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Abstract 

 
In this paper, we introduce an approach to 

compress gray image using deterministic Generalized 
Finite Automata (GFA). By detecting the self-similarity 
inside an input digitized gray image, a GFA can be 
constructed to describe the image. The decode 
algorithm can restore the image from the deterministic 
Generalized Finite Automata efficiently. This method 
has a smaller number of states than an equivalent 
classical finite automaton. Meanwhile it also has an 
advantage of higher compression without further 
degradation of quality.  
 
1. Introduction 
 

With the rapid development of multimedia 
technology in recent years, the digital image 
transmission plays a very important role in 
communication field. Digital images generally include 
a great deal of information, so the compression 
technology becomes the key of the research. After the 
research and exploration of recent years, scholars have 
put forward a lot of encoding methods. Now the main 
methods of image encoding are fractal theory, neural 
networks, wavelet transform and so on. 

Different from the methods mentioned above, this 
paper introduces a new algorithm called Generalized 
Finite Automata (GFA) to encode/decode the images 
automatically. In essence, the principle of finite 
automata is that using the self-similarity of the image 
to reduce the bits which are used to describe the image.  

The finite automata method of image-specification 
has been extended to gray images, represented by 
Weighted Finite Automata (WFA) which was studied 
by Karel Culik II and Jarkko Kari [2][3]. This method 
studied a rule about how to describe images with the 
automata and put forward an algorithm about how to 
use nondeterministic finite automata (NFA) to 
encode/decode the images automatically. When 
detecting the self-similarity, Karel Culik II and Jarkko 
Kari only considered the relations of gray proportion 

transformation; so in order to increase the encoding 
ability, they adopted the nondeterministic finite 
automata. In our generalized finite automata we will 
allow any combination of rotations, flips and 
complementation of the quadrant image. All of these 
operations may increase the ability of detecting the 
self-similarity. 

In the next section we introduce the basic concepts 
of finite automata. In section 3 we explain in detail our 
notation for gray images and how finite automata are 
used to specify gray images. In section 4 we introduce 
generalized finite automata (GFA) and explain how 
they specify images; and then we describe an encoding 
algorithm for GFA which for any given gray image 
finds a GFA that generates a good approximation of 
the image. In section 5 we apply the GFA algorithm to 
some commonly gray images. In the last section we 
summarize the paper and give the advantages of GFA 
method. 
 
2. Basic concepts of finite automata 
 

A bi-level multiresolution image is specified by 
assigning the value 0 or 1 to every node of the infinite 
quadtree (1 for black, 0 for white). If the outgoing 
edges of each node of the quadtree are labeled 0, 1, 2, 
3, we get a uniquely labeled path to every node; its 
label is called the address of the node. The address of a 
node at depth k is a string of length k  over the 
alphabet {0, 1, 2, 3}. Regular sets of strings are 
specified by finite automata or regular expressions [6]. 
Therefore, finite automata can be used to specify 
multiresolution images. This idea has been recognized 
independently by several authors in references [4] and 
[7]. 
 
2.1 Several definitions 
 

A finite automata is a mathematical model with a 
discrete input/output system. It has finite inner 
structures or states to remember the input information. 
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And then according to the current input it can make 
sure the next state or action. 

Definition 1: A finite automata is a 5-tuple 
),,,,( 0 FsS δΣ  in Ref [8] where: 

（1） S  is a finite set of states; 
（2）Σ  is a finite alphabet, each of the elements is 

called input character; 
（3）δ : Σ×S → S  is a transition function. The 

function δ  records the transitions: sas ′=),(δ  if 
there is a transition from state s  to state s′  labeled by 
a . State s′  is called the subsequent state of state s . 

（4） Ss ∈0  is a uniquely initial state; 

（5） SF ⊆  is a set of accepting states (may 
empty). 

Definition 2: A finite automaton can be represented 
diagrammatically by a labeled directed graph as shown 
in Fig.1, called a transition graph, in which the nodes 
are the states and the labeled edges represent the 
transition function. A set of strings which labels a path 
from the initial state to the finial state can be accepted. 

 
Figure 1. A transition graph 

 
2.2 Image and finite automata 
 

If a deterministic finite automaton A  represents an 
image I , then each state of A  must correspond to a 
subsquare of I , with the initial state corresponding to 
the whole I . Moreover, if there is a transition from 
state i  to state j  labeled by 0 (1, 2, 3), then the image 
corresponding to state j  is the south-west (NW, SE, 
NE) quadrant of the image corresponding to state i . 
 
3. Gray image and the procedure of finite 
automata 
 
 
 
3.1 Image partitioning and finite automata 
 

The technique of our method is based on 
partitioning an image into sub-images, which was 
introduced in a scheme named quadtree image 
compression. The quadtree is a hierarchical data 

structure based on the divide and conquer principle, 
leading to a recursive partitioning. We examine the 
region quadtree, which divides the input image 
recursively into four quadrants of equal size. 

Here we will consider square image of resolution 
n2 × n2 . In order to facilitate the application of finite 

automata to image description we will assign each 
pixel at n2 × n2  resolution a word of length n  over 
the alphabet }3,2,1,0{=Σ  as its address. We choose 
the empty string ε  as the whole image and e  as the 
address of the whole unit square. Its quadrants are 
addressed by single digits as shown in Fig 2 on the left. 
The four subsquares of the square with address w  are 
addressed 2,1,0 www  and 3w , recursively. Addresses 
of all the pixels of resolution 4×4 are shown in Fig 2, 
middle. The pixel with address 3203 is shown in the 
right of Fig 2. 

 
Figure 2. The address of the quadrants, of the 

subsquares of resolution 4×4 and the 
subsquare specified by the string 3203 

 
A finite automaton is displayed by its diagram 

which is directed graph whose nodes are the states, 
with the initial node indicated by an incoming arrow 
and the final nodes by double circles. An edge labeled 
a  from state i  to state j  indicates that input a  
causes the transition from state i  to state j . A word 
in the input alphabet is accepted by the automaton if it 
labels a path from the initial state to a final state. The 
set (language accepted by automaton A ) is denoted by 

)(AL . 

 
Figure 3. 2×2 chess-board and 8×8 chess-

board 
 

The 2×2 chess-board in Fig 3 on the left looks the 
same for all resolution mm 22 × , 1≥m . For depth 
m , the specification is the finite set {1, 2} 1−Σm  (we 
denote by 1−Σm  the set of all words over Σ  of length 

1−m ), the multiresolution specification is the regular 
set { } *2,1 Σ . The 8×8 chess-board in Fig 3 on the right 
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as a multiresolution image is described by the regular 
set { } *2 2,1 ΣΣ  or by automaton of Fig 4. 
 
3.2 The finite automata algorithm for 
multiresolution image 
 

Now, given a multiresolution image, we will give a 
theoretical procedure which finds a finite automaton 
perfectly specifying it, if such an automaton exists. For 
given image I , we denote wI  the zoomed part of I  
in the square addressed w . The image represented by 
state number x  is denoted by xψ . 

1． 0== ji ; 

2．Create initial state 0 and assign I=0ψ ; 

3．Assume wi I=ψ , process state i , that is: 

   for   3,2,1,0=k   do  

         if  qwkI ψ=  then  create an edge labeled 

k  from state i  to state q ; 
         else   1+= jj ; 

               wkj I=ψ ; 

               create an edge labeled k  from state i  to 
the new state j ; 

4 ． if  ji = , that is all states have been 
processed, stop; 

else   1+= ii ;  
go to 3. 

The procedure terminates if there exists an 
automaton that perfectly specifies the given image and 
produces a deterministic automaton with the minimal 
number of states. Our lossy compression algorithm for 
gray images is based on this procedure, and it will use 
generalized finite automata introduced in the next 
section. 

 
Figure 4. Finite automaton defining the 8×8 chess-board 

 

Figure 5. The image transformations 
 
4. Generalized finite automata and 
compression algorithm 
 
4.1 Generalized finite automata 
 
    Each transition of a GFA is labeled by an input 
symbol, and that it has 16 transformations as shown in 
Fig 5 [1]. 

In the diagrams of GFA the transformations are 
specified by numbers 0-15, i.e. it  by i . A diagram of 
GFA is like a diagram of a FA with labels of the form 

na − , where a  is an input and n  is a 
transformation. For a GFA, with the set of states Q  

and initial state 0q , we say that state q  represents the 

image qI , for each Qq ∈ , if the following holds. For 

each Qp ∈  and { }3,2,1,0∈a , let ( )ii qnap ,, − , 

ri ,,2,1=  be all edges leading from state p  and 

labeled by ina − . Then the image obtained from pI  

by zooming into quadrant a  is ∪r

i qini It
1

)(
=

. 

 
4.2 The encoding algorithm 
 

Our work combined the GFA with the wavelet 
transform technique. We constructed a GFA with 
almost tree-structure such that each state represents one 
wavelet function from the family of Daubechies’s 
wavelets forming a basis for the wavelet transform. So 
our method combines the advantages of the “classical” 
wavelet compression method. 

Next we will give the main ideas of the GFA 
compression algorithm. 
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Input: A gray image given by a finite labeled 
quadtree ψ , an error  value. 

1. The initial state 0q  expresses the subsquare ε  

(the whole image). For all 0qq ≠ , the initial 

distribution will be 1)( 0 =qα , 0)( =qα . The 

final distribution β  is 1)( =qβ  for all q . 
2. Recursively, process each state as follows: for next 

unprocessed state q , assigned to the square w , 
divide w  into four subsquares 0w , 1w , 2w  
and 3w . Do step 3 with wa  for 1=a , 2  and 
3 . 

3. Denote the image in the subsquare )( Σ∈awa  
by ψ ′ . If ψ ′=0, there is no transition from state 
q  with label a . Otherwise, the algorithm 
searches through all created states and all 
transformations it , 15,,0=i . If state p and 

transition jt  is found and 

errortd pjk ≤′ ))(,( ψψ  where pψ  is a 
subsquare image assigned to the state p , we 
create a new edge ),,( pjaq − . If there is no 
such state and transformation, we assign a new 
(unprocessed) state r  to ψ ′  and create a new 
edge ),0,( raq − . 

4. Go to step 2 if there is an unprocessed state, 
otherwise, stop. 

The decoding algorithm is quite easy. Given a 
GFA, compute the string s  of each pixel at nn 22 ×  
resolution, the length of the string is n . Then 
according to the string s , the algorithm will transform 
the states recursively, meanwhile execute the rotations, 
flips and complementation of each transformation. 
After all of these operations, we will get the gray 
values of the pixel and the final image is restored. 
 
5. Experimental results 
 

In order to prove the performance of the GFA 
algorithm, we use Matlab 6.5 and VC++ as the 
experimental environment. The experimental gray 
images (resolution 256×256) are lena, boat, zelda and 
peppers with the grayscale 256. The experimental 
results are shown in Fig 6. And all the experimental 
numbers are listed in Table 1. 

The visual quality of the regenerated image can be 
measured by the following metric: Peak Signal Noise 

Ratio (PSNR), compression ratio and kd  (the 
difference between the original image and the 
regenerated image on a given resolution, i.e. a 
percentage of pixels where they differ). 

The formulas of PSNR and kd  are shown as  
formula (1) and (3):  

                 )255(log*10
2

10 MSE
PSNR =                    (1) 

Where: 
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where f  and g  are two multiresolution images, 
and k  is a positive integer. This formula can meet 
people’s subjective visual feelings well. When the 
difference between two images is obvious, the value of 

kd  is much bigger. 
Our experiments show that it is not efficient to 

express images of size 8×8 pixels or smaller by GFA. 
We get significantly better results (in terms of the time 
needed for encoding as well as the quality/size ratio) if 
we use a vector quantization (VQ) on this resolution. 
We use a codebook of size 256 created by generalized 
Lloyd algorithm [5]. 
 
6. Conclusions 
 

We propose an image compression scheme using 
the bitplane modeling and generalized finite automata 
(GFA) representation aimed at optimally exploring the 
self-similarity inhabited in gray images. From the 
experimental results we can see that the regenerated 
images have no obvious blocking effect; On the other 
hand, although both DFA and NFA are capable of 
recognizing precisely the regular set, the GFA with 
underlying deterministic finite automata are more 
powerful than “nondeterministic” WFA suggested by 
Karek Culik II and Jarkko Kari. For example, the 
“deterministic” GFA can lead to faster recognizers than 
the “nondeterministic” WFA; second, when encoding 
the image, GFA doesn’t have to solve equations; 
finally, GFA can make decoding image more quickly.
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Gray image of lena           Decoded image of lena       Gray image of boat           Decoded image of boat 

 

                   
Gray image of zelda            Decoded image of zelda        Gray image of peppers     Decoded image of peppers 

Figure 6. The comparison of original images and regenerated images 
 

Table 1. Performance of GFA compression 
Image 
Names 

States 
number Coding bytes Compression ratio d  PSNR 

lena         2388         6605       6.1243：1       9.3891   25.8233 
boat         2384         6774 6.0291：1 19.0676   20.2781 
zelda         2521         7285 5.7584：1 21.2087   19.9599 
peppers         2515         7107 5.8499：1 13.2287 20.8056 
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