
C H A P T E R
SEVEN Uncertainty

In this chapter we explore some of the basic elements of the theory of individual behavior
in uncertain situations. We discuss why individuals do not like risk and the various meth-
ods (buying insurance, acquiring more information, and preserving options) they may
adopt to reduce it. More generally, the chapter is intended to provide a brief introduction
to issues raised by the possibility that information may be imperfect when individuals
make utility-maximizing decisions. The Extensions section provides a detailed application
of the concepts in this chapter to the portfolio problem, a central problem in financial eco-
nomics. Whether a well-informed person can take advantage of a poorly informed person
in a market transaction (asymmetric information) is a question put off until Chapter 18.

Mathematical Statistics
Many of the formal tools for modeling uncertainty in economic situations were originally
developed in the field of mathematical statistics. Some of these tools were reviewed in
Chapter 2, and in this chapter we will make a great deal of use of the concepts introduced
there. Specifically, four statistical ideas will recur throughout this chapter.

• Random variable: A random variable is a variable that records, in numerical form,
the possible outcomes from some random event.1

• Probability density function (PDF): A function f (x) that shows the probabilities
associated with the possible outcomes from a random variable.

• Expected value of a random variable: The outcome of a random variable that will
occur ‘‘on average.’’ The expected value is denoted by E(x). If x is a discrete random
variable with n outcomes, then EðxÞ ¼

Pn
i¼1 xif ðxiÞ. If x is a continuous random

variable, then EðxÞ ¼
Rþ1
%1 xf ðxÞ dx.

• Variance and standard deviation of a random variable: These concepts measure
the dispersion of a random variable about its expected value. In the discrete case,
VarðxÞ ¼ r2

x ¼
Pn

i¼1 ½xi % EðxÞ'2f ðxiÞ; in the continuous case, VarðxÞ ¼ r2
x ¼Rþ1

%1 ½x % EðxÞ'2f ðxÞ dx. The standard deviation is the square root of the variance.

As we shall see, all these concepts will come into play when we begin looking at the deci-
sion-making process of a person faced with a number of uncertain outcomes that can be
conceptually represented by a random variable.

1When it is necessary to distinguish between random variables and nonrandom variables, we will use the notation ~x to denote
the fact that the variable x is random in that it takes on a number of potential randomly determined outcomes. Often, however,
it will not be necessary to make the distinction because randomness will be clear from the context of the problem.
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Fair Gambles and The Expected
Utility Hypothesis
A ‘‘fair’’ gamble is a specified set of prizes and associated probabilities that has an
expected value of zero. For example, if you flip a coin with a friend for a dollar, the
expected value of this gamble is zero because

EðxÞ ¼ 0:5ðþ$1Þ þ 0:5ð%$1Þ ¼ 0, (7.1)

where wins are recorded with a plus sign and losses with a minus sign. Similarly, a game
that promised to pay you $10 if a coin came up heads but would cost you only $1 if it
came up tails would be ‘‘unfair’’ because

EðxÞ ¼ 0:5ðþ$10Þ þ 0:5ð%$1Þ ¼ $4:50: (7.2)

This game can easily be converted into a fair game, however, simply by charging you an
entry fee of $4.50 for the right to play.

It has long been recognized that most people would prefer not to take fair gambles.2

Although people may wager a few dollars on a coin flip for entertainment purposes,
they would generally balk at playing a similar game whose outcome was þ$1 million or
%$1 million. One of the first mathematicians to study the reasons for this unwillingness
to engage in fair bets was Daniel Bernoulli in the eighteenth century.3 His examination of
the famous St. Petersburg paradox provided the starting point for virtually all studies of
the behavior of individuals in uncertain situations.

St. Petersburg paradox
In the St. Petersburg paradox, the following gamble is proposed: A coin is flipped until a
head appears. If a head first appears on the nth flip, the player is paid $2n. This gamble
has an infinite number of outcomes (a coin might be flipped from now until doomsday
and never come up a head, although the likelihood of this is small), but the first few can
easily be written down. If xi represents the prize awarded when the first head appears on
the ith trial, then

x1 ¼ $2, x2 ¼ $4, x3 ¼ $8, . . . , xn ¼ $2n: (7.3)

The probability of getting a head for the first time on the ith trial is ð12Þ
i; it is the probabil-

ity of getting (i % 1) tails and then a head. Hence the probabilities of the prizes given in
Equation 7.3 are

p1 ¼
1
2
, p2 ¼

1
4
, p3 ¼

1
8
, . . . , pn ¼

1
2n
: (7.4)

Therefore, the expected value of the gamble is infinite:

EðxÞ ¼
X1

i¼1
pixi ¼

X1

i¼1
2ið1=2iÞ

¼ 1þ 1þ 1þ ( ( ( þ 1þ ( ( ( ¼1. (7.5)

2The gambles discussed here are assumed to yield no utility in their play other than the prizes; hence the observation that many
individuals gamble at ‘‘unfair’’ odds is not necessarily a refutation of this statement. Rather, such individuals can reasonably be
assumed to be deriving some utility from the circumstances associated with the play of the game. Therefore, it is possible to dif-
ferentiate the consumption aspect of gambling from the pure risk aspect.
3The paradox is named after the city where Bernoulli’s original manuscript was published. The article has been reprinted as
D. Bernoulli, ‘‘Exposition of a New Theory on the Measurement of Risk,’’ Econometrica 22 (January 1954): 23–36.
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Some introspection, however, should convince anyone that no player would pay very
much (much less than infinity) to take this bet. If we charged $1 billion to play the game,
we would surely have no takers, despite the fact that $1 billion is still considerably less
than the expected value of the game. This then is the paradox: Bernoulli’s gamble is in
some sense not worth its (infinite) expected dollar value.

Expected utility
Bernoulli’s solution to this paradox was to argue that individuals do not care directly
about the dollar prizes of a gamble; rather, they respond to the utility these dollars
provide. If we assume that the marginal utility of wealth decreases as wealth increases,
the St. Petersburg gamble may converge to a finite expected utility value even though its
expected monetary value is infinite. Because the gamble only provides a finite expected
utility, individuals would only be willing to pay a finite amount to play it. Example 7.1
looks at some issues related to Bernoulli’s solution.

EXAMPLE 7.1 Bernoulli’s Solution to the Paradox and Its Shortcomings

Suppose, as did Bernoulli, that the utility of each prize in the St. Petersburg paradox is given by

UðxiÞ ¼ lnðxiÞ: (7.6)

This logarithmic utility function exhibits diminishing marginal utility (i.e., U0 > 0 but U 00 < 0),
and the expected utility value of this game converges to a finite number:

expected utility ¼
X1

i¼1
piUðxiÞ

¼
X1

i¼1

1
2i
lnð2iÞ:

(7.7)

Some manipulation of this expression yields4 the result that the expected utility from this gam-
ble is 1.39. Therefore, an individual with this type of utility function might be willing to invest
resources that otherwise yield up to 1.39 units of utility (a certain wealth of approximately $4
provides this utility) in purchasing the right to play this game. Thus, assuming that the large
prizes promised by the St. Petersburg paradox encounter diminishing marginal utility permitted
Bernoulli to offer a solution to the paradox.

Unbounded utility. Unfortunately, Bernoulli’s solution to the St. Petersburg paradox does
not completely solve the problem. As long as there is no upper bound to the utility function, the
paradox can be regenerated by redefining the gamble’s prizes. For example, with the logarithmic
utility function, prizes can be set as xi ¼ e2

i
, in which case

UðxiÞ ¼ ln½e2
i

' ¼ 2i (7.8)

and the expected utility from the gamble would again be infinite. Of course, the prizes in this
redefined gamble are large. For example, if a head first appears on the fifth flip, a person would

4Proof:

expected utility ¼
X1

i¼1

i
2i
( ln 2 ¼ ln 2

X1

i¼1

i
2i
.

But the value of this final infinite series can be shown to be 2.0. Hence expected utility ¼ 2 ln 2 ¼ 1.39.
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The von Neumann–Morgenstern
Theorem
Among many contributions relevant to Part 3 of our text, in their book The Theory of
Games and Economic Behavior, John von Neumann and Oscar Morgenstern developed a
mathematical foundation for Bernoulli’s solution to the St. Petersburg paradox.5 In par-
ticular, they laid out basic axioms of rationality and showed that any person who is
rational in this way would make choices under uncertainty as though he or she had a util-
ity function over money U(x) and maximized the expected value of U(x) (rather than the
expected value of the monetary payoff x itself). Although most of these axioms seem emi-
nently reasonable at first glance, many important questions about their tenability have
been raised.6 We will not pursue these questions here, however.

The von Neumann–Morgenstern utility index
To begin, suppose that there are n possible prizes that an individual might win by
participating in a lottery. Let these prizes be denoted by x1, x2,…, xn, and assume that
these have been arranged in order of ascending desirability. Therefore, x1 is the least
preferred prize for the individual and xn is the most preferred prize. Now assign arbi-
trary utility numbers to these two extreme prizes. For example, it is convenient to
assign

Uðx1Þ ¼ 0,

UðxnÞ ¼ 1,
(7.9)

but any other pair of numbers would do equally well.7 Using these two values of utility,
the point of the von Neumann–Morgenstern theorem is to show that a reasonable way
exists to assign specific utility numbers to the other prizes available. Suppose that we
choose any other prize, say, xi. Consider the following experiment. Ask the individual to
state the probability, say, pi, at which he or she would be indifferent between xi with

win e2
5 ¼ $79 trillion, although the probability of winning this would be only 1/25 ¼ 0.031. The

idea that people would pay a great deal (say, trillions of dollars) to play games with small proba-
bilities of such large prizes seems, to many observers, to be unlikely. Hence in many respects the
St. Petersburg game remains a paradox.

QUERY: Here are two alternative solutions to the St. Petersburg paradox. For each, calculate the
expected value of the original game.

1. Suppose individuals assume that any probability less than 0.01 is in fact zero.
2. Suppose that the utility from the St. Petersburg prizes is given by

UðxiÞ ¼
xi if xi ) 1,000,000,
1,000,000 if xi > 1,000,000:

!

5J. von Neumann and O. Morgenstern, The Theory of Games and Economic Behavior (Princeton, NJ: Princeton University Press,
1944). The axioms of rationality in uncertain situations are discussed in the book’s appendix.
6For a discussion of some of the issues raised in the debate over the von Neumann–Morgenstern axioms, especially the assump-
tion of independence, see C. Gollier, The Economics of Risk and Time (Cambridge, MA: MIT Press, 2001), chap. 1.
7Technically, a von Neumann–Morgenstern utility index is unique only up to a choice of scale and origin—that is, only up to a
‘‘linear transformation.’’ This requirement is more stringent than the requirement that a utility function be unique up to a mono-
tonic transformation.
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certainty, and a gamble offering prizes of xn with probability pi and x1 with probability
(1 % pi). It seems reasonable (although this is the most problematic assumption in the
von Neumann–Morgenstern approach) that such a probability will exist: The individual
will always be indifferent between a gamble and a sure thing, provided that a high
enough probability of winning the best prize is offered. It also seems likely that pi will
be higher the more desirable xi is; the better xi is, the better the chance of winning xn
must be to get the individual to gamble. Therefore, the probability pi measures how de-
sirable the prize xi is. In fact, the von Neumann–Morgenstern technique defines the
utility of xi as the expected utility of the gamble that the individual considers equally
desirable to xi:

UðxiÞ ¼ piUðxnÞ þ ð1% piÞUðx1Þ: (7.10)

Because of our choice of scale in Equation 7.9, we have

UðxiÞ ¼ pi ( 1þ ð1% piÞ ( 0 ¼ pi: (7.11)

By judiciously choosing the utility numbers to be assigned to the best and worst prizes,
we have been able to devise a scale under which the utility index attached to any other
prize is simply the probability of winning the top prize in a gamble the individual regards
as equivalent to the prize in question. This choice of utility indices is arbitrary. Any other
two numbers could have been used to construct this utility scale, but our initial choice
(Equation 7.9) is a particularly convenient one.

Expected utility maximization
In line with the choice of scale and origin represented by Equation 7.9, suppose that a
utility index pi has been assigned to every prize xi. Notice in particular that p1 ¼ 0, pn ¼ 1,
and that the other utility indices range between these extremes. Using these utility indices,
we can show that a ‘‘rational’’ individual will choose among gambles based on their
expected ‘‘utilities’’ (i.e., based on the expected value of these von Neumann–Morgenstern
utility index numbers).

As an example, consider two gambles. Gamble A offers x2 with probability a and x3
with probability (1 % a). Gamble B offers x4 with probability b and x5 with probability
(1 % b). We want to show that this person will choose gamble A if and only if the
expected utility of gamble A exceeds that of gamble B. Now for the gambles:

expected utility of A ¼ aUðx2Þ þ ð1% aÞUðx3Þ,
expected utility of B ¼ bUðx4Þ þ ð1% bÞUðx5Þ:

(7.12)

Substituting the utility index numbers (i.e., p2 is the ‘‘utility’’ of x2, and so forth) gives

expected utility of A ¼ ap2 þ ð1% aÞp3,

expected utility of B ¼ bp4 þ ð1% bÞp5:
(7.13)

We wish to show that the individual will prefer gamble A to gamble B if and only if

ap2 þ ð1% aÞp3 > bp4 þ ð1% bÞp5: (7.14)

To show this, recall the definitions of the utility index. The individual is indifferent
between x2 and a gamble promising x1 with probability (1 % p2) and xn with probability
p2. We can use this fact to substitute gambles involving only x1 and xn for all utilities in
Equation 7.13 (even though the individual is indifferent between these, the assumption
that this substitution can be made implicitly assumes that people can see through com-
plex lottery combinations). After a bit of messy algebra, we can conclude that gamble A is

Chapter 7: Uncertainty 213



equivalent to a gamble promising xn with probability ap2 + (1 % a)p3, and gamble B is
equivalent to a gamble promising xn with probability bp4 + (1 % b)p5. The individual will
presumably prefer the gamble with the higher probability of winning the best prize. Con-
sequently, he or she will choose gamble A if and only if

ap2 þ ð1% aÞp3 > bp4 þ ð1% bÞp5: (7.15)

But this is precisely what we wanted to show. Consequently, we have proved that an indi-
vidual will choose the gamble that provides the highest level of expected (von Neumann–
Morgenstern) utility. We now make considerable use of this result, which can be sum-
marized as follows.

Risk Aversion
Economists have found that people tend to avoid risky situations, even if the situation
amounts to a fair gamble. For example, few people would choose to take a $10,000 bet on
the outcome of a coin flip, even though the average payoff is 0. The reason is that the
gamble’s money prizes do not completely reflect the utility provided by the prizes. The
utility that people obtain from an increase in prize money may increase less rapidly than
the dollar value of these prizes. A gamble that is fair in money terms may be unfair in
utility terms and thus would be rejected.

In more technical terms, extra money may provide people with decreasing marginal
utility. A simple example can help explain why. An increase in income from, say, $40,000
to $50,000 may substantially increase a person’s well-being, ensuring he or she does not
have to go without essentials such as food and housing. A further increase from $50,000
to $60,000 allows for an even more comfortable lifestyle, perhaps providing tastier food
and a bigger house, but the improvement will likely not be as great as the initial one.

Starting from a wealth of $50,000, the individual would be reluctant to take a $10,000
bet on a coin flip. The 50 percent chance of the increased comforts that he or she could
have with $60,000 does not compensate for the 50 percent chance that he or she will end
up with $40,000 and perhaps have to forgo some essentials.

These effects are only magnified with riskier gambles, that is, gambles having even
more variable outcomes.8 The person with initial wealth of $50,000 would likely be even
more reluctant to take a $20,000 bet on a coin flip because he or she would face the pros-
pect of ending up with only $30,000 if the flip turned out badly, severely cutting into life’s
essentials. The equal chance of ending up with $70,000 is not adequate compensation.
On the other hand, a bet of only $1 on a coin flip is relatively inconsequential. Although
the person may still decline the bet, he or she would not try hard to do so because his or
her ultimate wealth hardly varies with the outcome of the coin toss.

Risk aversion and fair bets
This argument is illustrated in Figure 7.1. Here W0 represents an individual’s current
wealth and U(W ) is a von Neumann–Morgenstern utility index (we will call this a utility

O P T I M I Z A T I O N
P R I N C I P L E

Expected utility maximization. If individuals obey the von Neumann–Morgenstern axioms of
behavior in uncertain situations, they will act as though they choose the option that maximizes the
expected value of their von Neumann–Morgenstern utility.

8Often the statistical concepts of variance and standard deviation are used to measure. We will do so at several places later in
this chapter.
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function from now on) that reflects how he or she feels about various levels of wealth.9

In the figure, U(W ) is drawn as a concave function of W to reflect the assumption of a
diminishing marginal utility. Now suppose this person is offered two fair gambles: gamble
A, which is a 50–50 chance of winning or losing $h, and gamble B, which is a 50–50
chance of winning or losing $2h. The utility of current wealth is U(W0), which is also the
expected value of current wealth because it is certain. The expected utility if he or she
participates in gamble A is given by EU(A):

EUðAÞ ¼ 1
2
UðW0 þ hÞ þ 1

2
UðW0 % hÞ, (7.16)

and the expected utility of gamble B is given by EU(B):

EUðBÞ ¼ 1
2
UðW0 þ 2hÞ þ 1

2
UðW0 % 2hÞ. (7.17)

Equation 7.16 shows that the expected utility from gamble A is halfway between the utility
from the unfavorable outcome W0 % h and the utility from favorable outcome W0 + h.
Likewise, the expected utility from gamble B is halfway between the utilities from
unfavorable and favorable outcomes, but payoffs in these outcomes vary more than with
gamble A.

If the utility-of-wealth function is concave (i.e., exhibits a diminishing marginal utility of wealth), then
this person will refuse fair bets. A 50–50 chance of winning or losing h dollars, for example, yields less
expected utility [EU(A)] than does refusing the bet. The reason for this is that winning h dollars means
less to this individual than does losing h dollars.

Utility

U(W)

EU(A) = U(CEA)
U(W0)

W0 – 2h W0 + 2hW0 + h W0 + hW0
CEA

EU(B)

Wealth (W)

9Technically, U(W ) is an indirect utility function because it is the consumption allowed by wealth that provides direct utility.
In Chapter 17 we will take up the relationship between consumption-based utility functions and their implied indirect utility of
wealth functions.

FIGURE 7.1

Utility of Wealth from
Two Fair Bets of
Differing Variability
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It is geometrically clear from the figure that10

UðW0Þ > EUðAÞ > EUðBÞ: (7.18)

Therefore, this person will prefer to keep his or her current wealth rather than taking
either fair gamble. If forced to choose a gamble, the person would prefer the smaller one
(A) to the large one (B). The reason for this is that winning a fair bet adds to enjoyment
less than losing hurts.

Risk aversion and insurance
As a matter of fact, this person might be willing to pay some amount to avoid participat-
ing in any gamble at all. Notice that a certain wealth of CEA provides the same expected
utility as does participating in gamble A. CEA is referred to as the certainty equivalent of
gamble A.

The individual would be willing to pay up to W0 % CEA to avoid participating in the
gamble. This explains why people buy insurance. They are giving up a small, certain
amount (the insurance premium) to avoid the risky outcome they are being insured
against. The premium a person pays for automobile collision insurance, for example, pro-
vides a policy that agrees to repair his or her car should an accident occur. The wide-
spread use of insurance would seem to imply that aversion to risk is prevalent.

In fact, the person in Figure 7.1 would pay even more to avoid taking the larger gam-
ble, B. As an exercise, try to identify the certainty equivalent CEB of gamble B and the
amount the person would pay to avoid gamble B on the figure. The analysis in this sec-
tion can be summarized by the following definition.

D E F I N I T I O N Risk aversion. An individual who always refuses fair bets is said to be risk averse. If individuals
exhibit a diminishing marginal utility of wealth, they will be risk averse. As a consequence, they will
be willing to pay something to avoid taking fair bets.

EXAMPLE 7.2 Willingness to Pay for Insurance

To illustrate the connection between risk aversion and insurance, consider a person with a
current wealth of $100,000 who faces the prospect of a 25 percent chance of losing his or her
$20,000 automobile through theft during the next year. Suppose also that this person’s von
Neumann–Morgenstern utility function is logarithmic; that is, U(W ) ¼ ln (W ).

If this person faces next year without insurance, expected utility will be

EUðno insuranceÞ ¼ 0:75Uð100,000Þ þ 0:25Uð80,000Þ
¼ 0:75 ln 100,000þ 0:25 ln 80,000

¼ 11:45714: (7.19)

In this situation, a fair insurance premium would be $5,000 (25 percent of $20,000, assuming
that the insurance company has only claim costs and that administrative costs are $0).

10Technically this result is a direct consequence of Jensen’s inequality in mathematical statistics. The inequality states that if x is
a random variable and f(x) is a strictly concave function of that variable, then E[ f (x)] < f [E(x)]. In the utility context, this
means that if utility is concave in a random variable measuring wealth (i.e., if U 0(W) > 0 and U 00(W) < 0), then the expected
utility of wealth will be less than the utility associated with the expected value of W. With gamble A, for example, EU(A) <
U(W0) because, as a fair gamble, A provides expected wealth W0.
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Measuring Risk Aversion
In the study of economic choices in risky situations, it is sometimes convenient to have a
quantitative measure of how averse to risk a person is. The most commonly used measure
of risk aversion was initially developed by J. W. Pratt in the 1960s.11 This risk aversion
measure, r(W ), is defined as

rðWÞ ¼ %U 00ðWÞ
U 0ðWÞ

: (7.24)

Because the distinguishing feature of risk-averse individuals is a diminishing marginal
utility of wealth [U 00(W) < 0], Pratt’s measure is positive in such cases. The measure is
invariant with respect to linear transformations of the utility function, and therefore not
affected by which particular von Neumann–Morgenstern ordering is used.

Risk aversion and insurance premiums
A useful feature of the Pratt measure of risk aversion is that it is proportional to the
amount an individual will pay for insurance against taking a fair bet. Suppose the win-
nings from such a fair bet are denoted by the random variable h (which takes on both

Consequently, if this person completely insures the car, his or her wealth will be $95,000 regard-
less of whether the car is stolen. In this case then,

EUðfair insuranceÞ ¼ Uð95,000Þ
¼ lnð95,000Þ
¼ 11:46163: (7.20)

This person is made better off by purchasing fair insurance. Indeed, he or she would be willing
to pay more than the fair premium for insurance. We can determine the maximum insurance
premium (x) by setting

EUðmaximum-premium insuranceÞ ¼ Uð100,000% xÞ
¼ lnð100,000% xÞ
¼ 11:45714: (7.21)

Solving this equation for x yields

100,000% x ¼ e11:45714; (7.22)

or

x ¼ 5,426: (7.23)

This person would be willing to pay up to $426 in administrative costs to an insurance company
(in addition to the $5,000 premium to cover the expected value of the loss). Even when these
costs are paid, this person is as well off as he or she would be when facing the world uninsured.

QUERY: Suppose utility had been linear in wealth. Would this person be willing to pay
anything more than the actuarially fair amount for insurance? How about the case where utility
is a convex function of wealth?

11J . W. Pratt, ‘‘Risk Aversion in the Small and in the Large,’’ Econometrica (January/April 1964): 122–36.
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positive and negative values). Because the bet is fair, E(h) ¼ 0. Now let p be the size of
the insurance premium that would make the individual exactly indifferent between taking
the fair bet h and paying p with certainty to avoid the gamble:

E½UðW þ hÞ' ¼ UðW % pÞ, (7.25)

where W is the individual’s current wealth. We now expand both sides of Equation 7.25
using Taylor’s series.12 Because p is a fixed amount, a linear approximation to the right
side of the equation will suffice:

UðW % pÞ ¼ UðWÞ % pU 0ðWÞ þ higher-order terms: (7.26)

For the left side, we need a quadratic approximation to allow for the variability in the
gamble, h:

E UðW þ hÞ½ ' ¼ E
"
UðWÞ þ hU 0ðWÞ þ h2

2
U 00ðWÞ þ higher-order terms

#
(7.27)

¼ UðWÞ þ EðhÞU 0ðWÞ þ Eðh2Þ
2

U 00ðWÞ þ higher-order terms. (7.28)

If we recall that E(h) ¼ 0 and then drop the higher-order terms and use the constant k to
represent E(h2)/2, we can equate Equations 7.26 and 7.28 as

UðWÞ % pU 0ðWÞ ffi UðWÞ % kU 00ðWÞ (7.29)

or

p ffi % kU 00ðWÞ
U 0ðWÞ

¼ krðWÞ: (7.30)

That is, the amount that a risk-averse individual is willing to pay to avoid a fair bet is
approximately proportional to Pratt’s risk aversion measure.13 Because insurance premi-
ums paid are observable in the real world, these are often used to estimate individuals’
risk aversion coefficients or to compare such coefficients among groups of individuals.
Therefore, it is possible to use market information to learn a bit about attitudes toward
risky situations.

Risk aversion and wealth
An important question is whether risk aversion increases or decreases with wealth. Intui-
tively, one might think that the willingness to pay to avoid a given fair bet would decrease
as wealth increases because decreasing marginal utility would make potential losses less
serious for high-wealth individuals. This intuitive answer is not necessarily correct, how-
ever, because decreasing marginal utility also makes the gains from winning gambles less
attractive. Thus, the net result is indeterminate; it all depends on the precise shape of the
utility function. Indeed, if utility is quadratic in wealth,

UðWÞ ¼ aþ bW þ cW2, (7.31)

12Taylor’s series provides a way of approximating any differentiable function around some point. If f (x) has derivatives of all
orders, it can be shown that f (x + h) ¼ f (x) + hf 0(x) + (h2/2)f 00(x) + higher-order terms. The point-slope formula in algebra is
a simple example of Taylor’s series.
13In this case, the factor of proportionality is also proportional to the variance of h because Var(h) ¼ E[h — E(h)]2 ¼ E(h2). For
an illustration where this equation fits exactly, see Example 7.3.
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where b > 0 and c < 0, then Pratt’s risk aversion measure is

rðWÞ ¼ %U 00ðWÞ
U 0ðWÞ

¼ %2c
bþ 2cW

, (7.32)

which, contrary to intuition, increases as wealth increases.
On the other hand, if utility is logarithmic in wealth,

UðWÞ ¼ lnðWÞ, (7.33)

then we have

rðWÞ ¼ %U 00ðWÞ
U 0ðWÞ

¼ 1
W

, (7.34)

which does indeed decrease as wealth increases.
The exponential utility function

UðWÞ ¼ %e%AW ¼ %expð%AWÞ (7.35)

(where A is a positive constant) exhibits constant absolute risk aversion over all ranges of
wealth because now

rðWÞ ¼ %U 00ðWÞ
U 0ðWÞ

¼ A2e%AW

Ae%AW
¼ A: (7.36)

This feature of the exponential utility function14 can be used to provide some numeri-
cal estimates of the willingness to pay to avoid gambles, as the next example shows.

EXAMPLE 7.3 Constant Risk Aversion

Suppose an individual whose initial wealth is W0 and whose utility function exhibits constant
absolute risk aversion is facing a 50–50 chance of winning or losing $1,000. How much ( f )
would he or she pay to avoid the risk? To find this value, we set the utility of W0 % f equal to
the expected utility from the gamble:

%exp½%AðW0 % f Þ' ¼ % 0:5 exp½%AðW0 þ 1,000Þ'
% 0:5 exp½%AðW0 % 1; 000Þ': (7.37)

Because the factor %exp(%AW0) is contained in all the terms in Equation 7.37, this may be di-
vided out, thereby showing that (for the exponential utility function) the willingness to pay to
avoid a given gamble is independent of initial wealth. The remaining terms

expðAf Þ ¼ 0:5 expð%1,000AÞ þ 0:5 expð1,000AÞ (7.38)

can now be used to solve for f for various values of A. If A ¼ 0.0001, then f ¼ 49.9; a person
with this degree of risk aversion would pay approximately $50 to avoid a fair bet of $1,000.
Alternatively, if A ¼ 0.0003, this more risk-averse person would pay f ¼ 147.8 to avoid the gam-
ble. Because intuition suggests that these values are not unreasonable, values of the risk aversion
parameter A in these ranges are sometimes used for empirical investigations.

Normally distributed risk. The constant risk aversion utility function can be combined with
the assumption that a person faces a random shock to his or her wealth that follows a Normal
distribution (see Chapter 2) to arrive at a particularly simple result. Specifically, if a person’s

14Because the exponential utility function exhibits constant (absolute) risk aversion, it is sometimes abbreviated by the term
CARA utility.
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Relative risk aversion
It seems unlikely that the willingness to pay to avoid a given gamble is independent of a
person’s wealth. A more appealing assumption may be that such willingness to pay is
inversely proportional to wealth and that the expression

rrðWÞ ¼WrðWÞ ¼ %WU 00ðWÞ
U 0ðWÞ

(7.41)

might be approximately constant. Following the terminology proposed by J. W. Pratt,16

the rr (W ) function defined in Equation 7.41 is a measure of relative risk aversion. The
power utility function

UðW, RÞ ¼ WR=R if R < 1, R 6¼ 0
lnW if R ¼ 0

!
(7.42)

risky wealth follows a Normal distribution with mean m and variance s2, then the probability
density function for wealth is given by f ðWÞ ¼ ð1=

ffiffiffiffiffi
2p
p
Þe%z2=2, where z ¼ [(W % m)/s]. If this

person has a utility function for wealth given by U(W) ¼ %e%AW, then expected utility from his
or her risky wealth is

E½UðWÞ' ¼
ð1

%1

UðWÞf ðWÞ dW ¼ 1ffiffiffiffiffi
2p
p

ð
%e%AWe%½ðW%lÞ=r'2=2 dW: (7.39)

Perhaps surprisingly, this integration is not too difficult to accomplish, although it does take
patience. Performing this integration and taking a variety of monotonic transformations of the
resulting expression yields the final result that

E½UðW Þ' ffi l% Ar2

2
: (7.40)

Hence expected utility is a linear function of the two parameters of the wealth probability den-
sity function, and the individual’s risk aversion parameter (A) determines the size of the negative
effect of variability on expected utility. For example, suppose a person has invested his or her
funds so that wealth has an expected value of $100,000 but a standard deviation (s) of $10,000.
Therefore, with the Normal distribution, he or she might expect wealth to decrease below
$83,500 about 5 percent of the time and increase above $116,500 a similar fraction of the time.
With these parameters, expected utility is given by E[U(W )] ¼ 100,000 % (A/2)(10,000)2. If A ¼
0.0001 ¼ 10%4, expected utility is given by 100,000 % 0.5 ( 10%4 ( (104)2 ¼ 95,000. Hence this
person receives the same utility from his or her risky wealth as would be obtained from a certain
wealth of $95,000. A more risk-averse person might have A ¼ 0.0003, and in this case the
certainty equivalent of his or her wealth would be $85,000.

QUERY: Suppose this person had two ways to invest his or her wealth: Allocation 1, m1 ¼
107,000 and s1 ¼ 10,000; Allocation 2, m2 ¼ 102,000 and s2 ¼ 2,000. How would this person’s
attitude toward risk affect his or her choice between these allocations?15

15This numerical example (roughly) approximates historical data on real returns of stocks and bonds, respectively, although the
calculations are illustrative only.
16Pratt, ‘‘Risk Aversion.’’
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exhibits diminishing absolute risk aversion,

rðWÞ ¼ %U 00ðWÞ
U 0ðWÞ

¼ % ðR% 1ÞWR%2

WR%1 ¼ 1% R
W

, (7.43)

but constant relative risk aversion:17

rrðWÞ ¼WrðWÞ ¼ 1% R: (7.44)

Empirical evidence is generally consistent with values of R in the range of %3 to %1.
Hence individuals seem to be somewhat more risk averse than is implied by the logarith-
mic utility function, although in many applications that function provides a reasonable
approximation. It is useful to note that the constant relative risk aversion utility function
in Equation 7.42 has the same form as the general CES utility function we first described
in Chapter 3. This provides some geometric intuition about the nature of risk aversion
that we will explore later in this chapter.

EXAMPLE 7.4 Constant Relative Risk Aversion

An individual whose behavior is characterized by a constant relative risk aversion utility
function will be concerned about proportional gains or loss of wealth. Therefore, we can ask
what fraction of initial wealth ( f ) such a person would be willing to give up to avoid a fair
gamble of, say, 10 percent of initial wealth. First, we assume R ¼ 0, so the logarithmic utility
function is appropriate. Setting the utility of this individual’s certain remaining wealth equal to
the expected utility of the 10 percent gamble yields

ln½ð1% f ÞW0' ¼ 0:5 ln ð1:1W0Þ þ 0:5 ln ð0:9W0Þ: (7.45)

Because each term contains ln W0, initial wealth can be eliminated from this expression:

lnð1% f Þ ¼ 0:5½lnð1:1Þ þ lnð0:9Þ' ¼ ln ð0:99Þ0:5;

hence

ð1% f Þ ¼ ð0:99Þ0:5 ¼ 0:995

and

f ¼ 0:005: (7.46)

Thus, this person will sacrifice up to 0.5 percent of wealth to avoid the 10 percent gamble. A
similar calculation can be used for the case R ¼ %2 to yield

f ¼ 0:015: (7.47)

Hence this more risk-averse person would be willing to give up 1.5 percent of his or her initial
wealth to avoid a 10 percent gamble.

QUERY: With the constant relative risk aversion function, how does this person’s willingness to
pay to avoid a given absolute gamble (say, of 1,000) depend on his or her initial wealth?

17Some authors write the utility function in Equation 7.42 as U(W) ¼ W1 % a/(1 % a) and seek to measure a ¼ 1 % R. In this
case, a is the relative risk aversion measure. The constant relative risk aversion function is sometimes abbreviated as CRRA
utility.
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Methods for Reducing
Uncertainty and Risk
We have seen that risk-averse people will avoid gambles and other risky situations if pos-
sible. Often it is impossible to avoid risk entirely. Walking across the street involves some
risk of harm. Burying one’s wealth in the backyard is not a perfectly safe investment strat-
egy because there is still some risk of theft (to say nothing of inflation). Our analysis thus
far implies that people would be willing to pay something to at least reduce these risks if
they cannot be avoided entirely. In the next four sections, we will study each of four dif-
ferent methods that individuals can take to mitigate the problem of risk and uncertainty:
insurance, diversification, flexibility, and information.

Insurance
We have already discussed one such strategy: buying insurance. Risk-averse people would
pay a premium to have the insurance company cover the risk of loss. Each year, people
in the United States spend more than half a trillion dollars on insurance of all types. Most
commonly, they buy coverage for their own life, for their home and cars, and for their
health care costs. But insurance can be bought (perhaps at a high price) for practically
any risk imaginable, ranging from earthquake insurance for a house along a fault line to
special coverage for a surgeon against a hand injury.

A risk-averse person would always want to buy fair insurance to cover any risk he or
she faces. No insurance company could afford to stay in business if it offered fair insur-
ance (in the sense that the premium exactly equals the expected payout for claims).
Besides covering claims, insurance companies must also maintain records, collect pre-
miums, investigate fraud, and perhaps return a profit to shareholders. Hence an insur-
ance customer can always expect to pay more than an actuarially fair premium. If
people are sufficiently risk averse, they will even buy unfair insurance, as shown in
Example 7.2; the more risk averse they are, the higher the premium they would be will-
ing to pay.

Several factors make insurance difficult or impossible to provide. Large-scale disasters
such as hurricanes and wars may result in such large losses that the insurance company
would go bankrupt before it could pay all the claims. Rare and unpredictable events (e.g.,
war, nuclear power plant accidents) offer reliable track record for insurance companies to
establish premiums. Two other reasons for absence of insurance coverage relate to the
informational disadvantage the company may have relative to the customer. In some
cases, the individual may know more about the likelihood that they will suffer a loss than
the insurance company. Only the ‘‘worst’’ customers (those who expect larger or more
likely losses) may end up buying an insurance policy. This adverse selection problem may
unravel the whole insurance market unless the company can find a way to control who
buys (through some sort of screening or compulsion). Another problem is that having in-
surance may make customers less willing to take steps to avoid losses, for example, driv-
ing more recklessly with auto insurance or eating fatty foods and smoking with health
insurance. This so-called moral hazard problem again may impair the insurance market
unless the insurance company can find a way to cheaply monitor customer behavior. We
will discuss the adverse selection and moral hazard problems in more detail in Chapter
18, and discuss ways the insurance company can combat these problems, which besides
the above strategies include offering only partial insurance and requiring the payment of
deductibles and copayments.

222 Part 3: Uncertainty and Strategy



Diversification
A second way for risk-averse individuals to reduce risk is by diversifying. This is the eco-
nomic principle behind the adage, ‘‘Don’t put all your eggs in one basket.’’ By suitably
spreading risk around, it may be possible to reduce the variability of an outcome without
lowering the expected payoff.

The most familiar setting in which diversification comes up is in investing. Investors
are routinely advised to ‘‘diversify your portfolio.’’ To understand the wisdom behind this
advice, consider an example in which a person has wealth W to invest. This money can
be invested in two independent risky assets, 1 and 2, which have equal expected values
(the mean returns are m1 ¼ m2) and equal variances (the variances are r2

1 ¼ r2
2). A person

whose undiversified portfolio, UP, includes just one of the assets (putting all his or her
‘‘eggs’’ in that ‘‘basket’’) would earn an expected return of mUP ¼ m1 ¼ m2 and would face
a variance of r2

UP ¼ r2
1 ¼ r2

2.
Suppose instead the individual chooses a diversified portfolio, DP. Let a1 be the frac-

tion invested in the first asset and a2 ¼ 1 % a1 in the second. We will see that the person
can do better than the undiversified portfolio in the sense of getting a lower variance
without changing the expected return. The expected return on the diversified portfolio
does not depend on the allocation across assets and is the same as for either asset alone:

lDP ¼ a1l1 þ ð1% a1Þl2 ¼ l1 ¼ l2: (7.48)

To see this, refer back to the rules for computed expected values from Chapter 2. The
variance will depend on the allocation between the two assets:

r2
DP ¼ a2

1r
2
1 þ ð1% a1Þ2r2

2 ¼ ð1% 2a1 þ 2a2
1Þr

2
1: (7.49)

This calculation again can be understood by reviewing the section on variances in Chap-
ter 2. There you will be able to review the two ‘‘facts’’ used in this calculation: First, the
variance of a constant times a random variable is that constant squared times the var-
iance of a random variable; second, the variance of independent random variables,
because their covariance is 0, equals the sum of the variances.

Choosing a1 to minimize Equation 7.49 yields a1 ¼ 1
2 and r2

DP ¼
r2
1
2 . Therefore, the

optimal portfolio spreads wealth equally between the two assets, maintaining the same
expected return as an undiversified portfolio but reducing variance by half. Diversifica-
tion works here because the assets’ returns are independent. When one return is low,
there is a chance the other will be high, and vice versa. Thus, the extreme returns are bal-
anced out at least some of the time, reducing the overall variance. Diversification will
work in this way as long as there is not perfect correlation in the asset returns so that they
are not effectively the same asset. The less correlated the assets are, the better diversifica-
tion will work to reduce the variance of the overall portfolio.

The example, constructed to highlight the benefits of diversification as simply as possi-
ble, has the artificial element that asset returns were assumed to be equal. Diversification
was a ‘‘free lunch’’ in that the variance of the portfolio could be reduced without reducing
the expected return compared with an undiversified portfolio. If the expected return from
one of the assets (say, asset 1) is higher than the other, then diversification into the other
asset would no longer be a ‘‘free lunch’’ but would result in a lower expected return. Still,
the benefits from risk reduction can be great enough that a risk-averse investor would be
willing to put some share of wealth into the asset with the lower expected return. A prac-
tical example of this idea is related to advice one would give to an employee of a firm
with a stock purchase plan. Even if the plan allows employees to buy shares of the com-
pany’s stock at a generous discount compared with the market, the employee may still be
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advised not to invest all savings in that stock because otherwise the employee’s entire sav-
ings, to say nothing of his or her salary and perhaps even house value (to the extent
house values depend on the strength of businesses in the local economy), is tied to the
fortunes of a single company, generating a tremendous amount of risk.

The Extensions provide a much more general analysis of the problem of choosing the
optimal portfolio. However, the principle of diversification applies to a much broader range
of situations than financial markets. For example, students who are uncertain about where
their interests lie or about what skills will be useful on the job market are well advised to
register for a diverse set of classes rather than exclusively technical or artistic ones.

Flexibility
Diversification is a useful method to reduce risk for a person who can divide up a deci-
sion by allocating small amounts of a larger sum among a number of different choices. In
some situations, a decision cannot be divided; it is all or nothing. For example, in shop-
ping for a car, a consumer cannot combine the attributes that he or she likes from one
model (say, fuel efficiency) with those of another (say, horsepower or power windows) by
buying half of each; cars are sold as a unit. With all-or-nothing decisions, the decision-
maker can obtain some of the benefit of diversification by making flexible decisions. Flex-
ibility allows the person to adjust the initial decision, depending on how the future
unfolds. The more uncertain the future, the more valuable this flexibility. Flexibility keeps
the decision-maker from being tied to one course of action and instead provides a num-
ber of options. The decision-maker can choose the best option to suit later circumstances.

A good example of the value of flexibility comes from considering the fuels on which
cars are designed to run. Until now, most cars were limited in how much biofuel (such as
ethanol made from crops) could be combined with petroleum products (such as gasoline
or diesel) in the fuel mix. A purchaser of such a car would have difficulties if govern-
ments passed new regulations increasing the ratio of ethanol in car fuels or banning pe-
troleum products entirely. New cars have been designed that can burn ethanol
exclusively, but such cars are not useful if current conditions continue to prevail because
most filling stations do not sell fuel with high concentrations of ethanol. A third type of
car has internal components that can handle a variety of types of fuel, both petroleum-
based and ethanol, and any proportions of the two. Such cars are expensive to build
because of the specialized components involved, but a consumer might pay the additional
expense anyway because the car would be useful whether or not biofuels become more
important over the life of the car.18

Types of options
The ability of ‘‘flexible-fuel’’ cars to be able to burn any mix of petroleum-based fuels and
biofuels is valuable because it provides the owner with more options relative to a car that
can run on only one type of fuel. Readers are probably familiar with the notion that options
are valuable from another context where the term is frequently used—financial markets—
where one hears about stock options and other forms of options contracts. There is a close
connection between the option implicit in the flexible-fuel cars and these option contracts
that we will investigate in more detail. Before discussing the similarities between the options
arising in different contexts, we introduce some terms to distinguish them.

18While the current generation of flexible-fuel cars involve state-of-the-art technology, the first such car, produced back in
1908, was Henry Ford’s Model-T, one of the top-selling cars of all time. The availability of cheap gasoline may have swung the
market toward competitors’ single-fuel cars, spelling the demise of the Model-T. For more on the history of this model, see
L. Brooke, Ford Model T: The Car That Put the World on Wheels (Minneapolis: Motorbooks, 2008).
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The flexible-fuel car can be viewed as an ordinary car combined with an additional
real option to burn biofuels if those become more important in the future.

Financial option contracts come in a variety of forms, some of which can be complex.
There are also many different types of real options, and they arise in many different set-
tings, sometimes making it difficult to determine exactly what sort of option is embedded
in the situation. Still, all options share three fundamental attributes. First, they specify the
underlying transaction, whether it is a stock to be traded or a car or fuel to be purchased.
Second, they specify a period over which the option may be exercised. A stock option
may specify a period of 1 year, for example. The option embedded in a flexible-fuel car
preserves the owner’s option during the operating life of the car. The longer the period
over which the option extends, the more valuable it is because the more uncertainty that
can be resolved during this period. Third, the option contract specifies a price. A stock
option might sell for a price of $70. If this option is later traded on an exchange, its price
might vary from moment to moment as the markets move. Real options do not tend to
have explicit prices, but sometimes implicit prices can be calculated. For example, if a
flexible-fuel car costs $5,000 more than an otherwise equivalent car that burns one type
of fuel, then this $5,000 could be viewed as the option price.

Model of real options
Let x embody all the uncertainty in the economic environment. In the case of the flexi-
ble-fuel car, x might reflect the price of fossil fuels relative to biofuels or the stringency of
government regulation of fossil fuels. In terms of the section on statistics in Chapter 2, x
is a random variable (sometimes referred to as the ‘‘state of the world’’) that can take on
possibly many different values. The individual has some number, I ¼ 1, … , n, of choices
currently available. Let Ai (x) be the payoffs provided by choice i, where the argument (x)
allows each choice to provide a different pattern of returns depending on how the future
turns out.

Figure 7.2a illustrates the case of two choices. The first choice provides a decreasing
payoff as x increases, indicated by the downward slope of A1. This might correspond to
ownership of a car that runs only on fossil fuels; as biofuels become more important than
fossil fuels, the value of a car burning only fossil fuels decreases. The second choice pro-
vides an increasing payoff, perhaps corresponding to ownership of a car that runs only
on biofuels. Figure 7.2b translates the payoffs into (von Neumann–Morgenstern) utilities
that the person obtains from the payoffs by graphing U(Ai) rather than Ai. The bend
introduced in moving from payoffs to utilities reflects the diminishing marginal utility
from higher payoffs for a risk-averse person.

If the person does not have the flexibility provided by a real option, he or she must
make the choice before observing how the state x turns out. The individual should
choose the single alternative that is best on average. His or her expected utility from
this choice is

maxfE½UðA1Þ', . . . , E½UðAnÞ'g: (7.50)

D E F I N I T I O N Financial option contract. A financial option contract offers the right, but not the obligation, to
buy or sell an asset (such as a share of stock) during some future period at a certain price.

D E F I N I T I O N Real option. A real option is an option arising in a setting outside of financial markets.
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Figure 7.2 does not provide enough information to judge which expected utility is higher
because we do not know the likelihoods of the different x’s, but if the x’s are about
equally likely, then it looks as though the individual would choose the second alternative,
providing higher utility over a larger range. The individual’s expected utility from this
choice is E[U(A2)].

On the other hand, if the real option can be preserved to make a choice that responds
to which state of the world x has occurred, the person will be better off. In the car appli-
cation, the real option could correspond to buying a flexible-fuel car, which does not lock
the buyer into one fuel but allows the choice of whatever fuel turns out to be most com-
mon or inexpensive over the life of the car. In Figure 7.2, rather than choosing a single al-
ternative, the person would choose the first option if x < x 0 and the second option if
x > x 0. The utility provided by this strategy is given by the bold curve, which is the
‘‘upper envelope’’ of the curves for the individual options. With a general number (n) of
choices, expected utility from this upper envelope of individual options is

Efmax½UðA1Þ, . . . , UðA1Þ'g: (7.51)

The expected utility in Equation 7.51 is higher than in 7.50. This may not be obvious at
first glance because it seems that simply swapping the order of the expectations and
‘‘max’’ operators should not make a difference. But indeed it does. Whereas Equation
7.50 is the expected utility associated with the best single utility curve, Equation 7.51 is
the expected utility associated with the upper envelope of all the utility curves.19

Panel (a) shows the payoffs and panel (b) shows the utilities provided by two alternatives across states of
the world (x). If the decision has to be made upfront, the individual chooses the single curve having the
highest expected utility. If the real option to make either decision can be preserved until later, the
individual can obtain the expected utility of the upper envelope of the curves, shown in bold.

Payo!

State xx ′

A1

A2

Utility

State xx ′

U(A2)

U(A1)

(a) Payo!s from alternatives (b) Utilities from alternatives

19The result can be proved formally using Jensen’s inequality, introduced in footnote 10. The footnote discusses the implications
of Jensen’s inequality for concave functions: E[ f (x)] ) f [E(x)]. Jensen’s inequality has the reverse implication for convex func-
tions: E[ f (x)] + f [E(x)]. In other words, for convex functions, the result is greater if the expectations operator is applied out-
side of the function than if the order of the two is reversed. In the options context, the ‘‘max’’ operator has the properties of a
convex function. This can be seen from Figure 7.2b, where taking the upper envelope ‘‘convexifies’’ the individual curves, turn-
ing them into more of a V-shape.

FIGURE 7.2

The Nature of a Real
Option
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More options are better (generally)
Adding more options can never harm an individual decision-maker (as long as he or she
is not charged for them) because the extra options can always be ignored. This is the
essence of options: They give the holder the right—but not the obligation—to choose
them. Figure 7.3 illustrates this point, showing the effect of adding a third option to the
two drawn in Figure 7.2. In the first panel, the person strictly benefits from the third
option because there are some states of the world (the highest values of x in the figure)
for which it is better than any other alternative, shifting the upper envelope of utilities
(the bold curve) up. The third option is worthless in the second panel. Although the third
option is not the worst option for many states of the world, it is never the best and so
does not improve the upper envelope of utilities relative to Figure 7.2. Still, the addition
of the third option is not harmful.

This insight may no longer hold in a strategic setting with multiple decision-makers.
In a strategic setting, economic actors may benefit from having some of their options
cut off. This may allow a player to commit to a narrower course of action that he or she
would not have chosen otherwise, and this commitment may affect the actions of other
parties, possibly to the benefit of the party making the commitment. A famous illustra-
tion of this point is provided in one of the earliest treatises on military strategy, by Sun
Tzu, a Chinese general writing in 400 BC. It seems crazy for an army to destroy all
means of retreat, burning bridges behind itself and sinking its own ships, among other
measures. Yet this is what Sun Tzu advocated as a military tactic. If the second army
observes that the first cannot retreat and will fight to the death, it may retreat itself
before engaging the first. We will analyze such strategic issues more formally in the next
chapter on game theory.

Computing option value
We can push the analysis further to derive a mathematical expression for the value of a
real option. Let F be the fee that has to be paid for the ability to choose the best

The addition of a third alternative to the two drawn in Figure 7.2 is valuable in (a) because it shifts the
upper envelope (shown in bold) of utilities up. The new alternative is worthless in (b) because it does not
shift the upper envelope, but the individual is not worse off for having it.

Utility

State x

(a) Additional valuable option

U(A1) U(A1)

U(A2) U(A2)

U(A3)

U(A3)

Utility

State x

(b) Additional worthless option

FIGURE 7.3

More Options Cannot
Make the Individual
Decision-Maker Worse
Off
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alternative after x has been realized instead of before. The individual would be willing to
pay the fee as long as

Efmax ½UðA1ðxÞ % FÞ, . . . , ½UðAnðxÞ % FÞ'g + maxfE½UðA1ðxÞÞ', . . . , E½UðAnðxÞÞ'g:
(7.52)

The right side is the expected utility from making the choice beforehand, repeated from
Equation 7.50. The left side allows for the choice to be made after x has occurred, a bene-
fit, but subtracts the fee for option from every payoff. The fee is naturally assumed to be
paid up front, and thus reduces wealth by F whichever option is chosen later. The real
option’s value is the highest F for which Equation 7.52 is still satisfied, which of course is
the F for which the condition holds with equality.

EXAMPLE 7.5 Value of a Flexible-Fuel Car

Let’s work out the option value provided by a flexible-fuel car in a numerical example. Let A1(x)
¼ 1 % x be the payoff from a fossil-fuel–only car and A2(x) ¼ x be the payoff from a biofuel-
only car. The state of the world, x, reflects the relative importance of biofuels compared with
fossil fuels over the car’s lifespan. Assume x is a random variable that is uniformly distributed
between 0 and 1 (the simplest continuous random variable to work with here). The statistics
section in Chapter 2 provides some detail on the uniform distribution, showing that the
probability density function (PDF) is f (x) ¼ 1 in the special case when the uniform random
variable ranges between 0 and 1.

Risk neutrality. To make the calculations as easy as possible to start, suppose first that the car
buyer is risk neutral, obtaining a utility level equal to the payoff level. Suppose the buyer is
forced to choose a biofuel car. This provides an expected utility of

E½A2' ¼
ð1

0
A2ðxÞf ðxÞ dx ¼

ð1

0
x dx ¼ x2

2

&&&&
x¼1

x¼0
¼ 1

2
, (7.53)

where the integral simplifies because f (x) ¼ 1. Similar calculations show that the expected utility
from buying a fossil-fuel car is also 1/2. Therefore, if only single-fuel cars are available, the per-
son is indifferent between them, obtaining expected utility 1/2 from either.

Now suppose that a flexible-fuel car is available, which allows the buyer to obtain either
A1(x) or A2(x), whichever is higher under the latter circumstances. The buyer’s expected utility
from this car is

E½maxðA1, A2Þ' ¼
ð1

0
maxð1% x, xÞ f ðxÞ dx ¼

ð1
2

0
ð1% xÞ dx þ

ð1

1
2

x dx

¼ 2
ð1

1
2

x dx ¼ x2
&&x¼1
x¼1

2
¼ 3

4
.

(7.54)

The second line in Equation 7.54 follows from the fact that the two integrals in the preceding
expression are symmetric. Because the buyer’s utility exactly equals the payoffs, we can compute
the option value of the flexible-fuel car directly by taking the difference between the expected
payoffs in Equations 7.53 and 7.54, which equals 1/4. This is the maximum premium the person
would pay for the flexible-fuel car over a single-fuel car. Scaling payoffs to more realistic levels
by multiplying by, say, $10,000, the price premium (and the option value) of the flexible-fuel car
would be $2,500.

This calculation demonstrates the general insight that options are a way of dealing with
uncertainty that have value even for risk-neutral individuals. The next part of the example
investigates whether risk aversion makes options more or less valuable.
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Risk aversion. Now suppose the buyer is risk averse, having von Neumann–Morgenstern
utility function UðxÞ ¼

ffiffiffi
x
p

. The buyer’s expected utility from a biofuel car is
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ffiffiffiffiffiffiffiffiffiffiffiffi
A2ðxÞ

p
f ðxÞ dx ¼

ð1

0
x
1
2 dx ¼ 2

3
x
3
2

&&&&
x¼1

x¼0
¼ 2

3
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which is the same as from a fossil-fuel car, as similar calculations show. Therefore, a single-fuel
car of whatever type provides an expected utility of 2/3.

The expected utility from a flexible-fuel car that costs F more than a single-fuel car is
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FIGURE 7.47Graphical Method for Computing the Premium for a Flexible-Fuel Car

To find the maximum premium F that the risk-averse buyer would be willing to pay for the flexible-fuel
car, we plot the expected utility from a single-fuel car from Equation 7.55 and from the flexible-fuel car
from Equation 7.56 and see the value of F where the curves cross.
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Option value of delay
Society seems to frown on procrastinators. ‘‘Do not put off to tomorrow what you can do
today’’ is a familiar maxim. Yet the existence of real options suggests a possible value in
procrastination. There may be a value in delaying big decisions—such as the purchase of
a car—that are not easily reversed later. Delaying these big decisions allows the decision-
maker to preserve option value and gather more information about the future. To the
outside observer, who may not understand all the uncertainties involved in the situation,
it may appear that the decision-maker is too inert, failing to make what looks to be the
right decision at the time. In fact, delaying may be exactly the right choice to make in the
face of uncertainty. Choosing one course of action rules out other courses later. Delay
preserves options. If circumstances continue to be favorable or become even more so, the
action can still be taken later. But if the future changes and the action is unsuitable, the
decision-maker may have saved a lot of trouble by not making it.

The value of delay can be seen by returning to the car application. Suppose for the
sake of this example that only single-fuel cars (of either type, fossil fuel or biofuel) are
available on the market; flexible-fuel cars have not yet been invented. Even if circum-
stances start to favor the biofuel car, with the number of filling stations appearing to tip
toward offering biofuels, the buyer may want to hold off buying a car until he or she is
more sure. This may be true even if the buyer is forgoing considerable consumer surplus
from the use of a new car during the period of delay. The problem is that if biofuels do
not end up taking over the market, the buyer may be left with a car that is hard to fuel
up and hard to trade in for a car burning the other fuel type. The buyer would be willing
to experience delay costs up to F to preserve flexibility.

The value of delay hinges on the irreversibility of the underlying decision. If in the car
example the buyer manufacturer could recover close to the purchase price by selling it on
the used-car market, there would be no reason to delay purchasing. But it is well known
that the value of a new car decreases precipitously once it is driven off the car lot (we will
discuss reasons for this including the ‘‘lemons effect’’ in Chapter 18); therefore, it may
not be so easy to reverse the purchase of a car.

The calculations involved in Equation 7.56 are somewhat involved and thus require some dis-
cussion. The second line relies on the symmetry of the two integrals appearing there, which
allows us to collapse them into two times the value of one of them, and we chose the simpler of
the two for these purposes. The third line uses the change of variables u ¼ x % F to simplify the
integral. (See Equation 2.135 in Chapter 2 for another example of the change-of-variables trick
and further discussion.)

To find the maximum premium the buyer would pay for a flexible-fuel car, we can set
Equations 7.55 and 7.56 equal and solve for F. Unfortunately the resulting equation is too
complicated to be solved analytically. One simple approach is to graph the last line of Equation
7.56 for a range of values of F and eyeball where the graph hits the required value of 2/3 from
Equation 7.55. This is done in Figure 7.4, where we see that this value of F is slightly less than
0.3 (0.294 to be more precise). Therefore, the risk-averse buyer is willing to pay a premium of
0.294 for the flexible-fuel car, which is also the option value of this type of car. Scaling up by
$10,000 for more realistic monetary values, the price premium would be $2,940. This is $440
more than the risk-neutral buyer was willing to pay. Thus, the option value is greater in this
case for the risk-averse buyer.

QUERY: Does risk aversion always increase option value? If so, explain why. If not, modify the
example with different shapes to the payoff functions to provide an example where the risk-
neutral buyer would pay more.
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Implications for cost–benefit analysis
To an outside observer, delay may seem like a symptom of irrationality or ignorance.
Why is the decision-maker overlooking an opportunity to take a beneficial action? The
chapter has now provided several reasons why a rational decision-maker might not want
to pursue an action even though the expected benefits from the action outweigh the
expected costs. First, a risk-averse individual might avoid a gamble even if it provided a
positive expected monetary payoff (because of the decreasing marginal utility from
money). And option value provides a further reason for the action not to be undertaken:
The decision-maker might be delaying until he or she has more certainty about the
potential results of the decision.

Many of us have come across the cost–benefit rule, which says that an action should be
taken if anticipated costs are less than benefits. This is generally a sensible rule, providing
the correct course of action in simple settings without uncertainty. One must be more
careful in applying the rule in settings involving uncertainty. The correct decision rule is
more complicated because it should account for risk preferences (by converting payoffs
into utilities) and for the option value of delay, if present. Failure to apply the simple
cost–benefit rule in settings with uncertainty may indicate sophistication rather than irra-
tionality.20

Information
The fourth method of reducing the uncertainty involved in a situation is to acquire better
information about the likely outcome that will arise. We have already considered a ver-
sion of this in the previous section, where we considered the strategy of preserving
options while delaying a decision until better information is received. Delay involved
some costs, which can be thought of as a sort of ‘‘purchase price’’ for the information
acquired. Here, we will be more direct in considering information as a good that can be
purchased directly and analyze in greater detail why and how much individuals are will-
ing to pay for it.

Information as a good
By now it should be clear to the reader that information is a valuable economic resource.
We have seen an example already: A buyer can make a better decision about which type
of car to buy if he or she has better information about the sort of fuels that will be readily
available during the life of the car. But the examples do not end there. Shoppers who
know where to buy high-quality goods cheaply can make their budgets stretch further
than those who do not; doctors can provide better medical care if they are up to date on
the latest scientific research.

The study of information economics has become one of the major areas in current
research. Several challenges are involved. Unlike the consumer goods we have been study-
ing thus far, information is difficult to quantify. Even if it could be quantified, informa-
tion has some technical properties that make it an unusual sort of good. Most
information is durable and retains value after it has been used. Unlike a hot dog, which is
consumed only once, knowledge of a special sale can be used not only by the person who

20Economists are puzzled by consumers’ reluctance to install efficient appliances even though the savings on energy bills are
likely to defray the appliances’ purchase price before long. An explanation from behavioral economics is that consumers are too
ignorant to perform the cost–benefit calculations or are too impatient to wait for the energy savings to accumulate. K. Hassett
and G. Metcalf, in ‘‘Energy Conservation Investment: Do Consumers Discount the Future Correctly?’’ Energy Policy (June
1993): 710–16, suggest that consumer inertia may be rational delay in the face of fluctuating energy prices. See Problem 7.9 for
a related numerical example.
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discovers it but also by anyone else with whom the information is shared. The friends
then may gain from this information even though they do not have to spend anything to
obtain it. Indeed, in a special case of this situation, information has the characteristic of a
pure public good (see Chapter 19). That is, the information is both nonrival, in that others
may use it at zero cost, and nonexclusive, in that no individual can prevent others from
using the information. The classic example of these properties is a new scientific discov-
ery. When some prehistoric people invented the wheel, others could use it without
detracting from the value of the discovery, and everyone who saw the wheel could copy it
freely. Information is also difficult to sell because the act of describing the good that is
being offered to a potential consumer gives it away to them.

These technical properties of information imply that market mechanisms may often
operate imperfectly in allocating resources to information provision and acquisition. Af-
ter all, why invest in the production of information when one can just acquire it from
others at no cost? Therefore, standard models of supply and demand may be of relatively
limited use in understanding such activities. At a minimum, models have to be developed
that accurately reflect the properties being assumed about the informational environment.
Throughout the latter portions of this book, we will describe some of the situations in
which such models are called for. Here, however, we will pay relatively little attention to
supply–demand equilibria and will instead focus on an example that illustrates the value
of information in helping individuals make choices under uncertainty.

Quantifying the value of information
We already have all the tools needed to quantify the value of information from the sec-
tion on option values. Suppose again that the individual is uncertain about what the state
of the world (x) will be in the future. He or she needs to make one of n choices today
(this allows us to put aside the option value of delay and other issues we have already
studied). As before, Ai(x) represents the payoffs provided by choice i. Now reinterpret F
as the fee charged to be told the exact value that x will take on in the future (perhaps this
is the salary of the economist hired to make such forecasts).

The same calculations from the option section can be used here to show that the maxi-
mum such F is again the value for which Equation 7.52 holds with equality. Just as this
was the value of the real option in that section, here it is the value of information. The
value of information would be lower than this F if the forecast of future conditions were
imperfect rather than perfect as assumed here. Other factors affecting an individual’s
value of information include the extent of uncertainty before acquiring the information,
the number of options he or she can choose between, and his or her risk preferences. The
more uncertainty resolved by the new information, the more valuable it is, of course. If
the individual does not have much scope to respond to the information because of having
only a limited range of choices to make, the information will not be valuable. The degree
of risk aversion has ambiguous effects on the value of information (answering the Query
in Example 7.5 will provide you with some idea why).

The State-Preference Approach to
Choice Under Uncertainty
Although our analysis in this chapter has offered insights on a number of issues, it seems
rather different from the approach we took in other chapters. The basic model of utility
maximization subject to a budget constraint seems to have been lost. To make further
progress in the study of behavior under uncertainty, we will develop some new
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techniques that will permit us to bring the discussion of such behavior back into the
standard choice-theoretic framework.

States of the world and contingent commodities
We start by pushing a bit further on an idea already mentioned, thinking about an uncer-
tain future in term of states of the world. We cannot predict exactly what will happen,
say, tomorrow, but we assume that it is possible to categorize all the possible things that
might happen into a fixed number of well-defined states. For example, we might make
the crude approximation of saying that the world will be in only one of two possible
states tomorrow: It will be either ‘‘good times’’ or ‘‘bad times.’’ One could make a much
finer gradation of states of the world (involving even millions of possible states), but most
of the essentials of the theory can be developed using only two states.

A conceptual idea that can be developed concurrently with the notion of states of the
world is that of contingent commodities. These are goods delivered only if a particular
state of the world occurs. As an example, ‘‘$1 in good times’’ is a contingent commodity
that promises the individual $1 in good times but nothing should tomorrow turn out to
be bad times. It is even possible, by stretching one’s intuitive ability somewhat, to con-
ceive of being able to purchase this commodity: I might be able to buy from someone the
promise of $1 if tomorrow turns out to be good times. Because tomorrow could be bad,
this good will probably sell for less than $1. If someone were also willing to sell me the
contingent commodity ‘‘$1 in bad times,’’ then I could assure myself of having $1 tomor-
row by buying the two contingent commodities ‘‘$1 in good times’’ and ‘‘$1 in bad
times.’’

Utility analysis
Examining utility-maximizing choices among contingent commodities proceeds formally
in much the same way we analyzed choices previously. The principal difference is that, af-
ter the fact, a person will have obtained only one contingent good (depending on whether
it turns out to be good or bad times). Before the uncertainty is resolved, however, the
individual has two contingent goods from which to choose and will probably buy some
of each because he or she does not know which state will occur. We denote these two
contingent goods by Wg (wealth in good times) and Wb (wealth in bad times). Assuming
that utility is independent of which state occurs21 and that this individual believes that
good times will occur with probability p, the expected utility associated with these two
contingent goods is

VðWg , WbÞ ¼ pUðWgÞ þ ð1% pÞUðWbÞ: (7.57)

This is the magnitude this individual seeks to maximize given his or her initial wealth, W.

Prices of contingent commodities
Assuming that this person can purchase $1 of wealth in good times for pg and $1 of
wealth in bad times for pb, his or her budget constraint is then

W ¼ pgWg þ pbWb: (7.58)

The price ratio pg /pb shows how this person can trade dollars of wealth in good times for
dollars in bad times. If, for example, pg ¼ 0.80 and pb ¼ 0.20, the sacrifice of $1 of wealth

21This assumption is untenable in circumstances where utility of wealth depends on the state of the world. For example, the utility
provided by a given level of wealth may differ depending on whether an individual is ‘‘sick’’ or ‘‘healthy.’’ We will not pursue such
complications here, however. For most of our analysis, utility is assumed to be concave in wealth: U 0(W) > 0, U 00(W) < 0.
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in good times would permit this person to buy contingent claims yielding $4 of wealth
should times turn out to be bad. Whether such a trade would improve utility will, of
course, depend on the specifics of the situation. But looking at problems involving uncer-
tainty as situations in which various contingent claims are traded is the key insight
offered by the state-preference model.

Fair markets for contingent goods
If markets for contingent wealth claims are well developed and there is general agreement
about the likelihood of good times (p), then prices for these claims will be actuarially
fair—that is, they will equal the underlying probabilities:

pg ¼ p,

pb ¼ 1% p:
(7.59)

Hence the price ratio pg /pb will simply reflect the odds in favor of good times:

pg
pb
¼ p

1% p
: (7.60)

In our previous example, if pg ¼ p ¼ 0.8 and pb ¼ (1 % p) ¼ 0.2, then p/(1 % p) ¼ 4.
In this case the odds in favor of good times would be stated as ‘‘4 to 1.’’ Fair markets for
contingent claims (such as insurance markets) will also reflect these odds. An analogy is
provided by the ‘‘odds’’ quoted in horse races. These odds are ‘‘fair’’ when they reflect the
true probabilities that various horses will win.

Risk aversion
We are now in a position to show how risk aversion is manifested in the state-preference
model. Specifically, we can show that, if contingent claims markets are fair, then a utility-
maximizing individual will opt for a situation in which Wg ¼ Wb; that is, he or she will
arrange matters so that the wealth ultimately obtained is the same no matter what state
occurs.

As in previous chapters, maximization of utility subject to a budget constraint requires
that this individual set the MRS of Wg for Wb equal to the ratio of these ‘‘goods’’ prices:

MRS ¼
@V=@Wg

@V=@Wb
¼

pU 0ðWgÞ
ð1% pÞU 0ðWbÞ

¼
pg
pb
: (7.61)

In view of the assumption that markets for contingent claims are fair (Equation 7.60),
this first-order condition reduces to

U 0ðWgÞ
U 0ðWbÞ

¼ 1

or22

Wg ¼Wb: (7.62)

Hence this individual, when faced with fair markets in contingent claims on wealth, will
be risk averse and will choose to ensure that he or she has the same level of wealth
regardless of which state occurs.

22This step requires that utility be state independent and that U 0(W) > 0.
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A graphic analysis
Figure 7.5 illustrates risk aversion with a graph. This individual’s budget constraint (I) is
shown to be tangent to the U1 indifference curve where Wg ¼ Wb—a point on the ‘‘cer-
tainty line’’ where wealth (W,) is independent of which state of the world occurs. At W,

the slope of the indifference curve [p /(1 % p)] is precisely equal to the price ratio pg /pb.
If the market for contingent wealth claims were not fair, utility maximization might

not occur on the certainty line. Suppose, for example, that p /(1% p)¼ 4 but that pg /pb¼ 2
because ensuring wealth in bad times proves costly. In this case the budget constraint would
resemble line I0 in Figure 7.5, and utility maximization would occur below the certainty
line.23 In this case this individual would gamble a bit by opting forWg>Wb because claims
onWb are relatively costly. Example 7.6 shows the usefulness of this approach in evaluating
some of the alternatives that might be available.

The line I represents the individual’s budget constraint for contingent wealth claims: W = pgWg + pbWb.
If the market for contingent claims is actuarially fair [pg /pb = p/(1 % p)], then utility maximization will
occur on the certainty line where Wg = Wb = W,. If prices are not actuarially fair, the budget constraint
may resemble I 0 , and utility maximization will occur at a point where Wg >Wb.

Certainty
line

Wb

Wg

I′I

W*

W*

U1

EXAMPLE 7.6 Insurance in the State-Preference Model

We can illustrate the state-preference approach by recasting the auto insurance illustration from
Example 7.2 as a problem involving the two contingent commodities ‘‘wealth with no theft’’
(Wg) and ‘‘wealth with a theft’’ (Wb). If, as before, we assume logarithmic utility and that the
probability of a theft (i.e., 1 % p) is 0.25, then

23Because (as Equation 7.61 shows) the MRS on the certainty line is always p /(1 % p), tangencies with a flatter slope than this
must occur below the line.

FIGURE 7.5

Risk Aversions in the
State-Preference Model
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expected utility ¼ 0:75UðWgÞ þ 0:25UðWbÞ
¼ 0:75 lnWg þ 0:25 lnWb:

(7.63)

If the individual takes no action, then utility is determined by the initial wealth endowment,
W,

g ¼ 100,000 and W,
b ¼ 80,000, so

expected utility ¼ 0:75 ln 100,000þ 0:25 ln 80,000

¼ 11:45714:
(7.64)

To study trades away from these initial endowments, we write the budget constraint in terms of
the prices of the contingent commodities, pg and pb:

pgW,
g þ pbW,

b ¼ pgWg þ pbWb: (7.65)

Assuming that these prices equal the probabilities of the two states ( pg ¼ 0.75, pb ¼ 0.25), this
constraint can be written

0:75ð100,000Þ þ 0:25ð80,000Þ ¼ 95,000 ¼ 0:75Wg þ 0:25Wb; (7.66)

that is, the expected value of wealth is $95,000, and this person can allocate this amount between
Wg and Wb. Now maximization of utility with respect to this budget constraint yields Wg ¼ Wb

¼ 95,000. Consequently, the individual will move to the certainty line and receive an expected
utility of

expected utility ¼ ln 95,000 ¼ 11:46163; (7.67)

a clear improvement over doing nothing. To obtain this improvement, this person must be able
to transfer $5,000 of wealth in good times (no theft) into $15,000 of extra wealth in bad times
(theft). A fair insurance contract would allow this because it would cost $5,000 but return
$20,000 should a theft occur (but nothing should no theft occur). Notice here that the wealth
changes promised by insurance—dWb/dWg ¼ 15,000/%5,000 ¼ %3—exactly equal the negative
of the odds ratio %p/(1 % p) ¼ %0.75/0.25 ¼ %3.

A policy with a deductible provision. A number of other insurance contracts might be
utility improving in this situation, although not all of them would lead to choices that lie on the
certainty line. For example, a policy that cost $5,200 and returned $20,000 in case of a theft
would permit this person to reach the certainty line with Wg ¼Wb ¼ 94,800 and

expected utility ¼ ln 94,800 ¼ 11:45953; (7.68)

which also exceeds the utility obtainable from the initial endowment. A policy that costs $4,900
and requires the individual to incur the first $1,000 of a loss from theft would yield

Wg ¼ 100,000% 4,900 ¼ 95,100,

Wb ¼ 80,000% 4,900þ 19,000 ¼ 94,100; (7.69)

then

expected utility ¼ 0:75 ln 95,100þ 0:25 ln 94,100

¼ 11:46004: (7.70)

Although this policy does not permit this person to reach the certainty line, it is utility improv-
ing. Insurance need not be complete to offer the promise of higher utility.

QUERY: What is the maximum amount an individual would be willing to pay for an insurance
policy under which he or she had to absorb the first $1,000 of loss?
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Risk aversion and risk premiums
The state-preference model is also especially useful for analyzing the relationship between
risk aversion and individuals’ willingness to pay for risk. Consider two people, each of
whom starts with a certain wealth, W,. Each person seeks to maximize an expected utility
function of the form

VðWg , WbÞ ¼ p
WR

g

R
þ ð1% pÞ

WR
b

R
: (7.71)

Here the utility function exhibits constant relative risk aversion (see Example 7.4). Notice
also that the function closely resembles the CES utility function we examined in Chapter 3
and elsewhere. The parameter R determines both the degree of risk aversion and the degree
of curvature of indifference curves implied by the function. A risk-averse individual will
have a large negative value for R and have sharply curved indifference curves, such as U1

shown in Figure 7.6. A person with more tolerance for risk will have a higher value of R and
flatter indifference curves (such asU2).

24

Suppose now these individuals are faced with the prospect of losing h dollars of wealth
in bad times. Such a risk would be acceptable to individual 2 if wealth in good times were
to increase from W, to W2. For the risk-averse individual 1, however, wealth would have

Indifference curve U1 represents the preferences of a risk-averse person, whereas the person with
preferences represented by U2 is willing to assume more risk. When faced with the risk of losing h in bad
times, person 2 will require compensation of W2 %W, in good times, whereas person 1 will require a
larger amount given by W1 %W,.

Certainty
line

Wb

Wg

W*

W* − h

W* W1W2

U1

U2

24Tangency of U1 and U2 at W
, is ensured because the MRS along the certainty line is given by p /(1 % p) regardless of the

value of R.

FIGURE 7.6

Risk Aversion and
Risk Premiums
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to increase to W1 to make the risk acceptable. Therefore, the difference between W1 and
W2 indicates the effect of risk aversion on willingness to assume risk. Some of the prob-
lems in this chapter make use of this graphic device for showing the connection between
preferences (as reflected by the utility function in Equation 7.71) and behavior in risky
situations.

Asymmetry of Information
One obvious implication of the study of information acquisition is that the level of infor-
mation that an individual buys will depend on the per-unit price of information mes-
sages. Unlike the market price for most goods (which we usually assume to be the same
for everyone), there are many reasons to believe that information costs may differ signifi-
cantly among individuals. Some individuals may possess specific skills relevant to infor-
mation acquisition (e.g., they may be trained mechanics), whereas others may not possess
such skills. Some individuals may have other types of experience that yield valuable infor-
mation, whereas others may lack that experience. For example, the seller of a product will
usually know more about its limitations than will a buyer because the seller will know
precisely how the good was made and where possible problems might arise. Similarly,
large-scale repeat buyers of a good may have greater access to information about it than
would first-time buyers. Finally, some individuals may have invested in some types of in-
formation services (e.g., by having a computer link to a brokerage firm or by subscribing
to Consumer Reports) that make the marginal cost of obtaining additional information
lower than for someone without such an investment.

All these factors suggest that the level of information will sometimes differ among the
participants in market transactions. Of course, in many instances, information costs may
be low and such differences may be minor. Most people can appraise the quality of fresh
vegetables fairly well just by looking at them, for example. But when information costs
are high and variable across individuals, we would expect them to find it advantageous to
acquire different amounts of information. We will postpone a detailed study of such sit-
uations until Chapter 18.

SUMMARY

The goal of this chapter was to provide some basic material
for the study of individual behavior in uncertain situations.
The key concepts covered are listed as follows.

• The most common way to model behavior under
uncertainty is to assume that individuals seek to maxi-
mize the expected utility of their actions.

• Individuals who exhibit a diminishing marginal utility
of wealth are risk averse. That is, they generally refuse
fair bets.

• Risk-averse individuals will wish to insure themselves
completely against uncertain events if insurance premi-
ums are actuarially fair. They may be willing to pay more
than actuarially fair premiums to avoid taking risks.

• Two utility functions have been extensively used in the
study of behavior under uncertainty: the constant abso-

lute risk aversion (CARA) function and the constant
relative risk aversion (CRRA) function. Neither is com-
pletely satisfactory on theoretical grounds.

• Methods for reducing the risk involved in a situation
include transferring risk to those who can bear it more
effectively through insurance, spreading risk across
several activities through diversification, preserving
options for dealing with the various outcomes that
arise, and acquiring information to determine which
outcomes are more likely.

• One of the most extensively studied issues in the eco-
nomics of uncertainty is the ‘‘portfolio problem,’’
which asks how an investor will split his or her wealth
among available assets. A simple version of the prob-
lem is used to illustrate the value of diversification in
the text; the Extensions provide a detailed analysis.
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• Information is valuable because it permits individuals
to make better decisions in uncertain situations. Infor-
mation can be most valuable when individuals have
some flexibility in their decision making.

• The state-preference approach allows decision making
under uncertainty to be approached in a familiar
choice-theoretic framework.

PROBLEMS

7.1
George is seen to place an even-money $100,000 bet on the Bulls to win the NBA Finals. If George has a logarithmic utility-
of-wealth function and if his current wealth is $1,000,000, what must he believe is the minimum probability that the Bulls will
win?

7.2
Show that if an individual’s utility-of-wealth function is convex then he or she will prefer fair gambles to income certainty and
may even be willing to accept somewhat unfair gambles. Do you believe this sort of risk-taking behavior is common? What
factors might tend to limit its occurrence?

7.3
An individual purchases a dozen eggs and must take them home. Although making trips home is costless, there is a 50 percent
chance that all the eggs carried on any one trip will be broken during the trip. The individual considers two strategies: (1) take
all 12 eggs in one trip; or (2) take two trips with 6 eggs in each trip.

a. List the possible outcomes of each strategy and the probabilities of these outcomes. Show that, on average, 6 eggs will
remain unbroken after the trip home under either strategy.

b. Develop a graph to show the utility obtainable under each strategy. Which strategy will be preferable?
c. Could utility be improved further by taking more than two trips? How would this possibility be affected if additional trips

were costly?

7.4
Suppose there is a 50–50 chance that a risk-averse individual with a current wealth of $20,000 will contract a debilitating
disease and suffer a loss of $10,000.

a. Calculate the cost of actuarially fair insurance in this situation and use a utility-of-wealth graph (such as shown in Figure 7.1)
to show that the individual will prefer fair insurance against this loss to accepting the gamble uninsured.

b. Suppose two types of insurance policies were available:
(1) a fair policy covering the complete loss; and
(2) a fair policy covering only half of any loss incurred.
Calculate the cost of the second type of policy and show that the individual will generally regard it as inferior to the
first.

7.5
Ms. Fogg is planning an around-the-world trip on which she plans to spend $10,000. The utility from the trip is a function of
how much she actually spends on it (Y), given by

UðYÞ ¼ lnY :

a. If there is a 25 percent probability that Ms. Fogg will lose $1,000 of her cash on the trip, what is the trip’s expected utility?
b. Suppose that Ms. Fogg can buy insurance against losing the $1,000 (say, by purchasing traveler’s checks) at an ‘‘actuarially

fair’’ premium of $250. Show that her expected utility is higher if she purchases this insurance than if she faces the chance
of losing the $1,000 without insurance.

c. What is the maximum amount that Ms. Fogg would be willing to pay to insure her $1,000?
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