
978-1-4244-1724-7/08/$25.00 ©2008 IEEE ICALIP2008 1688

Image Compression Method Based on Generalized Finite Automata

Xiaohu Ma, Huanqin Chen
(School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu 215006)

xhma@suda.edu.cn

Abstract

In this paper, we introduce an approach to

compress gray image using deterministic Generalized
Finite Automata (GFA). By detecting the self-similarity
inside an input digitized gray image, a GFA can be
constructed to describe the image. The decode
algorithm can restore the image from the deterministic
Generalized Finite Automata efficiently. This method
has a smaller number of states than an equivalent
classical finite automaton. Meanwhile it also has an
advantage of higher compression without further
degradation of quality.

1. Introduction

With the rapid development of multimedia
technology in recent years, the digital image
transmission plays a very important role in
communication field. Digital images generally include
a great deal of information, so the compression
technology becomes the key of the research. After the
research and exploration of recent years, scholars have
put forward a lot of encoding methods. Now the main
methods of image encoding are fractal theory, neural
networks, wavelet transform and so on.

Different from the methods mentioned above, this
paper introduces a new algorithm called Generalized
Finite Automata (GFA) to encode/decode the images
automatically. In essence, the principle of finite
automata is that using the self-similarity of the image
to reduce the bits which are used to describe the image.

The finite automata method of image-specification
has been extended to gray images, represented by
Weighted Finite Automata (WFA) which was studied
by Karel Culik II and Jarkko Kari [2][3]. This method
studied a rule about how to describe images with the
automata and put forward an algorithm about how to
use nondeterministic finite automata (NFA) to
encode/decode the images automatically. When
detecting the self-similarity, Karel Culik II and Jarkko
Kari only considered the relations of gray proportion

transformation; so in order to increase the encoding
ability, they adopted the nondeterministic finite
automata. In our generalized finite automata we will
allow any combination of rotations, flips and
complementation of the quadrant image. All of these
operations may increase the ability of detecting the
self-similarity.

In the next section we introduce the basic concepts
of finite automata. In section 3 we explain in detail our
notation for gray images and how finite automata are
used to specify gray images. In section 4 we introduce
generalized finite automata (GFA) and explain how
they specify images; and then we describe an encoding
algorithm for GFA which for any given gray image
finds a GFA that generates a good approximation of
the image. In section 5 we apply the GFA algorithm to
some commonly gray images. In the last section we
summarize the paper and give the advantages of GFA
method.

2. Basic concepts of finite automata

A bi-level multiresolution image is specified by
assigning the value 0 or 1 to every node of the infinite
quadtree (1 for black, 0 for white). If the outgoing
edges of each node of the quadtree are labeled 0, 1, 2,
3, we get a uniquely labeled path to every node; its
label is called the address of the node. The address of a
node at depth k is a string of length k over the
alphabet {0, 1, 2, 3}. Regular sets of strings are
specified by finite automata or regular expressions [6].
Therefore, finite automata can be used to specify
multiresolution images. This idea has been recognized
independently by several authors in references [4] and
[7].

2.1 Several definitions

A finite automata is a mathematical model with a
discrete input/output system. It has finite inner
structures or states to remember the input information.

 1689

And then according to the current input it can make
sure the next state or action.

Definition 1: A finite automata is a 5-tuple
),,,,(0 FsS δΣ in Ref [8] where:

（1） S is a finite set of states;
（2）Σ is a finite alphabet, each of the elements is

called input character;
（3）δ : Σ×S → S is a transition function. The

function δ records the transitions: sas ′=),(δ if
there is a transition from state s to state s′ labeled by
a . State s′ is called the subsequent state of state s .

（4） Ss ∈0 is a uniquely initial state;

（5） SF ⊆ is a set of accepting states (may
empty).

Definition 2: A finite automaton can be represented
diagrammatically by a labeled directed graph as shown
in Fig.1, called a transition graph, in which the nodes
are the states and the labeled edges represent the
transition function. A set of strings which labels a path
from the initial state to the finial state can be accepted.

Figure 1. A transition graph

2.2 Image and finite automata

If a deterministic finite automaton A represents an
image I , then each state of A must correspond to a
subsquare of I , with the initial state corresponding to
the whole I . Moreover, if there is a transition from
state i to state j labeled by 0 (1, 2, 3), then the image
corresponding to state j is the south-west (NW, SE,
NE) quadrant of the image corresponding to state i .

3. Gray image and the procedure of finite
automata

3.1 Image partitioning and finite automata

The technique of our method is based on
partitioning an image into sub-images, which was
introduced in a scheme named quadtree image
compression. The quadtree is a hierarchical data

structure based on the divide and conquer principle,
leading to a recursive partitioning. We examine the
region quadtree, which divides the input image
recursively into four quadrants of equal size.

Here we will consider square image of resolution
n2 × n2 . In order to facilitate the application of finite

automata to image description we will assign each
pixel at n2 × n2 resolution a word of length n over
the alphabet }3,2,1,0{=Σ as its address. We choose
the empty string ε as the whole image and e as the
address of the whole unit square. Its quadrants are
addressed by single digits as shown in Fig 2 on the left.
The four subsquares of the square with address w are
addressed 2,1,0 www and 3w , recursively. Addresses
of all the pixels of resolution 4×4 are shown in Fig 2,
middle. The pixel with address 3203 is shown in the
right of Fig 2.

Figure 2. The address of the quadrants, of the

subsquares of resolution 4×4 and the
subsquare specified by the string 3203

A finite automaton is displayed by its diagram

which is directed graph whose nodes are the states,
with the initial node indicated by an incoming arrow
and the final nodes by double circles. An edge labeled
a from state i to state j indicates that input a
causes the transition from state i to state j . A word
in the input alphabet is accepted by the automaton if it
labels a path from the initial state to a final state. The
set (language accepted by automaton A) is denoted by

)(AL .

Figure 3. 2×2 chess-board and 8×8 chess-

board

The 2×2 chess-board in Fig 3 on the left looks the
same for all resolution mm 22 × , 1≥m . For depth
m , the specification is the finite set {1, 2} 1−Σm (we
denote by 1−Σm the set of all words over Σ of length

1−m), the multiresolution specification is the regular
set { } *2,1 Σ . The 8×8 chess-board in Fig 3 on the right

 1690

as a multiresolution image is described by the regular
set { } *2 2,1 ΣΣ or by automaton of Fig 4.

3.2 The finite automata algorithm for
multiresolution image

Now, given a multiresolution image, we will give a
theoretical procedure which finds a finite automaton
perfectly specifying it, if such an automaton exists. For
given image I , we denote wI the zoomed part of I
in the square addressed w . The image represented by
state number x is denoted by xψ .

1． 0== ji ;

2．Create initial state 0 and assign I=0ψ ;

3．Assume wi I=ψ , process state i , that is:

 for 3,2,1,0=k do

 if qwkI ψ= then create an edge labeled

k from state i to state q ;
 else 1+= jj ;

 wkj I=ψ ;

 create an edge labeled k from state i to
the new state j ;

4 ． if ji = , that is all states have been
processed, stop;

else 1+= ii ;
go to 3.

The procedure terminates if there exists an
automaton that perfectly specifies the given image and
produces a deterministic automaton with the minimal
number of states. Our lossy compression algorithm for
gray images is based on this procedure, and it will use
generalized finite automata introduced in the next
section.

Figure 4. Finite automaton defining the 8×8 chess-board

Figure 5. The image transformations

4. Generalized finite automata and
compression algorithm

4.1 Generalized finite automata

 Each transition of a GFA is labeled by an input
symbol, and that it has 16 transformations as shown in
Fig 5 [1].

In the diagrams of GFA the transformations are
specified by numbers 0-15, i.e. it by i . A diagram of
GFA is like a diagram of a FA with labels of the form

na − , where a is an input and n is a
transformation. For a GFA, with the set of states Q

and initial state 0q , we say that state q represents the

image qI , for each Qq ∈ , if the following holds. For

each Qp ∈ and { }3,2,1,0∈a , let ()ii qnap ,, − ,

ri ,,2,1= be all edges leading from state p and

labeled by ina − . Then the image obtained from pI

by zooming into quadrant a is ∪r

i qini It
1

)(
=

.

4.2 The encoding algorithm

Our work combined the GFA with the wavelet
transform technique. We constructed a GFA with
almost tree-structure such that each state represents one
wavelet function from the family of Daubechies’s
wavelets forming a basis for the wavelet transform. So
our method combines the advantages of the “classical”
wavelet compression method.

Next we will give the main ideas of the GFA
compression algorithm.

 1691

Input: A gray image given by a finite labeled
quadtree ψ , an error value.

1. The initial state 0q expresses the subsquare ε

(the whole image). For all 0qq ≠ , the initial

distribution will be 1)(0 =qα , 0)(=qα . The

final distribution β is 1)(=qβ for all q .
2. Recursively, process each state as follows: for next

unprocessed state q , assigned to the square w ,
divide w into four subsquares 0w , 1w , 2w
and 3w . Do step 3 with wa for 1=a , 2 and
3 .

3. Denote the image in the subsquare)(Σ∈awa
by ψ ′ . If ψ ′=0, there is no transition from state
q with label a . Otherwise, the algorithm
searches through all created states and all
transformations it , 15,,0=i . If state p and

transition jt is found and

errortd pjk ≤′))(,(ψψ where pψ is a
subsquare image assigned to the state p , we
create a new edge),,(pjaq − . If there is no
such state and transformation, we assign a new
(unprocessed) state r to ψ ′ and create a new
edge),0,(raq − .

4. Go to step 2 if there is an unprocessed state,
otherwise, stop.

The decoding algorithm is quite easy. Given a
GFA, compute the string s of each pixel at nn 22 ×
resolution, the length of the string is n . Then
according to the string s , the algorithm will transform
the states recursively, meanwhile execute the rotations,
flips and complementation of each transformation.
After all of these operations, we will get the gray
values of the pixel and the final image is restored.

5. Experimental results

In order to prove the performance of the GFA
algorithm, we use Matlab 6.5 and VC++ as the
experimental environment. The experimental gray
images (resolution 256×256) are lena, boat, zelda and
peppers with the grayscale 256. The experimental
results are shown in Fig 6. And all the experimental
numbers are listed in Table 1.

The visual quality of the regenerated image can be
measured by the following metric: Peak Signal Noise

Ratio (PSNR), compression ratio and kd (the
difference between the original image and the
regenerated image on a given resolution, i.e. a
percentage of pixels where they differ).

The formulas of PSNR and kd are shown as
formula (1) and (3):

)255(log*10
2

10 MSE
PSNR = (1)

Where:

 ∑
−

=

−=
1

0

2
2

2

)(1 N

i
ii gf

N
MSE (2)

if and ig are the pixel values of the testing and

regenerated images, 2N is the total number of pixels.

 kk
w

k
k wgwf

gfd
22

)()(
),(

×

−
= ∑ Σ∈ (3)

where f and g are two multiresolution images,
and k is a positive integer. This formula can meet
people’s subjective visual feelings well. When the
difference between two images is obvious, the value of

kd is much bigger.
Our experiments show that it is not efficient to

express images of size 8×8 pixels or smaller by GFA.
We get significantly better results (in terms of the time
needed for encoding as well as the quality/size ratio) if
we use a vector quantization (VQ) on this resolution.
We use a codebook of size 256 created by generalized
Lloyd algorithm [5].

6. Conclusions

We propose an image compression scheme using
the bitplane modeling and generalized finite automata
(GFA) representation aimed at optimally exploring the
self-similarity inhabited in gray images. From the
experimental results we can see that the regenerated
images have no obvious blocking effect; On the other
hand, although both DFA and NFA are capable of
recognizing precisely the regular set, the GFA with
underlying deterministic finite automata are more
powerful than “nondeterministic” WFA suggested by
Karek Culik II and Jarkko Kari. For example, the
“deterministic” GFA can lead to faster recognizers than
the “nondeterministic” WFA; second, when encoding
the image, GFA doesn’t have to solve equations;
finally, GFA can make decoding image more quickly.

 1692

Gray image of lena Decoded image of lena Gray image of boat Decoded image of boat

Gray image of zelda Decoded image of zelda Gray image of peppers Decoded image of peppers

Figure 6. The comparison of original images and regenerated images

Table 1. Performance of GFA compression
Image
Names

States
number Coding bytes Compression ratio d PSNR

lena 2388 6605 6.1243：1 9.3891 25.8233
boat 2384 6774 6.0291：1 19.0676 20.2781
zelda 2521 7285 5.7584：1 21.2087 19.9599
peppers 2515 7107 5.8499：1 13.2287 20.8056

7. Acknowledgements

The authors wish to acknowledge the support from
the Natural Science Foundation of Jiangsu Province
under Grant BK2007050.

 8. References

[1] Karel Culik II, Vladimir Valenta. Finite Automata

Based Compression of Bi-level and Simple Color
Images. Utah:Data Compression Conference,1996.

[2] K.Culik II, J.Karhumaki. Automata Computing Real

Functions. SIAM J. on Computing, 1994,23:789-814.

[3] K.Culik II, J.Kari. Image Compression Using Weighted

Finite Automata. Computer and
Graphics,1993,17(3):305-313.

[4] K.Culik II, S.Dube. Affine automata and related

techniques for generation of complex images.
Proceeding of

MFCS,Lecture Notes In Computer Science, Springer,
Berlin,1990,452:224-231.

[5] R.J.Clarke. Digital Compression of Still Images and

Video. Ltd.:Academic Press,1995.

[6] J.E.Hopcroft, J.D.Ullman. Introduction to automata

theory. language and computation, Addison-
Wesley,1979.

[7] J.Berstel, A.A.Nait. Quadtrees generated by finite

automata. AFCET61/62,1989:167-175.

[8] Chen Huowang, Liu Chunlin, Tan Qingping.

Programming Language: Compiler Construction
Principles. Beijing: National Defence Industry Press,
2004.

