
The Development of Multi-Agent System using Finite State Machine 

Yazed Al-Saawy, Ajlan Al-Ajlan, Khalid Aldrawiesh and Abdullah Bajahzer 
Software Technology Research Laboratory (STRL) 

De Montfort University 
The Gateway, Leicester, LE1 9BH, UK. 
yazed,ajlan,khalid,bajahzer@dmu.ac.uk 

 

 
Abstract 

 
This paper sets out to develop and create a search 

agent that can retrieve requested information from two 
databases; the user will be able to search for a book by 
inputting variables such as title, author, ISBN and 
more significantly for this study the price. The system 
will identify the books requested, where they can be 
found and will show the cheapest available. SAS will 
work from the Application software and will link to the 
two databases, the design will allow more databases to 
be incorporated in the future. Each of the two 
databases has the same names of the titles however 
each database may contain a different price. The agent 
will get the required information quickly, helping the 
user to find the cheapest and possibly nearest. The 
agent will connect to the database using the Agent 
Interface; there are two agents in the system, known as 
MAS. These agents collect the required data and send 
it to the Agent Handler. 

 
Keywords: Finite State Machine, Multi-Agent System 
JFLAP, Java, and UML. 
 
1. Introduction 
 

The main contribution of this paper is to create 
Search Agent System (SAS), which helps the user to 
perform a search for a book title quickly; the 
information about the books will be stored on two 
different databases. The user can search for the book 
by name; author or ISBN number and the system will 
present all options as well as identify the cheapest price 
for the user. The system uses a multi-agent 
configuration that works together with a special 
platform, the JADE program. 

In order to model and demonstrate the software the 
Finite State Machine (FSM) is used.  It will 
demonstrate how the software will run with multi 
agents to search for the requested book and give the 
cheapest price. The user can start the search by 
selecting either the book name, ISBN, author or price 

and also chooses the preferred host from which the 
agent begins the search. Also, the model will be 
created using the JFLAP software.   

After the modelling will be the analysis using UML 
which analyses the requirements both functional and 
non-functional using the class diagram, class and 
sequence diagrams will demonstrate the best software 
design which helps to create and develop the software 
system. Finally, will be the design of the software 
application using JADE and JAVA which will create 
the type of the Agent Handler, Agent Interface and 
Book Agent System which will search according to the 
users search criteria. The system will have two 
databases. However, the design will be expandable, 
allowing more databases to be added.  

This paper will examine how to use agent and 
Multi-Agent System (MAS) in a search system. MAS 
have provoked more interest in research because of the 
advantages found within such systems, for example 
they are able to deal with problems that are too large 
for a single-agent system are faster and more reliable. 
Additionally, they are able to cope with uncertain 
knowledge and data. Key areas of the research into the 
ability of MAS to solve problems focus on 
communication, coordination and negotiation. 
Examining how multi agents function in a virtual 
system. The virtual system exposes how behaviour of 
the components affects the system as a whole.  

This paper is organized as follows: Section 2 
provides MAS. FSM is described in Section 3. Section 
4 presents requirements and Analysis for SAS. Section 
5 focuses on the implementation of SAS. Testing & 
evaluation are described in Section 6. Finally, 
conclusion and future work are presented in Section 7. 
 
2. Multi-Agent System 
 

 An agent is a software program that communicates 
with other software programs, interacting and 
responding to behaviour, acting and linking with 
available resources on demand. Each agent has size, 
capability and speed; all these are attributes of each 

2009 International Conference on New Trends in Information and Service Science

978-0-7695-3687-3/09 $25.00 © 2009 IEEE

DOI 10.1109/NISS.2009.162

203

2009 International Conference on New Trends in Information and Service Science

978-0-7695-3687-3/09 $25.00 © 2009 IEEE

DOI 10.1109/NISS.2009.162

203

2009 International Conference on New Trends in Information and Service Science

978-0-7695-3687-3/09 $25.00 © 2009 IEEE

DOI 10.1109/NISS.2009.162

203

2009 International Conference on New Trends in Information and Service Science

978-0-7695-3687-3/09 $25.00 © 2009 IEEE

DOI 10.1109/NISS.2009.162

203



agent. The environment of each agent has to be 
considered in MAS in order to coordinate the activities 
between a numbers of agents.  An example of this 
could be robots. the agents, (A) are the robots, the 
geometrical space (E) is where the robots move, and O 
is obviously made up of agents, but also of physical 
objects placed here and there which the robots have to 
avoid, pick up or manipulate. The operations, Op, are 
the actions that the robots can take in moving 
themselves, moving the other objects or 
communicating, and R is the assembly of relations that 
link certain agents to others [1, 2, 3]. 

The domains of application for multi-agent systems 
are particularly numerous. We shall refer only to the 
main trends, as an attempt to address a wider list could 
only end in stagnation; the research of domains is 
evolving all the time. Multi-agent systems can be 
divided into four main categories: multi-agent 
simulation, building artificial worlds, collective 
robotics and program design as in Figure 1. 

 

 

 

 
In computer science, there is a branch known as 

simulation, which consists of analysing the properties 
of theoretical models. Simulation is currently an active 
area of computer science which is concerned with the 
analysis of the properties of theoretical models. The 
models are constructed of the mathematical 
relationships between the variables which represent the 
physical values which can then be measured. The 
commonly used models are transition matrices and 
differential equations [4, 2].  

Brahms is a set of software tools used to develop 
and simulate MAS of human and machine behaviour. 
In addition, it is rule-based and multi-agent activity 
based on programming language. The Brahms 
language shows how the situated activities of agents 
are represented in a geographical relationship to the 
world. Situated activities are actions that occur in a 
specific situation; therefore their function is not only 
constrained by the reasoning abilities of the agent, but 
also by the agent’s perception of the world [5].  

Java Agent Development framework (JADE) agent 
can be split over several hosts with one of them acting 
as the front end for inter-platform IIOP 
communication. JADE is made up of one or more 
Agent. Each Jade lives in a separate Java Virtual 
Machine and communicates using java RMI. The 
Figure 2 shows the architecture of this agent [6, 7]. 

 

 

 

 

 

 

 

 

 

 

 

The idea behind JADE communication architecture 
is that it attempts to offer efficient and flexible 
messaging; it openly chooses the best transport and 
leverages distributed object technology which is found 
within the Java runtime environment. JADE recognises 
the difference between inter-platform messaging where 
the sender and the receiver agents operate within 
different platforms and intra-platform messaging where 
the two agents are on the same platform. Inter-platform 
messaging has to comply with FIPA requirements; 
however intra-platform message delivery is solely an 
issue for JADE, so a more convenient transport can be 
utilised. JADE uses Java RMI in intra-platform 
communication [6, 8]. Java and JADE have attributes 
that support multi-agent applications: 1) Autonomy 2) 
Intelligence 3 Mobility) 

3.  Finite State Machine  
This section will examine modelling of the software 

using FSM and how the Search Agent will search for 
name, ISBN, price and author or maybe just two of 
these elements or search all elements together 
depending on what the user wants [9]. FSM comprises 
of a data structure used to show actions with a 
sequence of events. In both Java and JADE 
applications, FSM is able to activate and deactivate 
certain behaviours in time. This section will define 
how to describe FSM using JFLAP as in Figure 3, and 
then the coding using JADE. JFLAP is instructional 
software used to experiment with grammars automata. 
However it also allows experimentation with 
applications and proofs. The main feature of JFLAP is 
that it can experiment with grammars and theoretical 
machines. It allows the building and running of user-
defined input on pushdown automata, finite automata, 
regular grammars [10]. 

Multi-Agent 
Simulation 

Collective 
robotics

Multi-Agent 
system 

Program

Building artificial 
Worlds

Figure 1: Application domains in MAS 

 

Network Protocol stack 

Figure 2. Software Architecture of JADE Agent [17] 

JRE 1.2 JRE 1.2 JRE 1.2 

A
pp

lic
at

io
n 

A
ge

nt
 

A
pp

lic
at

io
n 

A
ge

nt
 

A
pp

lic
at

io
n 

A
ge

nt
 

Host 3

A
pp

lic
at

io
n 

A
ge

nt
 

A
pp

lic
at

io
n 

A
ge

nt
 

A
pp

lic
at

io
n 

A
ge

nt
 

Host 2 

A
pp

lic
at

io
n 

A
ge

nt
 

A
pp

lic
at

io
n 

A
ge

nt
 

A
pp

lic
at

io
n 

A
ge

nt
 

Host 2

JADE distributed Agent Platform  
Jade Front-end Jade Agent Container Jade Agent Container

204204204204



Here, we will examine the design of FSM, which 
has eight states; the first is to start the search using the 
name, ISBN, price and author. Afterwards the search 
will compare and find the cheapest; this is one of the 
final states. The other final state is the normal state 
which gives all possible prices of the book. This covers 
all possibilities of the search as in Figure 3. 

 
 

4.  Requirements and Analysis 
This section will examine the requirements and 

analysis before creating the application software for the 
Search Agent. These requirements have to be 
identified, giving clear guidelines as to what is required 
in the finished, usable software that links multi-agents. 
For our framework, the three stages shown in Figure 4 
will be followed. The properties of MAS will be 
incorporated and a suggestion of required architecture 
which reflect the properties will be made. The first 
phase in the approach is known as the ‘Problem 
Analysis.’ This phase attempts to gain an 
understanding of how the system works in the abstract, 
this will be a starting point for the development 
process of the architecture. After gaining an 
understanding we then move to the next phase ‘Agent 
Modelling”, here agents will be identified to satisfy the 
goals and the goals relationships. Finally the ‘MAS 
architecting’ phase, here the focus in on the 
architecture of the agents and the setting up of a 
federation of agents that are able to cooperate with 
each other, at the same time, to a large extent, 
maintaining autonomy [11]. 
 
 
 
 
 
 
 

As in Figure 4, the problem analysis is important for 
analyzing the user's requirements and to set up the 
system boundary. End users of a system frequently 
find it difficult to express abstract requirements for the 
system, a goal oriented approach to the requirements 
analysis is an effective way of improving the elicitation 
process. The agents in the system need to be identified 
with the relationships between them by agent 
modelling to be modelled, according to the relationship 
between goals and agents. Therefore, we have 
developed a set of heuristic guidelines to create and 
search agents to identified major goal, create a 
corresponding agent when necessary. A sequence 
diagram shows the interactions between objects in a 
time sequence. More specifically, it shows the objects 
and their interactions with the sequence of messages 
exchanged. Sequence diagrams are different from 
collaboration diagrams, as they show time sequences 
but do not show the relationships between objects. A 
sequence diagram can be in generic form, showing all 
possible scenarios or in instance form, focusing on one 
specific scenario [11]. 

5.  Implementation 
This section examines the implementation of the 

SAS whilst running, and the functions that a tool built 
by the study can perform. The system needs to work on 
any PC that have java environment; therefore there are 
some requirements to insulate the software, as follows, 
JADE 3.4 and JDK. Before running the SAS of Book 
Agent has to be put into the JADE folder in C drive so 
it is easy to read that class. After that, inside the folder 
Book Agent there is a command, the command is 
opened and writes Javac the BookAgentSys.java to 
compile the class in folder. After compilation JADE 
will be run using the JADE tag which is java jade.Boot 
t1: RunAgent. t1 is the name of the agent in the pc. 
After running the system, it will show the user 
interface so the user can start the search.  

 
 

Figure 5 shows the Book Name as 'java'. The search 
will begin in the Host 1, set as the default Host, 
however the search can change looking at Host 2 if the 
user requires. Any type of search from Book Name, 

Figure 3: Search Agent Model of Finite State Machine 

Figure 4: Architecture development process for MAS

Figure 5:  search By Book Name  
 System Goal 
Elicitation  

 Goal Analysis  
 Goal Hierarchy 
diagram

 Agent Search  
 Agent Class 
diagram  

 Belief and Plan 
modelling

 Agent Organisation 
Considering Agent 
Coordination 

 Agent  Internal  
Architecting

 Problem Analysis  Agent Modelling MAS Architecting

205205205205



Author, Price, and ISBN can be performed 
simultaneously. Figure 5 explains all the books with 
'java' in the title in a list that shows the host, price, 
ISBN and author. The next label shows the user which 
is the cheapest book and where to find the book, this 
saves time looking for it from the entire list.  

6.  Discussion  
This paper used two types of testing, which are 

Black Box and White Box testing tools. The first 
testing is the functional testing, that examines whether 
the system behaved according to the set-out objectives 
of the search system, for example whether or not the 
system was successful in identifying the cheapest book 
as in Table 1.  

 
Book Name Author Host Price Result  Cheapest 

JAVA SUN 1 25 Found list The 
cheapest 
is  22 

JAVA SUN 1 27 Found list 
JAVA SUN 1 22 Found list 

The second testing is the usability testing that test 
examined if the system met the requirements set out for 
'user friendliness', it examines specifically the user 
interface and whether or not it is suited to the type of 
user i.e. a person searching for a book name and being 
given the result including the price and location. 
Finally, user acceptance testing was carried out by 
giving the system to a user to see if the system met 
their expectations and behaved according to what was 
expected. Overall, the system was deemed a success in 
that in functioned according to the desired objectives. 
The functionality, usability testing concluded that the 
user was able to input the search variables and was 
given the desired result i.e. the book they were looking 
for, where it was located and identification of the 
cheapest book on offer. The mobility agent performed 
very well and it is able to search in two hosts at the 
same time.  

The system was able to search more than one search 
variable simultaneously i.e. book name and host and 
still identify the cheapest book. A slight criticism, from 
the tested usability perspective (Black Box testing), is 
the terminology used in the interface; for example the 
term 'host' is a technical term used by the developer 
and the term 'location' would be a more user-friendly, 
understandable term.  FSM helps to modelling in 
useful for programmer to understand the requirement. 
However, FSM give the mobility of each state how to 
be worked and create each of state as class. 

7.  Conclusion and Future Work 
The overall aim of the paper was to create and 

develop a Search Agent which uses DAI using MAS. 

The system was to enable users to search for book 
titles using various search criteria giving the result 
according to book found, price and location. It was 
evaluated using user-friendly functionality testing and 
performed well against desired objectives. The paper 
demonstrated how multi-agents functioned well in 
making decisions. 

For future development, the design of the system 
will be able to handle more than two hosts, a function 
that is necessary for overall implementation in a real-
life system. This system can be further improved by 
incorporation of a facility to show the user the location 
of the book stockiest that have the requested title. 
Further usability testing can be carried out in 
collaboration with a wider spectrum of typical users, as 
many users may highlight a multitude of desires and 
expectations.  

8.  Acknowledgment  
The authors wish to acknowledge contributions to 

Hussein Zedan, Hongji Yang and Antonio Cau. 

9.  References 
[1] J. Ferber, Multi agent systems, an introduction to 
distributed artificial intelligence, Addison Wesley/ Pearson, 
London, 1999. 
[2] A. Roberto, Multi agent, available from:  
http://www.acm.org/crossroads/xrds5-4/multiagent.html  
[3] H. Fran Available from: http://www.it- 
director.com/article.php?articleid=11774, 2004. 
[4] M. Dastani, and J. Gomez-sanz, Programming multi-
agent systems. Knowl. Eng. Rev., Cambridge University 
Press, vol. 20(2), pp. 151-164, 2005. 
[5] Agent Solution, retrieve on 2/1/2009 from:   
http://www.agentisolutions.com/brahms.htm. 
[6]  F Bellifemine, et al., JADE: a FIPA2000 compliant agent 
development environment, In Proc. of the Fifth on    
Autonomous Agents,  ACM, New York, pp: 216-217,  2001. 
[7]  F. Bellifemine, et al., JADE, White Paper, V.3(3), 2003. 
[8] Bellifemine, et al., Developing Multi-agent Systems with 
JADE. In Proc. of the 7th international Workshop on    
intelligent Agents,. Springer, London,  pp: 89-103,2001 
[9]  B. Lee and E. Lee,  Interaction of Finite State Machines 
and Concurrency Models, in Proc. of Thirty Second Annual    
Asilomar Conference on Signals, Systems, and Computers, 
Pacific Grove, California, 1998. 
[10]  S. Rodger, et al., Increasing interaction and support in 
the formal languages and automata theory course, SIGCSE 
Bull, vol.39(3) ACM  New York, NY, USA, pp:58-62,  2007 
[11] S. Parka and V. Sugumaranb, Designing multi-agent 
systems: a framework and application, Expert Systems with 
Applications, Seoul, Korea vol. 28(2), pp: 259–271, 2005. 

Table 1. Black Test 

206206206206


