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HCS combines automated microscopy
with quantitative image analysis.

Recent hardware advances and inno-
vations in software for automated
image analysis now allow researchers
to rapidly screen and analyze hundreds
of thousands of images.

In contrast to early analysis of high-
throughput imaging data, which often
involved testing for deviation of a single
parameter, machine learning, both
supervised and unsupervised, allows
high-dimensional data analysis.

The image analysis pipeline must be
designed simultaneously with the
development of the biological assay.

HCS has been used to identify genes
and activities required for a specific
biological process and in various dis-
ease models, to identify proteome-
wide changes in response to chemical
or genetic perturbations, and in chemi-
cal and genetic profiling.
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High-content screening (HCS), which combines automated fluorescence micros-
copy with quantitative image analysis, allows the acquisition of unbiased multi-
parametric data at the single cell level. This approach has been used to address
diverse biological questions and identify a plethora of quantitative phenotypes of
varying complexity in numerous different model systems. Here, we describe some
recent applications of HCS, ranging from the identification of genes required for
specific biological processes to the characterization of genetic interactions. We
review the steps involved in the design of useful biological assays and automated
image analysis, and describe major challenges associated with each. Addition-
ally, we highlight emerging technologies and future challenges, and discuss how
the field of HCS might be enhanced in the future.

Introduction
Over the past 15 years, high-throughput (HTP) microscopy has been one of the fastest growing
fields in cell biology. HTP microscopy is defined by its productivity, which usually means
processing thousands to hundreds of thousands of samples, and includes automated sample
preparation and data acquisition setup. When combined with automated multiparametric image
and data analysis, HTP microscopy is referred to as HCS, a relatively new approach that has
been transforming basic cell biology into a large-scale data-driven and exacting science.

Functional genomics strategies for exploring gene expression, genetic interactions, chemo-
genetic networks, or protein–protein interactions on a genome scale typically involve a single or
handful of phenotypic readouts. By contrast, HCS provides the rich spatiotemporal resolution
that is needed to fully understand the complexity and dynamics of cell biological processes. The
power of HCS resides in its ability to simultaneously extract hundreds of biologically informative
measurements from the acquired images, at the level of individual proteins, organelles, whole
cells, cell populations, or even an entire organism.

The growth of HCS has been driven by advances in biology and chemistry, as well as mechaniza-
tion and computation. One of the main drivers has been the development of genetic and molecular
tools compatible with HTP microscopy, such as genome-scale mutant collections in budding and
fission yeasts [1–4], and reagents for systematically altering gene expression in mammalian cells
and metazoan model systems [5,6] (Box 1). In addition, a variety of fluorescent protein tags as well
as fluorescent probes that report on numerous aspects of the state of the cell have become
available (Box 1). Two other advances that have facilitated the rapid development of HTP
microscopy and HCS platforms are hardware improvements that have catalyzed the development
of fast, automated microscopes and major innovations in the software for image analysis, which
have enabled facile extraction of quantitative measurements. Over the past decade, HTP micros-
copy has been used extensively to examine the effects of large-scale genetic or chemical
perturbations, which impinge on different aspects of cellular organization and dynamics, at the
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Box 1. Genetic and Fluorescent Reagents for HTP Microscopy

A key factor in the recent applications of HTP microscopy is the availability of genetic and molecular reagents for
fluorescence microscopy that are compatible with HTP approaches.

Genetic Reagents
The most versatile toolbox of genetic reagents is available for the model yeast Saccharomyces cerevisiae (e.g., [1,3,4]).
For fluorescence microscopy, a particularly useful collection is the open reading frame (ORF)-GFP collection [19], in which
each ORF has been systematically tagged at its C terminus with GFP. A second invaluable reagent set is the genome-
wide gene-deletion collection, available in both S. cerevisiae [1,4] and Schizosaccharomyces pombe [2]. There are no
complete mutant or tagged ORF collections available for multicellular organisms or cell lines, although partial collections
exist for several organisms [57–59]. In most cases, these are not easily compatible with HTP applications and screening is
conducted on a single gene and/or reporter basis.

Until now, the most widely used approach to screen for effects of reduced gene function in higher eukaryotes has been
RNAi technology. There are several commercial RNAi libraries, from genome wide to more pathway focused, available for
a range of organisms [5].

Recently, several technologies, such as gene editing, have emerged to ease the construction of genome-wide collections
in higher organisms [60,61]. One of the most promising is CRISPR/Cas9 mediated (multi-) gene editing [62], which can be
used for the large-scale construction of gene mutations or collections of tagged genes in mammalian and other
eukaryotic cells. Genome-scale CRISPRi and CRISPRa libraries, which inhibit and activate gene expression respectively,
offer the opportunity to modulate gene expression over an approximately 1000-fold range [6]. Likewise, CRISPR/Cas9-
mediated knock-in of a desired reporter cassette [63] (e.g., a gene encoding a fluorescent protein fused to a gene of
choice at the endogenous locus) in higher eukaryotes will enable in vivo imaging and reduce potential reagent toxicity and
the need for preparative procedures associated with immunostaining.

Fluorescent Reagents
There are three main classes of fluorescent reagent that enable researchers to detect specific cellular structures:
immunoreagents, fluorescent dyes and/or probes, and genetically encoded fluorescent proteins. Immunoreagents spe-
cifically recognize epitopes of the protein of interest and are widely used in screens of mammalian cell lines. The use of
antibodies requires additional optimization of the fixation and permeabilization methods and testing for cross-reactivity when
multiplexing different unconjugated antibodies. Fluorescent probes include dyes that bind to the cell surface or are taken up
by cells and concentrate in specific cellular structures, as well as indicators of the physiological state of the cell, such as
calcium indicators, live and/or dead indicators, and probes for pH, redox, and membrane potential. Genetically encoded
fluorescent proteins, such as GFP and its derivatives, have revolutionized fluorescence microscopy. There has been a
substantial push in recent years in the development of new fluorescent protein variants with different characteristics (various
colors, fixable variants, and fluorescent timers) and protein-based fluorescent biosensors that monitor specific changes in
the cellular state or the tagged protein and/or peptide (e.g., conformational changes, ligand binding, and post-translational
modifications) [64,65].
single cell level in diverse model systems. The method has perhaps seen the greatest use in the
pharmaceutical industry, where it has been used in the identification of new lead compounds that
can be optimized into drug candidates, drug target validation, assessment of the in vivo toxicity of
drug candidates, and the identification of the mode of action of orphan compounds [7].

Here, we provide an overview of applications of HTP microscopy and HCS approaches as
applied in the basic research environment over the past decade, and highlight some of the key
challenges that need to be addressed when developing projects within this experimental realm.
The set of examples of HCS experiments outlined below is not meant to offer a comprehensive
review, but rather to provide a sense of the breadth of biological questions that can be
addressed using the approach.

Biological Questions Addressed with HTP Microscopy
The main goal of HCS experiments is to use images of cells to produce multidimensional profiles
that identify aberrant phenotypes, such as those caused by the addition of a compound or
genetic mutation, to make functional predictions. Below, we focus on protein imaging and
describe five different classes of experiment that have successfully used HCS to answer
important biological questions. To provide an overview of the power and potential of HCS
approaches and to demonstrate their use in different model systems, we outline a few interesting
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examples for each class of experiment and describe some of the limitations and benefits of each
approach.

Identification of Genes and/or Activities Required for a Specific Biological Process
Typically the identification of genes and/or activities required for a specific biological process
involves perturbing many (or all) genes in a standard genetic background expressing one or a few
reporters of the biological process of interest. This type of approach encompasses the majority of
screens in the literature, probably because it is relatively straightforward to set up, requiring only a
perturbation collection and a robust phenotypic readout that is amenable to HTP and reproducibly
reports on a biological compartment or function of interest. In some recent examples of this class of
experiment, genes involved in cell division and the proper morphology of the mitotic spindle were
identified in screens of both the fission and budding yeast deletion collections using a GFP-tubulin
reporter gene [8,9]. The acquisition of multiple time points allows for a more detailed analysis of the
biological consequences of the perturbation, an approach that is particularly useful when studying
dynamic processes. For example, in another study, automated HTP time-lapse microscopy was
used to monitor the effect of an RNAi library in a HeLa cell line expressing a GFP-tagged histone:
109 000 time-lapse movies were collected and the nucleus tracked, leading to the discovery of
several novel genes involved in mitosis [10]. In addition, to obtain a more in-depth analysis of an
entire process, screens for perturbations using multiple reporters, as opposed to single reporter
screens, have been productive. For example, 13 RNAi screens of multiple different endocytic
activities and their downstream organelles in HeLa cells identified genes that coregulate specific
subsets of endocytic uptake routes and organelle abundances [11]. Other examples of this class
are a screen for genes required for secretion in HeLa cells [12] and a screen for regulators of a signal
transduction pathway using an immunofluorescence-based readout of activation of the human
TORC1 effector RPS6 expressed in microarrays of Drosophila cells treated with RNAi [13].

Identification of Genes Required for Differentiation and Proliferation
Experiments to identify genes required for differentiation and proliferation also use perturbation
libraries and a few reporters, but they must be done in specific cell types under conditions that
induce differentiation, which often makes them technically challenging. Interesting examples of this
type of screen include: a screen for stimulators of cardiomyocyte proliferation involving a library of
miRNA mimics and markers of cell division [14]; a screen for regulators of human embryonic stem
cell identity involving an RNAi library and a GFP reporter for quantitative analysis of the expression of
the key pluripotency gene POU5F1 [15]; and a screen for small molecules that regulate cell
differentiation in zebrafish embryonic cells expressing lineage-specific GFP reporters [16]. In
addition to the technical challenges, screens in specialized systems are subject to the caveat
that their findings may not be relevant in vivo. This issue was addressed in the cardiomyocyte study:
following myocardial infarction in mice, injection of vectors expressing two of these miRNAs was
able to stimulate cardiac regeneration and almost complete recovery of cardiac functional
parameters [14].

Models of Disease
HCS screens designed to explore disease mechanisms typically require the use of cells expressing
disease-causing mutant alleles in relevant cell types coupled with reporters or assays tailored to
query aspects of disease biology. For example, factors that may influence the pathology of
Huntington disease were identified by screening Drosophila primary neurons expressing an
RFP-tagged version of the pathogenic Huntingtin protein for small-molecule and genetic pertur-
bations that revert aberrant neuronal morphology [17]. Other studies have used sensitive reporters
activated by pathways known to contribute to disease pathology. For example, compounds that
influence the cell biological defects associated with Alzheimer's disease were discovered by
treating HEK293 cells expressing a disease-causing presenilin mutant and a genetically encoded
FRET-based calcium indicator reporter [18]. Applying an analogous strategy, potential modifiers of
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the cystic fibrosis phenotype were discovered by combining RNAi and HCS to assess the activity of
the epithelial sodium channel ENaC in human alveolar epithelial cells [19]. As with other cell type-
specific models, it is important to confirm any findings in vivo; researchers in the cystic fibrosis study
were able to validate one of their hits as a possible drug target using cells from the lungs of patients
with cystic fibrosis.

Identification of Proteome-Wide Changes in Response to Chemical or Genetic Perturbation
The identification of proteome-wide changes requires a collection of strains where each protein
is individually tagged. Presently, an open reading frame (ORF)-GFP collection, in which each
strain carries a unique fusion gene that generates an ORF-GFP fusion protein driven by the
endogenous promoter, has been constructed only for Saccharomyces cerevisiae [20]. By
combining automated yeast genetics and HCS of the ORF-GFP collection, changes were
quantified in the abundance and localization of the yeast proteome in response to both genetic
and chemical perturbation, with measurements recorded over a time series (Figure 1) [21]. The
(A)       Gene rate  ORF-GF P coll ec�on  with cytosoli c RFP,  foll owed by HTP micr oscop y

(B)    Image  acquisi�on  an d fea ture extrac�on

Iden�fy cell s and/o r
objects

Extract GFP  feature s

Overlay
outlines

(C) Machine  learning  an d classific a�on

etc .

(D)  Prote ome-wide  ab unda nce-localiz a�on  map (E)     Protei n flux  map
Cytoplasm

Peroxisome

SPBCell periphery

Nucleus
Cytoplasm

Golgi
Bud �p

Bud neck

Nucleus

Vacuol e

Nucleolus

X

Gene�c an d/or
environmen tal
perturba �on 

Cytoplasm Nucleus

Cell
periphe ry

Vacuol e Nucleolus

Cytoplasm Nucle us

Cell
periphe ry

Vacuol e Nucleolus

Figure 1. Yeast Proteome Dynamics from Single Cell Imaging and Automated Analysis. (A) In these experiments
a version of the yeast open reading frame (ORF)-GFP collection expressing a cytosolic RFP marker was created and the cells
were imaged using automated confocal microscopy [21]. (B) The cytosolic red signal was used to segment the cells, and texture
measurements were then extracted from both the red and green channels. (C) A representative subset of proteins that were
known to localize to single subcellular compartments was chosen and used to generate training sets for automated
classification of the remaining proteins. (D) After classifying all the ORF-GFPs, proteome-wide maps showing abundance
and localization were generated. (E) Finally, image analyses of ORF-GFP collections treated with hydroxyurea and rapamycin
and in a mutant genetic background were used to derive flux maps of the proteins that changed under these conditions.
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challenge with this type of screen lies in identifying multiple different proteins that localize to a
given compartment but that may not look identical; consequently, some type of machine
learning is required. However, this type of approach offers the benefit of being able to query
the entire proteome in an unbiased manner. In the near future, CRISPR-Cas9 technology will
enable the creation of similar collections in other systems [22].

Chemical and Genetic Profiling
General phenotypic profiling can also be used to generate diagnostic profiles of the cellular
response to various insults, providing a template for interpretation of the effects of unknown
compounds or genetic lesions. For example, measurements of cell and nuclear shape and
texture were used to generate profiles characteristic of the response of approximately 30 well-
characterized drugs in HeLa and rat kidney cells over time and by dose. The comparison of
profiles led to the identification of several natural products as tubulin inhibitors [23]. With this type
of experiment, the possibility of similarity to an unknown compound is limited by the number of
profiles in a set. In a second example, in budding yeast, quantification of 501 cell morphology
parameters, based on staining of the cell wall, actin, and DNA, led to the identification of drugs
that interfere with cell wall synthesis through comparison with profiles of mutant strains known to
be involved in this process [24].

In addition to experiments that query a specific process, cell state, or chemical, imaging screens
have also been used to ask more fundamental biological questions. For example, HCS has been
used to identify genetic interactions that affect morphology rather than viability. In these experi-
ments, the authors treated human cancer cells [25] and Drosophila cells [26] with double RNAi,
stained the cells for DNA, actin, and tubulin, and extracted multiple quantitative features to
identify genetic interactions. This example shows how HCS may be used to provide deeper
insight into previously well-studied questions.

Assay Design
Regardless of the question being addressed, the success of any HTP-imaging experiment relies
on thoughtful assay design and appropriate image analysis approaches. The main goal of HTP
microscopy assay development is to design a phenotypic readout that is reproducible and
scalable but that requires a minimum number of experimental steps. HTP microscopy experi-
ments generally require at least four independent steps: sample preparation, image acquisition,
image and/or data handling, and image analysis; each step comes with significant technical
challenges that need to be considered beforehand. While each HTP microscopy experiment
requires customization to address the biological question of interest, there are some general
features associated with optimal assay design, which are summarized in Figure 2. These include
the choice of a model system for which an appropriate phenotypic readout has been validated
through low-throughput microscopy. The assay must then be adapted to a robust multi-well set-
up, and scaled for automated sample handling (Figure 2).

The choice of imaging platform depends largely on the biological application. Although it is
possible to carry out an HTP microscopy experiment on conventional motorized microscopes,
most researchers opt for commercial automated imagers that are fully adapted to HTP opera-
tion, and offer different imaging modalities and flexibility (Table 1). Imaging systems are often
coupled to automated liquid-handling devices to increase reproducibility and decrease plate-to-
plate variation. Imagers fall into two broad categories: confocal and wide field. In general,
confocal imagers offer higher image resolution and are better suited for imaging of small cells,
intracellular or complex structures, and samples with strong background fluorescence, but are
expensive and require longer imaging times, potentially limiting throughput. Wide-field imagers
are faster and provide higher signal intensities when working with dimmer samples, but lack
depth of resolution.
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Figure 2. General Steps and Main Considerations of a High Content Screening (HCS) Experiment. Both the assay design and image analysis part of a high-
throughput (HTP) microscopy experiment include several steps. Each step comes with specific challenges that need to be considered beforehand and optimized
accordingly. It is important to develop the image-analysis pipeline in parallel with the development of the biological assay so that the markers and fluorophores, as well as
the number of replicates, reproducibility, and experimental conditions, are appropriate for the types of image and data analyses chosen, and vice versa.
One of the greatest strengths of HTP microscopy is the ability to screen large sample sizes,
which allows critical statistical considerations to be addressed, following careful consideration of
the number of biological replicates and sites imaged per sample. When dealing with time-
sensitive applications, optimal imaging parameters are often a tradeoff between the acquisition
speed needed to achieve images of the desired quality and resolution, and the minimum sample
numbers required for robust statistical analysis.
Table 1. Automated HTP Microscopy Platforms Frequently Seen in Published Literaturea

Company Model Optics Light Source Software

BD Biosciences BD Pathway 855/435 Confocal Halide lamp +

Perkin Elmer Opera/Operetta Confocal Laser/halide lamp +

GE Healthcare IN Cell Analyzer 6000/2200 Confocal/wide field Laser/solid state +

Molecular Devices ImageXpress Ultra/Micro Confocal/wide field Laser/halide lamp
or solid state

+

Olympus ScanR Wide field Halide lamp +

Thermo Scientific CellomicsArrayScan Wide field (confocal optional) Solid-state LED +

aMost models come with optional kinetic and environmental control units.
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Automated Image Analysis
A significant and sometimes underappreciated challenge of HTP microscopy screening lies in
the computational analysis of the thousands of acquired images. Manual scoring of images,
which dominated the early days of HTP screening, is still predominantly used in low- and
medium-throughput studies, likely because most bench scientists lack expertise in image
analysis and because significant time may be required to develop an image analysis pipeline.
For true HTP experiments, in which thousands of images need to be assessed, manual scoring
becomes unfeasible, but, more importantly, manual assignments of morphology or subcellular
localization are time consuming and inherently subjective. Automation requires image-process-
ing and data-analysis techniques, such as statistical analysis and machine learning. It leads to
quantitative, highly reproducible analysis and, because of its assessment of multiple parameters
(sometimes over 100), is highly sensitive, allowing for the identification of more subtle phenotypic
differences than would be possible by manual analysis. The main steps of image and data-
analysis pipelines include: image processing, object segmentation, feature extraction and
selection, and statistical analysis. Combined, these steps ultimately lead to the transformation
of bioimaging data into biologically meaningful results. Figure 2 highlights the general workflow
and main considerations associated with each step, which we discuss further below. In general,
it is crucial to develop the image-analysis pipeline simultaneously with the development of the
biological assay and ensure that the analysis steps used lead to reproducibility from batch to
batch and corroborate known effects of included positive and negative controls.

Image Processing, Object Segmentation, and Feature Extraction
After automated image acquisition, images first need to be corrected for noise (e.g., background
noise or experimental artifacts) and uneven illumination. This is usually achieved by applying
different filters, either linear or nonlinear, to smooth away the noise [27]. Next, regions of interest
(ROIs) must be defined (e.g., cells or subcellular structures) in each microscopy image through
the process of segmentation. This is most commonly done using a binarization or thresholding
algorithm, such as Otsu's Method, combined with the watershed algorithm [28,29]. While a
good segmentation pipeline can go a long way towards separating ROIs from background pixels
and from each other, good experimental design can save both time and stress by minimizing
imaging artifacts that can introduce bias. For example, if segmentation is performed using only a
cell boundary marker, a thresholding algorithm is likely to accidentally merge adjacent cells (an
analysis issue known as ‘undersegmentation’), whereas, if a nuclear marker is also present,
nuclei can be detected first using thresholding, and a watershed algorithm can then be used to
propagate outwards from the nuclei, to properly segment cells.

Following cell segmentation, quantitative measurements that are representative of the cells or
subcellular objects can be acquired. A variety of commonly used numeric descriptors of
segmented objects have been developed in the computer vision field, and include summaries
of the intensity distribution, shape, size, texture, radial distribution, and granularity of the
segmented ROIs. Several measurements tailored to the problem of interest can additionally
be calculated from the extracted quantitative features, such as the nucleus:cell area ratio.
Importantly, not all extracted features are equally informative for a given biological question, and
many features can be highly redundant and represent almost identical information. Furthermore,
in certain cases, an overabundance of features can inhibit algorithm performance and introduce
noise in the data.

To simplify the data without losing information, dimensionality reduction can be used to project
the original feature space onto a lower dimensional space. A commonly applied method is
principal component analysis (PCA) [30], where the original features are linearly transformed into
new sets of features. The transformed features are often difficult to interpret; therefore, feature
selection methods can be used to select, by process of iterative elimination, a smaller subset of
604 Trends in Cell Biology, August 2016, Vol. 26, No. 8



features that are most informative for a given question. A review of the different methods can be
found in [31].

Data Analysis: Statistical Comparisons
After feature extraction and selection, three general data analysis approaches can be carried out
using the quantitative morphometric features: statistical comparisons, supervised machine
learning, and unsupervised machine learning.

Statistical comparisons directly operate on feature distributions. Here, the most common action
is to determine whether two sets of cell populations, strains, or images (usually comparing a
treated to a nontreated or mutant to wild-type sample) are significantly different. HCS can collect
hundreds of feature measurements for each ROI, but researchers often use only one or a few
image-derived features and calculated statistical metrics for downstream analysis. Despite the
utility of direct comparisons of one or a few selected features using statistics such as the Z factor
[32], an analysis pipeline that uses only a single measurement severely restricts the detection
power of a data set. In addition to the information loss that occurs in single-metric analyses,
important cellular information can also be lost when statistically oversimplified data-mining
strategies are used, such as arbitrary Z-score cut-offs to identify outliers in a population that
might not follow a single distribution curve. Many of the measurements that are ignored are likely
to correspond to rare phenotypes of interest (see [33] for detailed review).

HTP microscopy data are inherently information rich, but the utility of this information depends on
appropriate analysis of the multiparametric data. Moving away from testing the deviation of a
single-parameter from a control population, some groups have explored the full range of
available parameters, assessing each feature in relation to a control population to create
high-dimensional data analysis methods. For example, in one of the earliest screens, the
nonparametric Kolmogorov-Smirnov [34] statistic was used to broadly profile 100 chemicals
over a range of concentrations, analyzing 11 different markers and a large set of measurements,
to assess multidimensional single cell phenotypes [35]. This led to the successful categorization
of blinded drugs and suggested targets for drugs of uncertain mechanism. In this screen, all of
the parameters were considered independently; other studies have tried to assess the depen-
dencies between parameters using methods such as factor analysis [36]. Such approaches
increase the ability to discover novel phenotypes, but often suffer from what is known as the
‘multiple comparisons problem’, occurring when a large set of statistical inferences are consid-
ered simultaneously, leading to errors in inference [37]. Unfortunately, methods that are often
used to adjust for this issue, such as the Bonferroni correction [38,39], will increase the false
negative rate [40]. Furthermore, while some measurements are easy to understand (e.g., an
increase in nuclear size), others lack a direct biological interpretation (e.g., an increase in the
texture entropy in the diagonal direction).

As part of any statistical analysis, it is worthwhile for the researcher to consider whether to
minimize false positive or false negative results. For example, if extensive follow-up of the findings
is planned, such as might be the case for a disease treatment, the researcher would want to have
a low false positive rate. Conversely, if general biological principles are being explored, the
researcher may prefer to include more of the data and reduce the false negative rate.

Data Analysis: Machine Learning
An effective way to turn a large number of measurements per cell into something biologically
interpretable involves machine learning. In supervised machine learning, algorithms such as
logistic regression, random forests, and support vector machines automatically discover novel
positive items from training data (reviewed in [41]). In a classification problem, a trained biologist
first manually labels examples of ROIs (for example individual cells) or whole images exhibiting a
Trends in Cell Biology, August 2016, Vol. 26, No. 8 605



Outstanding Questions
How do we integrate HCS data with
other large-scale data sets to get a
complete picture of the cell?

Can CRISPR/Cas9-mediated gene
editing be used for large-scale con-
struction of gene mutations and
knock-in tags?

What type of coherent strategy for data
presentation and accessibility can we
generate to unify reporting standards
and make data from different sources
directly comparable?

How can HCS be combined with other
types of imaging technology to derive
HTP quantitative data from unexplored
sources?
phenotype of interest and groups them together in distinct classes; additional occurrences of the
same phenotype within the full data set are subsequently identified by the trained classifier [42].
This approach has been successfully used by several groups (e.g., [10,21], Figure 1). Classifi-
cation accuracy can also be implemented as a measure for identifying when a treatment
condition is significantly different from the control, an approach that has been used to quantita-
tively assess drug titrations in human cells [43].

While supervised machine-learning approaches have been used with great success to identify
novel instances of known phenotypes, these methods rely on the a priori knowledge of aberrant
phenotypes or cellular patterns. When phenotypic classes are uncertain or unknown, unsuper-
vised machine learning can be used to identify distinct groups within the data set. One common
strategy for unsupervised machine learning is hierarchical data clustering, in which similar data
points (either at the single cell or image and/or population level) are grouped together. Clustering
approaches have been used to group proteins by their subcellular patterns [44] and drugs by
their effects [35].

Supervised and unsupervised machine-learning methods can be combined, to harness the best
from both worlds. A supervised neural network trained to identify representative phenotypes
was used to analyze the cell morphologies in a Drosophila cell line after gene overexpression or
double-stranded RNA treatment, and genes were subsequently grouped into informative
biological pathways using unsupervised hierarchical clustering [45]. Currently, there exists a
large amount of interest in neural network-derived algorithms, both supervised and unsuper-
vised (e.g., autoencoders, which learn feature representations from the image pixels rather than
from predefined formulas), although to date few groups have applied such methods to the
analysis of HCS data. Instead, many of the existing applications of neural networks have been
applied to precomputed image features rather than to the underlying pixels [46].

Population Heterogeneity
Depending on the segmentation parameters, data extracted from microscopy images usually
represent the phenotype of a single cell. However, these data can be reported as an averaged
summary of the image. When working at the whole-population and/or full-image level, research-
ers run the risk of neglecting cellular heterogeneity within each treatment population and missing
changes that only occur in a subpopulation of cells. Particularly in the case where significant
population variability is expected, averaged feature representations will not be representative of
the actual biological state within the population. To avoid data misinterpretation, an alternative is
to classify or cluster individual cells to identify such cellular subpopulations. For example, by
clustering cells based on several morphological measurements, discrete subpopulations of
cancer cells could be identified, as well as the response of each subpopulation to different
classes of cancer drug [47]. To show the direct effects of cell–cell variability on HCS results, the
rate at which different human cell lines were infected by a panel of viruses was assessed [48],
revealing that 60–80% of the variability was attributable to the local cell microenvironment, which
was represented by variables such as cell size, local cell density, and the mitotic state. The same
group later showed that accounting for the local cell microenvironment can significantly improve
the reproducibility of cell line RNAi screens [49]. This result has significant implications for
phenotypic RNAi screening, because many RNAi screens have poor reproducibility [50].

Concluding Remarks
The steady increase in reports of HCS in the literature in recent years indicates that developing
and performing these types of massively multiplexed assays is becoming more accessible to
academic laboratories. However, while there have been many recent advances in the develop-
ment of useful reagent sets, HTP imaging techniques, and multiparametric data mining of high
content microscopy data, many aspects of HCS are still in their infancy (see Boxes 1 and 2, and
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Box 2. Open-Source Tools Available for Bioinformatics for Microscopy

Bioinformatics for microscopy aims to provide tools for data acquisition, storage, management, analysis, and visualiza-
tion and has had a major impact on HTP cell biology, where advanced image-analysis approaches are needed. Given the
variety of applications, it is impossible to create a universal analysis solution. While almost all commercial image-
acquisition platforms now come with easy-to-use built-in software that offers at least some basic image visualization,
data extraction, and analysis capability, a particular HCS assay often requires a combination of approaches or a
completely new methodology to achieve optimal analysis. Several academic laboratories have dedicated research
personnel or even core facilities to the development of the tools required for every aspect of image analysis, from image
transfer and storage, to data extraction, management, and visualization. An alternative for many labs is the use of several
existing user-friendly software solutions, both commercial and open source. Many open-source software platforms were
originally developed to solve specific image-analysis problems, but were later expanded to other purposes by the
research community. They provide a cost-effective option, can be readily customized to individual needs, and should
ultimately encourage more researchers to incorporate automated image analysis in their studies. These open-source
tools are available for all the steps involved in carrying out a HTP microscopy screen. Many allow direct linking of data to
other open-source software solutions. Examples of open source software available for each of the image analysis steps
are listed in Table I. The list is by no means exhaustive.

Table I. Examples of Open-Source Software Available for Bioimage Informatics

Step Software Features Refs Website

Image acquisition mmanager Software for full automation of
motorized microscopes

[66] www.micro-manager.org/

scanImage Automation of laser-scanning
microscopes

[67] http://svobodalab.cshl.edu/
software_main.html

Image storage
and management

OMERO Enables web-based access,
sharing, analysis, and
visualization of complex,
multidimensional image data and
associated metadata

[54] www.openmicroscopy.org/
site

BisQue Enables storage, visualization,
organization, and analysis of
images in the cloud

[68] http://bioimage.ucsb.edu/
bisque

OpenBIS Enables web-based querying
and visualization of both raw and
analyzed data from HCS
experiments

[69] www.cisd.ethz.ch/software/
openBIS

Image format
conversion

Bio-formats A Java library that converts >120
proprietary file formats to a
common model

[53] www.openmicroscopy.org/
site

Image processing
and analysis

BioImageXD Package for analyzing,
processing, and visualizing
multidimensional microscopy
images

[70] www.bioimagexd.net/

ImageJ; Fiji General purpose image
processing and analysis
software package

[71,72] http://imagej.nih.gov/ij/;
http://fiji.sc/Fiji

EBIimage General purpose toolbox for
image processing and analysis

[73] http://bioconductor.org/
packages/release/bioc/html/
EBImage.html

CellCognition Combines object detection and
supervised machine learning for
classification of morphologies
with time-resolved analysis by
single cell tracking

[74] http://www.cellcognition.org/

CellProfiler Modular design enables the
combining of predefined
algorithms into an image analysis
pipeline

[75] www.cellprofiler.org/

Machine learning CellProfiler
Analyst

Exploration and analysis of large,
high-dimensional image-derived

[76] www.cellprofiler.org/
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Table I. (continued)

Step Software Features Refs Website

data; includes machine-learning
tools for identifying complex and
subtle phenotypes

Ilastik Modular software framework for
(supervised) pixel- and object-
level classification, automated
and semiautomated object
tracking, semiautomated
segmentation, and object
counting

[77] http://ilastik.org/index.html

Workflow systems
(‘visual programming’)

KNIME Enables nonexperts to visually
build an image analysis workflow

[78] www.knime.org/

Orange Data mining through visual
programming: data visualization
and analysis, components for
machine learning, add-ons for
bioinformatics and text mining,
features for data analytics

[79] http://orange.biolab.si/

Taverna Domain-independent workflow
management system

[80] www.taverna.org.uk/

Data mining WEKA Collection of machine-learning
algorithms for data mining tasks

[81] www.cs.waikato.ac.nz/
ml/weka/
the Automated Image Analysis section) and several questions remain (see Outstanding
Questions).

A major shift in assay design that is needed to understand the full complexity and dynamics of
cellular processes is increased use of HTP live cell and time-lapse microscopy. While live cell
imaging is commonly performed in HCS screens with unicellular organisms, such as yeast, or
small multicellular organisms, such as worms, fixed cells are still the norm when working with
mammalian cell cultures. With a few exceptions (e.g., [10,11]), producing and analyzing single
frame and single time point images is the modus operandi of most reported studies. By
collecting high-dimensional images, comprising multiple time points or using 3D or spatially
resolved time-lapse microscopy (4D imaging), a large amount of detailed kinetic information can
be extracted.

The development of novel gene-editing approaches, in particular CRISPR/Cas9-mediated gene
editing, will make HTP genetics and HCS more amenable to many different eukaryotic systems
(Box 1). CRISPR/Cas9 is likely to have an impact in two areas: first, in the construction of new
types of perturbation reagents and libraries [6] and second, in the building of new mutated or
tagged [51] cell lines. HCS is also developing towards screening the effects of genetic or
environmental perturbations in more physiologically relevant cellular systems, such as cells in 3D
cultures or cell co-cultures, where many aspects of tissue physiology have been preserved [52].
With increasing screening complexity, even more effort needs to be put into the development of
suitable analysis methods, such as computer vision methods for the identification of complex cell
shapes or temporal tracking of small objects with low signal:noise ratios.

HTP ‘omics’ technologies generate large amounts of data on the DNA, RNA, protein, lipid, or
metabolite content within a cell. HCS with its multiparametric readout and potentially millions of
data points generates even larger amounts of data: hundreds of quantitative measurements per
image, per cell, or per subcellular structure describing multiple markers and/or reporters, in
addition to thousands of images each associated with metadata. This wealth of data poses
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Box 3. Emerging and Hybrid Imaging Technologies

Fluorescence microscopy comprises a vast and expanding selection of image acquisition approaches. Several new and
hybrid technologies have emerged in recent years that advance the possibilities of HTP microscopy even further. Here we
outline notable examples that have been adapted to HTP or that we predict will be adapted in the near future.

Super-resolution microscopy: This technique allows live-cell imaging with up to
50x better resolution than standard fluorescence microscopy and is just beginning
to be adapted to HTP (reviewed in [82]). Recent work used HTP 3D super-
resolution photo-activated localization microscopy (PALM) to image synchronized
Caulobacter bacteria [83], providing a detailed quantitative picture of the FtsZ
protein in cell division at nanoscale resolution.

Fluorescence correlation spectroscopy: Using this technique researchers can
measure properties of proteins that reflect the fluctuation of fluorescence intensity
over short periods of time, allowing them to derive information such as diffusion
coefficients and interaction kinetics (reviewed in [84]). Recent experiments
described the development of HTP fluorescence correlation spectroscopy to study
not just dynamic abundance and localization, but also mobility and protein–protein
interactions for 53 nuclear proteins in human cells [85].

Microfluidics: Developments in microfluidics have permitted researchers to
perform live-cell imaging in a variety of conditions over extended periods of time
(reviewed in [86]). A recent example is the development of an HTP microfluidic
single-cell analysis chip, enabling efficient trapping and retention of yeast mother
cells, followed by time-lapse microscopy to track single cells throughout their entire
replicative lifespan [87].

Imaging flow cytometry: This technique offers the speed and throughput of flow
cytometry combined with the resolution of fluorescence microscopy (reviewed in
[88]). HTP imaging flow cytometry was recently used to distinguish among B cells at
various stages of the cell cycle and ask questions about subcellular protein
distribution from their images [89].

Imaging mass spectrometry: In this technique the mass spectrometer collects
molecular snapshots of a biological sample and this molecular information is
superimposed onto an optical or fluorescence image, giving a picture of the
distribution of specific molecules in a tissue or population of cells (reviewed in [90]).
While we know of no reports on HTP imaging mass spectrometry projects, an
automated imaging mass spectrometer has been developed [91] and this
technique is likely to be useful in HTP studies.
specific challenges, some of which have been addressed above. Microscopy is a diverse field,
with more imaging techniques emerging and being adapted to HTP (Box 3), as well as improved
instrumentation, experimental design, and analysis approaches. These developments bring
major challenges, such as the management of terabytes of images and image-associated data,
the diversity of data structures, and the often proprietary file formats for data storage that come
with commercial imaging systems.

One of the crucial future challenges will be the development of a coherent strategy for data
presentation and accessibility. Open Microscopy Environment (OME) offers two possible sol-
utions to these problems, with the development of Bio-Formats [53] and the OMERO server [54]
(Box 2). An important consideration with the latter is the trade-off between the flexibility offered
by the platform and available resources, both in terms of money and training time required for
expert use of the server, which might pose a considerable limitation to the widespread use of
OMERO. Since HCS is an evolving field, there are at present no unified reporting standards or
requirements for the full availability of data through centralized image and/or data repositories,
similar to the standards implemented in the field of microarray technology with the Minimum
Information About a Microarray Experiment (MIAME) requirements [55]. To date, there is no
systematic reporting standard proposed for HCS through the MIBBI Foundry [56], which hosts a
common portal of minimum information checklists for various disciplines. Establishment of such
Trends in Cell Biology, August 2016, Vol. 26, No. 8 609



standards for recording and reporting HCS data would facilitate data exchange, the interpreta-
tion and independent verification of the reported data, and the development of much-needed
downstream informatics tools, centralized repositories, and image databases.

Microscopy has always been the method of choice for cell biologists. With recent advances in
automated microscopy platforms and computational image-analysis techniques, the information
derived from microscopy images on a large scale can now be objectively assessed to uncover
even subtle phenotypic changes after genetic, chemical, or other perturbations. Despite the
challenges associated with HTP microscopy, we can expect this technique to be instrumental in
answering diverse biological questions.
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