness-of-fit of a model using categorical data—data that can be pre-
sented as the counts of different types of observations, such as the number
of different alleles or the number of different genotypes. It also assumes we
have a null-hypothesis model that predicts the expected frequencies of each
count. It is this model we wish to test. If the observed counts are so different
from the expected counts that they cannot be attributed to chance, then the
null hypothesis can be rejected (we no longer believe that model to be true).
Assume there are k categories of observations, and let the observed counts
be:@ @S ¥ 0O,, and the expected counts under the model be et o F
The chi-square test statistic is then calculated as

k'

k 2
E LD
xz iE E ( i 1)
i=1 E;

If x* is very large, it means that we can reject the null model because the
observed and expected counts are more different from each other than ex-
pected by chance. But how do we figure out if ¥ is sufficiently large to reject
the null model? It turns out that standard statistical theory shows that, for
large amounts of data (under suitable assumptions), * follows a chi-square
distribution with degrees of freedom equal to k — p, where p is the reduction
in the degree of freedom due to constraints imposed by the model when cal-
culating the expected values. A chi-square test is performed by calculating
X, calculating p, and then comparing the value of ¥? to a chi-square distribu-
tion with k — p degrees of freedom. Chi-square distributions with different
degrees of freedom are given in Appendix D.

As an example, imagine that we are interested in testing the null hypoth-
esis that a coin is fair, i.e., that it produces H and T each with probability
0.5 (see Box 1.1). To test this, we toss a coin 50 times and get 29 H and 21 T.
Does this show that the coin is biased (not fair)? The expected numbers un-
der the null model of a fair coin are clearly E = 25 and E, = 25, so we get

2 o2
£ o25-297 @s-217
25 25

28

In this case, the number of categories is k = 2, and the only constraint we
have on the counts of H and T is that they should sum to 50, implying that
p =1, so there is one degree of freedom. Consulting the table in Appendix
A we find that the probability of observing a value of x> = 1.28 or larger
is close to 0.25. To reject the null model, this probability would need to be
much smaller, say less than 0.05, or less than 0.01, so in this case we cannot
reject the null hypothesis that the coin is fair. The cut-off value we choose
for the probability is called the significance level. The choice of significance
level is somewhat arbitrary, but most studies choose 0.05 or 0.01.

Examples of chi-square tests are given throughout this book; the first is in
the section on testing HWE.
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genotype counts under HWE, given the allele frequencies: E, , = 40 x (¥8)?
=15.625,E, =40x2x¥8x¥8=18.75;and E_ =40 x (¥8)? = 5.625. We then
calculate the chi-square statistic (as in Box 1.3) as

2" (15.625-20) " (18.75-10)> % (5.625-10)*
: 15.625 18.75 5.625

Comparing our observed value of 8.711 to the critical values for a chi-
square distribution with one degree of freedom in Appendix 4, we see
that the probability of observing a value this high or higher is between
0.01 and 0.001. Using a traditional significance level of 0.05 (critical value
= 3.841), we find p < 0.05 and reject the null hypothesis of HWE. The
genotype frequencies are statistically significantly different from those
expected under HWE.

The chi-square test can also be extended to k-allelic loci. The hardest
part is to calculate the degrees of freedom. For k alleles there are k(k +
1)/2 possible genotypes, i.e., categories in a chi-square test. But there are k
constraints, because the allele frequencies in the expected categories have
to match the observed allele frequencies. So the degrees of freedom are
calculated as k(k + 1)/2 -k =k(k—1)/2.

=8.711 (1.10)

Using Allele Frequencies to Identify Individuals

The DNA from an individual can be used to identify the individual. This
principle has been used extensively in many connections, most importantly
in forensics where DNA is used to determine paternity and to identify
someone who was at a crime scene. In the context of forensics, the use of
DNA to identify individuals is called DNA fingerprinting or DNA pro-
filing. In the United States, thirteen microsatellite loci are usually used in
forensics. An individual matches a DNA profile if the genotype is identical
to the profile at all thirteen loci. But with only thirteen loci, there is some
chance than an individual will match a profile by chance alone. To assess
the probability (Box 1.1) of a random match, forensic scientists compare
the profile to a database of allele frequencies. If the individual carries two
alleles for a locus, say allele 1 and allele 2, then the match probability is
simply 2f, f, for a heterozygous individual, and £, or f, for a homozygous
individual, assuming HW equilibrium. The probabilities calculated for all
loci are then multiplied together to provide one final match probability.
There are several problems that arise in the interpretation of match
probabilities based on databases. First, the database may not be represen-
tative for the population to which the individual belongs. For example, a
database of Caucasian individuals may not be appropriate as a reference
for an individual from a non-Caucasian background. For this reason, the
United States and many other countries have devoted significant efforts
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to developing large representative databases. Second, the individual may
have siblings or other close relatives who also have a high probability of
matching the profile. Third, assumptions regarding HW equilibrium and
simple multiplication of probabilities among loci may not always be valid.
Considerable statistical research has been devoted to these concerns.

References

*Chen J., 2010. The Hardy—-Weinberg principle and its applications in
modern population genetics. Frontiers in Biology 5: 348-353.

“Evett I. W. and Weir B. S., 1998. Interpreting DNA Evidence: Statistical
Genetics for Forensic Scientists. Sinauer, Sunderland, MA.

Marshall D. R. and Allard R. W., 1970. Maintenance of isozyme polymor-
phism in natural populations of Avena barbata. Genetics 66: 393-399.
*Valverde P, Healy E., Jackson I, et al., 1995. Variants of the melanocyte-
stimulating hormone receptor gene are associated with red hair and

fair skin in humans. Nature Genetics 11: 328-30.

*Recommended reading

EXERCISES

1.1 Aresearcher examines a locus in which there is a particular C/T
polymorphism. She obtains the following genotypic counts: CC: 42,
CT: 16, TT: 32. Calculate the genotype frequencies and the allele fre-
quencies in the sample.

1.2 For the data from Exercise 1.1, find the expected homozygosity and
the expected heterozygosity, given the observed allele frequencies,
and calculate the inbreeding coefficient (F).

1.3 For the data in Exercise 1.1, test if the population is in HWE using a
chi-square test at the 5% significance level.

1.4 The proportion of a population suffering from a specific rare genetic
disease is 0.02%. Assume that the disease is caused by a single reces-
sive allele and assume that the population is in HWE. How many
individuals carry the disease allele in the heterozygous state?

L5 In another locus there are three alleles—A, C, T—and the genotypic
counts in the sample are AA: 10, AC: 10, AT: 5 CC:20,CT: 5, and
TT: 20. Calculate the genotype frequencies and the allele frequencies
in the sample.

1.6 For the data from Exercise 1.5, find the expected homozygosity and
the expected heterozygosity, given the observed allele frequencies.
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1.7 For the data in Exercise 1.5, test if the population is in HWE, using a
chi-square test at the 5% significance level.

1.8 An individual has genotype CT for the locus discussed in Exercise
1.1, and genotype AC in the locus discussed in Exercise 1.5. At a
* crime scene, forensic evidence is found with the exact same (TT, CC)
~ genotype. What is the chance of such a match by random, assuming
HWE and the allele frequencies calculated in Exercises 1.1 and 1.5?
What is the match probability if the calculation is done using ob-
served genotype frequencies instead?

1.9 Show mathematically that it takes two generations to achieve
HWE when the allele frequencies differ between males and females
(assume a di-allelic locus).




