
日本船舶海洋工学会講演会論文集 (Volume No. and paper No. will be put by the society) 
 

Wave Impact Loads by MPS Method with an Improved 

Pressure Source Term 
 

by Liang-Yee Cheng* Rubens Augusto Amaro Junior* 

 Cezar Augusto Bellezi*  
 

Key Words: Pressure Oscillation, Hydrodynamic Loads, Source Term, Particle-based Method, MPS 

 
1. INTRODUCTION 

Wave induced motions and loads associated to violent free 

surface flows and fluid-structure interaction (FSI) phenomena 

are highly non-linear hydrodynamic problems of great concern 

to coastal or offshore structures due to safety and operational 

issues. 

In recent years, Lagrangian particle-based methods have 

opened new perspective for the investigation of strong FSI 

problems with large free surface deformation1)2). Nevertheless, 

spurious oscillation of computed pressure is one of the main 

issues of the particle-based methods. The approaches to 

achieve more stable computation are: enhancement of regular 

particle distributions, which has computational cost of 

resetting the particle positions3); modified and/or high-order 

differential operators4)5); and new formulations for the source 

term of pressure Poisson equation (PPE), by combining 

incompressibility conditions6)7) or introducing higher order 

source terms8). 

Despite promising in mitigation the oscillations, in the 

results obtained by most of the existing solutions the spurious 

oscillations tend to increase with the decrease of time step, 

with the stability range sensitive to time domain discretization. 

The present work adopts new source terms for the PPE based 

on a correction factor between numerical and physical time 

scale, which is derived from the momentum conservation 

regarding collisions in particle-level. For the purpose of the 

investigation, the Moving Particle Semi-implicit (MPS) 

method1) is considered. In addition, a high-order stabilized 

gradient model9) is adopted to mitigate the effect of 

nonuniform particle distribution, thus reducing the numerical 

wave attenuation inherent of the original MPS model. In order 

to evaluate the performance of the proposed approach when 

applied to violent free surface flows and FSI phenomena, 

numerical results are compared to available experimental 

measurements, particularly regarding two cases: nonlinear 

wave impacts on the vertical wall10) and floating body under 

the action of wave maker11). 

 

2. NUMERICAL METHOD 

2. 1 Moving Particle Semi-implicit 

The Moving Particle Semi-implicit (MPS) method solves 

the governing equations of continuum by replacing the 

differential operators by discrete differential operators derived 

based on a weight function (   ). To solve the incompressible 

viscous flow, a semi-implicit algorithm is used in the MPS 

method. At first, predictions of the particles velocity and 

position are carried out explicitly by using viscosity and 

external forces terms of the momentum conservation. Then the 

pressure of all particles is obtained implicitly by solving a 

linear system of PPE considering the particle number density 

(PND) criterion1) as follows: 

      
     

  

   
  

      
 

   
 
     

 

  
    (1) 

where    stands the initial PND,   
  is the PND of the 

particle distribution after the explicit calculations,   denotes 

the fluid density,    is the time step,  represents a 

compressibility factor and   is a relaxation coefficient to 

reduce spurious pressure oscillations. The PND of a particle   

is proportional to the fluid density and is obtained as the 

summation of the weight of all neighbor particles. After 

solving the PPE, the fluid particle velocity and position are 

updated based on the pressure gradient1) 
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where   is the number of spatial dimensions and      is the 

minimum pressure between the neighborhood of the particle  , 
and vector distance          . 

To prevent instability issue induced by attractive pressure 

and reduces the effect of nonuniform particle distribution, 

Wang et al.9) introduced a corrective matrix in Eq. (2) and 

obtained the following stabilized pressure gradient model 
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where    is the corrective matrix: 
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Then the velocity of the particles is updated by using the 

pressure gradient term of the momentum conservation and the 

new positions of the particles are obtained.  

The method adopts Dirichlet boundary conditions for 

pressure and motion. The motion boundary conditions are 

imposed to the solids, modeled as particles as well, during the 

explicit step of the method. The Dirichlet pressure boundary 

condition is imposed to the particles identified as free surface 

and it is considered during the implicit step of the method. In 

the present work the NPCD method12) is adopted to identify 

the free surface particles. 

2. 2 Correction factor for PPE 

Numerically, the duration of time discontinuous phenomena 

such as collisions or impacts is about the simulation time step 
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   because the change of the status prior and after the event is 

only detected and processed in the instant when the change 

occurs. Nevertheless, considering successive collisions or 

impacts in a continuum with minimal spatial resolution   , the 

intervals between the successive collisions are about the 

physical time interval         , where    is propagation 

velocity. In explicit numerical scheme, due to the CFL stability 

condition, it is clear that      . This means that the 

successive collisions or impacts that physically must last    

are numerically shortened to   . 

As the momentum conservation is assured by the governing 

equations, the impulse   of a collision or impact computed 

numerically or recorded physically should be the same. So, the 

integration of the computed loads (  ) in the interval [    

  ] must be equivalent to the integration of the physical 

collision loads (  ) in [      ]. As result, the ratio between 

the numerical and the physical collision loads (     ) yields 

the relation        . Therefore, the imposition of the 

stability criterion leads to much higher numerical pulses than 

the physical ones, with the amplification coefficient of     . 

In the other words, as the duration of the numerical pulses is 

much shorter than the physical ones, each of these discrete 

impacts shows a much larger magnitude of the impulsive 

loads. 

Moreover, as a result of the mismatch, the solution is 

inconsistent in time domain, with peak values very sensitive to 

  , because the magnitude of the numerical collision loads 

     when the numerical time step     . This issue on 

the numerical modeling in the computation of time 

discontinuous phenomena was observed by Cheng et al.13), 

who proposed the application of the Courant number as a 

correction factor for stable assessment of impulsive loads in 

mesh-based methods. 

In the present work, considering the motions and collisions 

in particle-level, the solution proposed to mitigate spurious 

pressure oscillation that occur in particle-based simulations 

even for non-impulsive loads is the introduction of Courant 

number              as a correction factor in the pressure 

computation. Instead of using the numerical time step ∆t in the 

source term (Eq. (1)), the physical time step          is 

preferred to adjust both the magnitude and duration of the 

impulses. This is the same as imposing     
           

  

in Eq. (1), so that: 
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Another incompressible condition considered in the source 

term is that the divergence of the velocity field should be zero, 

as proposed by Tanaka e Matsunaga7): 
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The introduction of the relaxation coefficient     
  and 

by using the physical time   , a new source term considering 

the divergence of the velocity is obtained: 
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The list of the original and the improved source terms 

investigated in the present paper is shown in Tab. 1. 

 

Table 1 Description of the original and proposed source terms. 

Source term Abbreviation 

Original PND deviation with 0th order gradient.  

Eqs. (1) and (2) 
O-PND 

Proposed PND deviation with 0th order gradient.  

Eqs. (5) and (2) 
P-PND 

Original PND deviation and divergence-free condition 

with 0th order gradient. Eqs. (6) and (2) 
O-PND-DF 

Proposed PND deviation and divergence-free 

condition with 0th order gradient. Eqs. (7) and (2) 
P-PND-DF 

Original PND deviation and divergence-free condition 

with high-order gradient. Eqs. (6) and (3) 
O-PND-DF-HG 

Proposed PND deviation and divergence-free 

condition with high-order gradient. Eqs. (7) and (3) 
P-PND-DF-HG 

 

3. RESULTS 

3. 1 Wave impacts on the vertical wall 

Pressure on the wall and wave elevation computed by 

original MPS and proposed approach are compared with the 

experimental results provided by Didier et al.10). The main 

dimensions of the problem are shown in Fig. 1. The wave 

maker motion is governed by             , where A = 

0.05048 m and                 . The initial distance 

between particles           (15124 particles in total) is 

adopted. The simulation parameters used here are: effective 

radius          for the gradient and divergence operators, 

         for the Laplacian operator, relaxation coefficient 

      , propagation velocity          and 

compressibility factor               . 

 

 
Fig. 1 Main dimensions and sensors of wave impact on wall. 

Figures 2, 3 and 4 present the wave impact pressure at P1 

considering the time steps of          and         . 

According to Figs. 2, 3 and 4, the adoption of divergence-free 

condition contributes to reduce the pressure oscillation. As 

indicated in Fig. 4, the use of the high-order gradient 

reproduces the pressure amplitude after the first cycle in very 

good agreement with the experimental result by Didier et al.10), 

while the use of 0th order gradient underestimates the pressure 

amplitude, indicating that high-order gradient diminish the 

numerical dissipation and is highly recommended for long 

time simulations. However, the decrease of time step    

increases the amplitude of pressure oscillations computed by 

using original source terms O-PND, O-PND-DF and 

O-PND-DF-HG, as mentioned in Section 2.2. On the other 

hand, spurious oscillation is mitigated by using the proposed 

approach, even when the high-order gradient is adopted. With 

the straightforward calibration provided by using the 

propagation speed of the perturbations  , the improvement is 

remarkably effective for small time steps and more stable 

pressures were computed in a wide range of time steps. 
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(b) 
Fig. 2 Experimental10) and numerical pressures at P1 computed 

with O-PND and P-PND. Simulations with l0 = 0.01 m, (a) ∆t 

= 2×10-3 s and (b) ∆t = 2×10-4 s. 

 

(a) 

 

(b) 
Fig. 3 Experimental10) and numerical pressures at P1 computed 

with O-PND-DF and P-PND-DF. Simulations with l0 = 0.01 m, 

(a) ∆t = 2×10-3 s and (b) ∆t = 2×10-4 s. 

 

(a) 

 

(b) 
Fig. 4 Experimental10) and numerical pressures at P1 computed 

with O-PND-DF-HG and P-PND-DF-HG. Simulations with l0 

= 0.01 m, (a) ∆t = 2×10-3 s and (b) ∆t = 2×10-4 s. 

 Images of the pressure distribution in wave impact 

simulation computed by O-PND and P-PND-DF-HG are 

compared in Fig. 5. The color scale is associated to pressure 

field. The simulation computed by O-PND leads to an 

irregular pressure field with numerical oscillations and wave 

energy dissipation. On the other hand, smoother pressure field 

were obtained by using P-PND-DF-HG. 

 

(a) 
 

 

(b) 
 

 t = 6.70 s 
Fig. 5 Pressure fields computed by using source (a) O-PND 

and (b) P-PND-DF-HG at t = 6.70 s. 

Figure 6 shows the wave elevation at wave gauge G1, 2.643 

m from the initial position of the wave maker. The wave 

elevations computed by using the original MPS (O-PND) and 

proposed source terms P-PND and P-PND-DF are attenuated 

after one or two wavelengths, whereas the proposed source 

term with high-order gradient (P-PND-DF-HG) decreases the 

numerical wave dissipation, therefore reproducing the wave 

elevation in better agreement with the experimental one. 

 

 
Fig. 6 Experimental10) and numerical wave elevations at G1. 

3. 2 Floating body under the action of wave maker 

Wave elevation and floating body motions computed by 

original (O-PND) and proposed (P-PND-DF-HG) source terms 

are compared with the experimental results available in 

Hadžića et al11). The floating body is a rectangular prism 0.1 m 

long, 0.05 m high and 0.29 m wide, with density of 680 kg/m3. 

The mass of the body is 0.986 kg in 3D, but the simulation is 

performed in 2D and the mass of the body adopted is 3.4 kg. 

Considering the floating body as a homogeneous solid, the 

moment of inertia                  is considered. The 

main dimensions of the experiment are shown in Fig. 7. The 

time history of the wave maker angle motion11) is plotted in 

Fig. 8. The initial distance between particles            

(98390 particles in total) is adopted. The simulation 

parameters used here are: effective radius          for the 

gradient and divergence operators,          for the 

Laplacian operator, relaxation coefficient       , 

propagation velocity          and compressibility factor 

              . 

 

 
Fig. 7 Main dimensions and gauges of floating body case. 

 
Fig. 8 Wave maker motion11). 

The experimental and numerical wave elevation at G1, 
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before the location of the body (x = 1.16m) is shown in Fig. 9. 

As in the previous case, a very good agreement between 

numerical results computed by using the proposed approach 

(P-PND-DF-HG) and experimental data is obtained 

concerning the wave elevation at G1. In contrasting, numerical 

result computed by original MPS shows large energy 

dissipation, thus resulting in a lower wave elevation compared 

to experimental one. 

 

 
Fig. 9 Experimental11) and numerical wave elevations at G1. 

 
Fig. 10 Experimental11) and numerical sway motions of the 

floating body. 

 
Fig. 11 Experimental11) and numerical heave motions of the 

floating body. 

Figures 10 and 11 present, respectively, the experimental 

and numerical time series of the sway and heave motions of 

the floating body. The numerical wave dissipation present in 

original MPS leads to attenuation of motions. On the other 

hand, the improvements achieved by P-PND-DF-HG, reducing 

the pressure oscillations and wave dissipation, provide 

computed sway and heave motions in good agreements with 

experimental ones. 

Figure 12 presents snapshots of the experimental and 

numerical wave and floating body motions at the instants t = 

7.20 s and t = 7.54 s. Numerical and experimental free surface 

motions are in very good agreements. Concerning the floating 

body motions, a good agreement between experimental and 

computed sway and heave motions are obtained. However, 

experimental and computational roll motions present some 

discrepancies. Compared to experimental results, slightly 

smaller rotational motions are computed at t = 7.20 s and t = 

7.54 s. 

 

  

t = 7.20 s 

  

t = 7.54 s 

Experimental P-PND-DF-HG 
Fig. 12. Experimental (left) and numerical (right) wave and 

floating body motion at t = 7.20 s (top) and t = 7.54 s (bottom). 

4. CONCLUSIONS 

In the present work, new source terms for the pressure 

Poisson equation (PPE) are derived from the viewpoint of the 

momentum conservation of particle-level collisions, and their 

performance for mitigation of the spurious pressure oscillation 

were analyzed with respect to several aspects of the numerical 

computations. In addition, a high-order stabilized gradient 

model is adopted, thus reducing the numerical wave 

attenuation inherent of the original MPS model. 

Two examples are studied to demonstrate the effectiveness 

of the proposed approach when applied to violent free surface 

flows and FSI phenomena. For the first case, consisting of a 

wave impact on seawall, the proposed approach drastically 

suppressed the unphysical pressure oscillations, with pressure 

oscillations almost independent to time steps. The wave 

elevation and impact pressure computed by the proposed 

approach are in very good agreement with experimental results, 

when proposed source term combining zero variation of the 

density and the divergence-free condition with high-order 

gradient (P-PND-DF-HG) is applied. For the second example 

of a floating body under the action of wave maker, the wave 

elevations are accurately computed by the proposed approach 

and the floating body motions are in good agreement with 

available experimental results. 

In comparison to the other strategies, the proposed approach 

has much simpler implementation and is more computationally 



efficient. 
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