Tropical dermatology: Venomous arthropods and human skin

Part II. Diplopoda, Chilopoda, and Arachnida

Vidal Haddad, Jr, MD, PhD,a João Luiz Costa Cardoso, MD, b Omar Lupi, MD, PhD, c and Stephen K. Tyring, MD, PhD d
Botucatu, Manaus, and Rio de Janeiro, Brazil; and Houston, Texas

CME INSTRUCTIONS

The following is a journal-based CME activity presented by the American Academy of Dermatology and is made up of four phases:
1. Reading of the CME Information (delineated below)
2. Reading of the Source Article
3. Achievement of a 70% or higher on the online Case-based Post Test
4. Completion of the Journal CME Evaluation

CME INFORMATION AND DISCLOSURES

Statement of Need:
The American Academy of Dermatology bases its CME activities on the Academy’s core curriculum, identified professional practice gaps, the educational needs which underlie these gaps, and emerging clinical research findings. Learners should reflect upon clinical and scientific information presented in the article and determine the need for further study.

Target Audience:
Dermatologists and others involved in the delivery of dermatologic care.

Accreditation
The American Academy of Dermatology is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

AMA PRA Category 1 Credits
The American Academy of Dermatology designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 Credit™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

AAD Recognized Credit
This journal-based CME activity is recognized by the American Academy of Dermatology for 1 AAD Credit and may be used toward the American Academy of Dermatology’s Continuing Medical Education Award.

Disclaimer:
The American Academy of Dermatology is not responsible for statements made by the author(s). Statements or opinions expressed in this article reflect the views of the author(s) and do not reflect the official policy of the American Academy of Dermatology. The information provided in this CME activity is for continuing education purposes only and is not meant to substitute for the independent medical judgment of a healthcare provider relative to the diagnostic, management and treatment options of a specific patient’s medical condition.

Disclosures
Editors
The editors involved with this CME activity and all content validation/reviewers of this journal-based CME activity have reported no relevant financial relationships with commercial interest(s).

Authors
The authors of this journal-based CME activity have reported no relevant financial relationships with commercial interest(s).

Planners
The planners involved with this journal-based CME activity have reported no relevant financial relationships with commercial interest(s). The editorial and education staff involved with this journal-based CME activity have reported no relevant financial relationships with commercial interest(s).

Resolution of Conflicts of Interest
In accordance with the ACCME Standards for Commercial Support of CME, the American Academy of Dermatology has implemented mechanisms, prior to the planning and implementation of this journal-based CME activity, to identify and mitigate conflicts of interest for all individuals in a position to control the content of this Journal-based CME activity.

Learning Objectives
After completing this learning activity, participants should be able to describe the cutaneous manifestations of infections by trematodes and cestodes and identify appropriate therapy.

Date of release: September 2012

Expiration date: September 2015
© 2012 by the American Academy of Dermatology, Inc.
http://dx.doi.org/10.1016/j.jaad.2012.05.028

Technical requirements:
American Academy of Dermatology:
• Supported browsers: Firefox (5 and higher), Google Chrome (5 and higher), Internet Explorer (7 and higher), Safari (5 and higher), Opera (10 and higher).
• JavaScript needs to be enabled.

Elsevier:
Technical Requirements
This website can be viewed on a PC or Mac. We recommend a minimum of:
• PC: Windows NT, Windows 2000, Windows ME, or Windows XP
• Mac: OS X
• 128MB RAM
• Processor speed of 500MHz or higher
• 800x600 color monitor
• Video or graphics card
• Sound card and speakers

Provider Contact Information:
American Academy of Dermatology
Phone: Toll-free: (866) 503-SKIN (7546); International: (847) 240-1290
Fax: (847) 240-1859
Mail: P.O. Box 4014; Schaumburg, IL 60168

Confidentiality Statement:
American Academy of Dermatology: POLICY ON PRIVACY AND CONFIDENTIALITY

Privacy Policy - The American Academy of Dermatology (the Academy) is committed to maintaining the privacy of the personal information of visitors to its sites. Our policies are designed to disclose the information collected and how it will be used. This policy applies solely to the information provided while visiting this website. The terms of the privacy policy do not govern personal information furnished through any means other than this website (such as by telephone or mail).

E-mail Addresses and Other Personal Information - Personal information such as postal and e-mail address may be used internally for maintaining member records, marketing purposes, and alerting customers or members of additional services available. Phone numbers may also be used by the Academy when questions about products or services ordered arise. The Academy will not reveal any information about an individual user to third parties except to comply with applicable laws or valid legal processes.

Cookies - A cookie is a small file stored on the site user’s computer or Web server and is used to aid Web navigation. Session cookies are temporary files created when a user signs in on the website or uses the personalized features (such as keeping track of items in the shopping cart). Session cookies are removed when a user logs off or when the browser is closed. Persistent cookies are permanent files and must be deleted manually. Tracking or other information collected from persistent cookies or any session cookie is used strictly for the user’s efficient navigation of the site.

Links - This site may contain links to other sites. The Academy is not responsible for the privacy practices or the content of such websites.

Children - This website is not designed or intended to attract children under the age of 13. The Academy does not collect personal information from anyone it knows is under the age of 13.

Elsevier: http://www.elsevier.com/wps/find/privacypolicy.cws_home/privacypolicy
Members of arthropod classes Chilopoda (centipedes), Diplopoda (millipedes), and Arachnida (spiders and scorpions) cause tissue injury via bites, stings, and/or a release of toxins. A few members of the Acari subclass of Arachnida (mites and ticks) can transmit a variety of infectious diseases, but this review will cover the noninfectious manifestations of these vectors. Dermatologists should be familiar with the injuries caused by these arthropods in order to initiate proper treatment and recommend effective preventative measures. (J Am Acad Dermatol 2012;67:347.e1-9.)

Key words: bite; centipede; envenomation; millipede; mite; scorpion; spider; sting; tick; tropical dermatology.

DIPLOPODA AND CHILOPODA

Key points

- Centipedes have fangs that feature poison glands containing metalloproteases; the main symptom of injury is pain
- Millipedes have lateral glands, instead of fangs, which contain cyanide and quinones; the main sign of injury is hyperpigmentation

Centipedes and millipedes belong to the classes Chilopoda and Diplopoda, respectively. Most species of the first class are carnivorous and have a body made of flattened segments covered with chitin with a pair of legs on each segment. The first segment has 2 large tusks originating from the pair of legs, which act as organs of defense and also as a method to capture prey—these animals are able to inject poison from glands contained in the trunk. The venom contains several different enzymes, especially metalloproteases, that have myotoxic, cardiotoxic, and neurotoxic activities. The Scolopendra genus reaches up to 25 inches long and causes the most serious injuries (Fig 1).1-3

Millipedes are structurally similar to the Chilopoda but they do not have cephalic fangs and have 2 pairs of legs on each body segment (Fig 2). They have lateral glands in each segment that produce cyanide and quinones to repel predators. Occasionally, skin and mucous membrane lesions can be observed in humans.4

Injuries in humans caused by Chilopoda (centipedes) are observed sporadically, and pain is the main symptom, with mild erythema and edema at the site of injury (Fig 3). A few case reports have noted the onset of headache, malaise, anxiety, and dizziness. The injury is characterized by 2 points where there is penetration of the fangs. There are rare reports of human deaths caused by the bites of centipedes.1,5,6 Secondary infection is a major complicating factor in the envenomation.

Millipedes do not have fangs, but their toxic fluids may be ejected and cause erythema and brown or
black pigmentation in the affected skin (Fig 4). Injuries most often occur when victims put on their shoes, because millipedes often enter homes seeking dark places to take refuge. The pigmented lesions may persist for months.

When the injury is caused by a centipede, there is spontaneous resolution without complications. The site should be washed with soap and water; cold compresses should be tried. Analgesics are essential for pain control (Table I).

Millipedes cause acute inflammatory lesions without major repercussions. The immediate use of alcohol or ether on the site is encouraged, because it could dissolve toxins. Eye injuries should be washed, and the patient should be referred to an ophthalmologist, because severe envenomation can result in blindness.

ARACHNIDA

Spiders

Key points
- Brown recluse spiders can cause extensive skin necrosis and acute renal failure via sphingomyelinase D; therapy is with antivenom (antivenin) and/or sulfones
- Tarantulas can release bristles resulting in dermatitis and conjunctivitis or can bite causing pain via activation of the capsaicin receptor; treatment includes the use of oral antihistamines and topical steroids

Spiders that cause major injuries in humans belong to the genus *Atrax* (the funnel web spider of Australia, of the Orthognata infraorder), genus *Phoneutria* (armadeira spider), genus *Latrodectus* (the black widow spider), and the genus *Loxosceles* (the brown recluse spider; Fig 5). The first 3 spiders cause serious injuries with a risk of death, but the toxins are primarily neurotoxic, and little or no change is noted in the skin of a local sting.

Brown recluse spiders, however, cause exuberant skin manifestations. These spiders live in dark and dusty places, such as garages and warehouses, being cosmopolitan (with the exception of cold places). The venom is capable of causing extensive skin necrosis, and in about 5% of cases hemolysis can cause acute renal failure, especially by the action of sphingomyelinase D, an enzyme that destabilizes the vessel walls and membranes of red blood cells.

Loxosceles spiders are timid animals and run away when in danger, only biting when pressed against the victim’s body or handled without care. The
manifestations begin with a burning sensation or can even be painless. About 6 hours later, an ischemic area is clearly delineated with cyanotic, pale, and erythematous variations of color in the affected area—a characteristic sign known as a marble plaque (Fig 6). During this period, it is possible to observe blisters with a hemorrhagic content, and the injury is very painful because of local ischemia. The plaque evolves to frank necrosis in about 1 week, and an eschar remains firmly attached for up to 3 weeks (Fig 7). At this stage, there is no more pain. When the eschar finally falls off, a large and deep ulcer can be seen, typically with a granular base and elevated edges. In this phase, confusion with other ulcers is common, especially with cutaneous leishmaniasis (Fig 8). The ulcer healing is slow and resolves after months.13,14

The differential diagnosis of necrotic araneism depends on the phase of the injury: in the initial envenomation, the differential diagnosis includes cellulitis, erysipelas, and necrotizing fasciitis. In the necrotic phase, there may be confusion with skin necrosis caused by other animals (eg, snakes), drugs, and bacteria. At the ulcer stage, it is necessary to differentiate from other chronic ulcers, such as mucocutaneous leishmaniasis, paracoccidioidomycosis, sporotrichosis, cutaneous tuberculosis, and cutaneous squamous cell carcinoma. Histopathology allows for the correct diagnosis, because in cutaneous loxoscelism there is fibrosis and neovascularization; these alterations are not found in granulomatous processes.15

Treatment of cutaneous loxoscelism also depends on the phase of the injury: early diagnosis allows for the reduction of the clinical manifestations by use of antivenom against the toxins of the spider, but it is not used in all countries. An alternative is to use sulfone (100-300 mg daily) to prevent the diapedesis of neutrophils to the point of ischemia and reduce necrosis. Corticosteroid use is controversial. In later stages with large ulcers, it is possible to use skin grafts for repair.16-19

Some Theraphosidae spiders (tarantulas) can liberate body bristles (especially of the abdomen) and cause an irritant dermatitis and conjunctivitis in humans.20,21 Tarantula bites can cause pain via activation of the capsaicin receptor.22 These injuries are common in persons that have contact with the spiders (eg, biologists). The lesions are highly pruriginous, but can be treated with topical corticosteroids and oral antihistamines (Figs 9 and 10).23

Scorpions

Key points
• Most scorpion stings cause cardiac arrhythmias and acute pulmonary edema without significant skin changes; the venom of Tityus serrulatus, containing tityustoxin, is the most potent
• The sting of Hemiscorpius lepturus, found in Iraq and Afghanistan, can result in extensive skin necrosis and neurotoxic symptoms caused by hemicalcin
• All severe stings should be treated with anti-scorpion serum; anesthetics without vasoconstrictors can be used for local pain

Scorpions are dangerous animals that are present in all tropical and temperate regions and can cause death in children and debilitated individuals4 (Fig 11). Their venom causes intense stimulation of the autonomic nervous system, resulting in cardiac arrhythmias and acute pulmonary edema. In the majority of the scorpions’ stings, there are no significant skin manifestations4 (Fig 12). Some species, however, can cause necrotic and purpuric plaques that can ulcerate or form bullae (Fig 13).

There are 6 families of scorpions, but almost all scorpions dangerous to humans are in the Buthidae family.24 The most common genus in this family in the United States is Centruroides spp.25 The most scorpion stings reported in humans are from the Tityinae subfamily of Buthidae, which is found in Brazil and Venezuela. The venom of Tityus serrulatus is the most potent and results from...
tityustoxin. This toxin binds to voltage-dependent sodium and potassium ion channels, causing sialorrhea, lacrimation, and rhinorrhea. There are many reports of scorpion stings in American troops stationed in Iraq and Afghanistan. The scorpion reported to produce the most cutaneous injury in this region is *Hemiscorpius lepturus*. The sting of this scorpion can produce erythema, purpura, bullae, necrosis, eschar, and ulcer; *Hemiscorpius*—dermatitis, conjunctivitis, pain, and pruritus.

Scorpion venom is a complex mixture of basic proteins of low molecular weight with small amounts of amino acids and salts, without hemolytic, protease, cholinesterase, or phospholipase activities or the consumption of fibrinogen. The site of the sting is sometimes detected with difficulty, and only mild edema and erythema can be observed with or without sweating and horripilation. In addition, there may be nausea, vomiting, and colic type abdominal pain along with rhinorrhea, coughing, sneezing, and wheezing. Additional changes can occur, such as tachycardia or bradycardia (alternate or not), hypotension or hypertension, arrhythmias, chest tightness, heart failure, acute pulmonary edema, and

Table I. Management of injuries from Diplopoda, Chilopoda, and Arachnida

<table>
<thead>
<tr>
<th>Arthropod class</th>
<th>Injurious components in venom/mechanism of injury</th>
<th>Signs and symptoms</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilopoda (centipedes)</td>
<td>Metalloproteases (bite)</td>
<td>Erythema, edema, and pain</td>
<td>Wash site, cold compresses, and analgesics</td>
</tr>
<tr>
<td>Diplopoda (millipedes)</td>
<td>Cyanide and quinones (contact)</td>
<td>Erythema, pigmentation, and blindness</td>
<td>Wash site and topical alcohol</td>
</tr>
<tr>
<td>Arachnida (spiders)</td>
<td>Brown recluse—sphingomyelinase D (bite); tarantula—activation of capsaicin receptor (bite), allergic response (contact)</td>
<td>Brown recluse—ischemia, marble plaque, bullae, necrosis, eschar, and ulcer; tarantula—dermatitis, conjunctivitis, pain, and pruritus</td>
<td>Local anesthetics, antiserum, and cardiopulmonary life support</td>
</tr>
<tr>
<td>Arachnida (scorpions)</td>
<td>Tityustoxin, hemicalcin, and a complex mixture of basic proteins (sting)</td>
<td>Erythema, purpura, bullae, necrosis, ulcers, pain, nausea, vomiting, coughing, wheezing, heart failure, pulmonary edema, tremors, shock, and death</td>
<td>Local anesthetics, antiserum, and cardiopulmonary life support</td>
</tr>
<tr>
<td>Arachnida (mites and ticks)</td>
<td>Antigen activation of immunoglobulin E—driven TH2 response (contact)</td>
<td>Erythema, edema, papules, pruritus, and secondary bacterial infection</td>
<td>Topical corticosteroids, oral antihistamines, and antibiotics for infections</td>
</tr>
</tbody>
</table>
shock, the latter being the most severe manifestations of scorpion sting. Envenomation can cause tremors, psychomotor agitation, and myoclonus.

Severe injuries present with systemic manifestations that are quite obvious and intense. Profuse and frequent vomiting is one symptom, and the intensity and frequency of vomiting is a sensitive premonitory sign of the severity of poisoning. Other symptoms include widespread and abundant sweating. Patients typically complain of cold, goose flesh, pallor, severe agitation alternating with drowsiness, hypothermia, tachycardia or bradycardia, extrasystole, hypertension, hyperpnea, tremors, and muscle spasms. There may be progression to cardiocirculatory and pulmonary edema, which are frequent causes of death. Treatment includes neutralizing the circulating toxin as quickly as possible, combating the symptoms of envenomation, and supporting the vital conditions of the patient. Local pain can be combated with anesthetics without vasoconstrictors, lidocaine 2% or bupivacaine 0.5% injected into the sting site, or in the form of regional blocking. The recommended dose is 3 to 4 mL for adults and 1 to 2 mL in children and
may be repeated up to 3 times at intervals of 30 to 60 minutes.

Antiscorpion serum is indicated in all severe cases. In 2011, the FDA approved the first treatment specifically for scorpion stings, ie, Centruroides (Scorpion) Immune F(ab')2 Injection (trade name, Anascorp, Rare Disease Therapeutics, Inc, Franklin, TN). The most feared complications of scorpion injuries are cardiac arrhythmias, shock, and pulmonary edema that can sometimes lead to death, even with proper medication and acute care—especially in children.

Ticks and mites

Key points

- The “comet” sign is classic for tick or mite bites; pruritus may result from hypersensitivity or foreign body reactions
- An immunoglobulin E–driven Th2 response to mites can manifest as pruritic papules; mite infestations can be treated with topical permethrin and/or oral ivermectin

Some arthropods that cause skin lesions are commonly mistaken for venomous animals. Ticks (Arachnida class, Acari subclass, and Ixodida order) can be a vector for agents of a variety of diseases, including Rocky Mountain spotted fever, Colorado tick fever, tick paralysis, tularemia, tick-borne relapsing fever, babesiosis, ehrlichiosis, and Lyme disease1-3 (Fig 14). They also can provoke severe local reactions through hypersensitivity and by foreign body reactions precipitated by the persistence of fragments of mouthparts at the bite. These reactions are extremely pruritic and become infected easily in predisposed individuals because of intense erythema and edema. There is a classic sign of tick’s (or mite’s) or their nymph’s bites (ie, the “comet” sign, where many bites spread from initial points in
the distal areas of the ankles and legs, with a cone distribution (Fig 15). This occurs by the ascending movement of 1 or more ticks. Mites are also members of the Acari subclass and include vectors of various infectious diseases, such as scrub typhus and ricketsialpox. The most common cutaneous manifestations of mites, such as chiggers, scabies, and demodex, are pruritic papules and nodules caused by an immunoglobulin E–driven T1h2 response and which are seen worldwide. Mite infestations may be treated with topical agents, mainly 5% permethrin or oral ivermectin. Although scabies is more prevalent, more frequently associated with secondary staphylococcal and streptococcal infections, and often more severe in tropical parts of the world, the cutaneous manifestations are very similar to those seen in temperate countries and therefore will not be discussed in this review.

Although a few members of the Acari subclass of arthropods transmit infectious diseases, the majority of Diplopoda, Chilopoda, and Arachnida cause tissue injury via release of toxins or by burrowing into the skin. It is important for dermatologists to be familiar with these arthropods and the injuries they cause in order to initiate proper therapy and to advise the patient on effective prevention.

REFERENCES

scorpion *Hemiscorpius lepturus* which is active on ryanodine-sensitive Ca\(^{2+}\) channels. Biochem J 2007;404:89-96.

