INF3580/4580 – Semantic Technologies – Spring 2018 Lecture 8: RDF and RDFS semantics

Martin Giese

6th March 2018

Department of Informatics

University of Oslo

Oblig 5

- Published today
- First delivery due 21 March
- Final delivery 2 weeks after feedback
- Extra question for INF4580 students
- "Real" semantics of RDF and RDFS
- Foundations book: Section 3.2
- Still OK to ignore some complications, see oblig text
- We provide an excerpt of Sect. 3.2 with unimportant parts removed.
- Go to group sessions!

Today's Plan

- Why we need semantics
- 2 Model-theoretic semantics from a birds-eye perspective
- Repetition: Propositional Logic
- Simplified RDF semantics

Outline

- Why we need semantics
- 2 Model-theoretic semantics from a birds-eye perspective
- 3 Repetition: Propositional Logic
- 4 Simplified RDF semantics

A formal semantics for RDFS became necessary because

• the previous informal specification

- 1 the previous informal specification
- 2 left plenty of room for interpretation of conclusions, whence

- the previous informal specification
- left plenty of room for interpretation of conclusions, whence
- triple stores sometimes answered queries differently, thereby

- 1 the previous informal specification
- left plenty of room for interpretation of conclusions, whence
- triple stores sometimes answered queries differently, thereby
- obstructing interoperability and interchangeability.

- 1 the previous informal specification
- left plenty of room for interpretation of conclusions, whence
- triple stores sometimes answered queries differently, thereby
- obstructing interoperability and interchangeability.
- The information content of data once more came to depend on applications

A formal semantics for RDFS became necessary because

- 1 the previous informal specification
- left plenty of room for interpretation of conclusions, whence
- triple stores sometimes answered queries differently, thereby
- obstructing interoperability and interchangeability.
- The information content of data once more came to depend on applications

But RDF was supposed to be the data liberation movement

Another look at the Semantic Web cake

Figure: Semantic Web Stack

RDF is to serve as the foundation of the entire Semantic Web tower.

• It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
 - type propagation/inheritance,

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
 - type propagation/inheritance,
 - "Tweety is a penguin and a penguin is a bird, so..."

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
 - type propagation/inheritance,
 - "Tweety is a penguin and a penguin is a bird, so..."
 - domain and range restrictions,

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
 - type propagation/inheritance,
 - "Tweety is a penguin and a penguin is a bird, so..."
 - domain and range restrictions,
 - "Martin has a birthdate, and only people have birthdates, so. . . "

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
 - type propagation/inheritance,
 - "Tweety is a penguin and a penguin is a bird, so..."
 - domain and range restrictions,
 - "Martin has a birthdate, and only people have birthdates, so. . . "
 - existential restrictions.

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
 - type propagation/inheritance,
 - "Tweety is a penguin and a penguin is a bird, so..."
 - domain and range restrictions,
 - "Martin has a birthdate, and only people have birthdates, so. . . "
 - existential restrictions.
 - "all persons have parents, and Martin is a person, so. . . "

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
 - type propagation/inheritance,
 - "Tweety is a penguin and a penguin is a bird, so..."
 - domain and range restrictions,
 - "Martin has a birthdate, and only people have birthdates, so. . . "
 - existential restrictions.
 - "all persons have parents, and Martin is a person, so..."
 - ... to which we shall return in later lectures

RDF is to serve as the foundation of the entire Semantic Web tower.

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
 - type propagation/inheritance,
 - "Tweety is a penguin and a penguin is a bird, so..."
 - domain and range restrictions,
 - "Martin has a birthdate, and only people have birthdates, so. . . "
 - existential restrictions.
 - "all persons have parents, and Martin is a person, so. . . "
 - ... to which we shall return in later lectures

To ensure that infinitely many conclusions will be agreed upon,

RDF is to serve as the foundation of the entire Semantic Web tower.

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
 - type propagation/inheritance,
 - "Tweety is a penguin and a penguin is a bird, so..."
 - domain and range restrictions,
 - "Martin has a birthdate, and only people have birthdates, so. . . "
 - existential restrictions.
 - "all persons have parents, and Martin is a person, so. . . "
 - ... to which we shall return in later lectures

To ensure that infinitely many conclusions will be agreed upon,

RDF must be furnished with a model-theory

RDF is to serve as the foundation of the entire Semantic Web tower.

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
 - type propagation/inheritance,
 - "Tweety is a penguin and a penguin is a bird, so..."
 - domain and range restrictions,
 - "Martin has a birthdate, and only people have birthdates, so. . . "
 - existential restrictions.
 - "all persons have parents, and Martin is a person, so..."
 - ... to which we shall return in later lectures

To ensure that infinitely many conclusions will be agreed upon,

- RDF must be furnished with a model-theory
- that specifies how the different node types should be interpreted

RDF is to serve as the foundation of the entire Semantic Web tower.

- It must therefore be sufficiently clear to sustain advanced reasoning, e.g.:
 - type propagation/inheritance,
 - "Tweety is a penguin and a penguin is a bird, so..."
 - domain and range restrictions,
 - "Martin has a birthdate, and only people have birthdates, so. . . "
 - existential restrictions.
 - "all persons have parents, and Martin is a person, so..."
 - ... to which we shall return in later lectures

To ensure that infinitely many conclusions will be agreed upon,

- RDF must be furnished with a model-theory
- that specifies how the different node types should be interpreted
- and in particular what entailment should be taken to mean.

```
Co-authors of Paul Erdős:

SELECT DISTINCT ?name WHERE {
    _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

```
Co-authors of Paul Erdős:

SELECT DISTINCT ?name WHERE {
    _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

```
Co-authors of Paul Erdős:

SELECT DISTINCT ?name WHERE {
    _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

• match the query to graph patterns

```
Co-authors of Paul Erdős:

SELECT DISTINCT ?name WHERE {
    _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

- match the query to graph patterns
- which involves assigning values to variables and blank nodes

```
Co-authors of Paul Erdős:

SELECT DISTINCT ?name WHERE {

_:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

- match the query to graph patterns
- which involves assigning values to variables and blank nodes

But,

• which values are to count?

```
Co-authors of Paul Erdős:

SELECT DISTINCT ?name WHERE {
    _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

- match the query to graph patterns
- which involves assigning values to variables and blank nodes

- which values are to count?
- the problem becomes more acute under reasoning.

```
Co-authors of Paul Erdős:

SELECT DISTINCT ?name WHERE {
    _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

- match the query to graph patterns
- which involves assigning values to variables and blank nodes

- which values are to count?
- the problem becomes more acute under reasoning.
- Should a value for foaf:familyname match a query for foaf:name?

```
Co-authors of Paul Erdős:

SELECT DISTINCT ?name WHERE {
    _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

- match the query to graph patterns
- which involves assigning values to variables and blank nodes

- which values are to count?
- the problem becomes more acute under reasoning.
- Should a value for foaf:familyname match a query for foaf:name?
- Are blanks in SPARQL the same as blanks in RDF?

```
Co-authors of Paul Erdős:

SELECT DISTINCT ?name WHERE {
    _:pub dc:creator [foaf:name "Paul Erdős"] , [foaf:name ?name] .
}
```

SPARQL must

- match the query to graph patterns
- which involves assigning values to variables and blank nodes

- which values are to count?
- the problem becomes more acute under reasoning.
- Should a value for foaf:familyname match a query for foaf:name?
- Are blanks in SPARQL the same as blanks in RDF?

Outline

- 1 Why we need semantics
- 2 Model-theoretic semantics from a birds-eye perspective
- 3 Repetition: Propositional Logic
- 4 Simplified RDF semantics

• The study of how to model the meaning of a logical calculus.

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
 - A finite set of symbols,

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
 - A finite set of symbols,
 - a grammar, which specifies the formulae,

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
 - A finite set of symbols,
 - a grammar, which specifies the formulae,
 - a set of axioms and inference rules from which we construct proofs.

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
 - A finite set of symbols,
 - a grammar, which specifies the formulae,
 - a set of axioms and inference rules from which we construct proofs.
- A logical calculus can be defined apart from any interpretation.

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
 - A finite set of symbols,
 - a grammar, which specifies the formulae,
 - a set of axioms and inference rules from which we construct proofs.
- A logical calculus can be defined apart from any interpretation.
- A calculus that has not been furnished with a formal semantics,

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
 - A finite set of symbols,
 - a grammar, which specifies the formulae,
 - a set of axioms and inference rules from which we construct proofs.
- A logical calculus can be defined apart from any interpretation.
- A calculus that has not been furnished with a formal semantics,
 - is a 'blind' machine, a mere symbol manipulator,

- The study of how to model the meaning of a logical calculus.
- A logical calculus consists of:
 - A finite set of symbols,
 - a grammar, which specifies the formulae,
 - a set of axioms and inference rules from which we construct proofs.
- A logical calculus can be defined apart from any interpretation.
- A calculus that has not been furnished with a formal semantics,
 - is a 'blind' machine, a mere symbol manipulator,
 - the only criterion of correctness is provability.

A proof typically looks something like this:

A proof typically looks something like this:

$$\frac{P \vdash Q, P \qquad Q, P \vdash Q}{P \rightarrow Q, P \vdash Q} \qquad \frac{R \vdash Q, P \qquad Q, R \vdash Q}{P \rightarrow Q, R \vdash Q}$$
$$\frac{P \rightarrow Q, P \lor R \vdash Q}{P \rightarrow Q \vdash (P \lor R) \rightarrow Q}$$

A proof typically looks something like this:

$$\frac{P \vdash Q, P \qquad Q, P \vdash Q}{P \rightarrow Q, P \vdash Q} \qquad \frac{R \vdash Q, P \qquad Q, R \vdash Q}{P \rightarrow Q, R \vdash Q}$$
$$\frac{P \rightarrow Q, P \lor R \vdash Q}{P \rightarrow Q \vdash (P \lor R) \rightarrow Q}$$

Where each line represents an application of an inference rule.

A proof typically looks something like this:

$$\frac{P \vdash Q, P \qquad Q, P \vdash Q}{P \rightarrow Q, P \vdash Q} \qquad \frac{R \vdash Q, P \qquad Q, R \vdash Q}{P \rightarrow Q, R \vdash Q}$$
$$\frac{P \rightarrow Q, P \lor R \vdash Q}{P \rightarrow Q \vdash (P \lor R) \rightarrow Q}$$

Where each line represents an application of an inference rule.

• How do we know that the inference rules are well-chosen?

A proof typically looks something like this:

$$\frac{P \vdash Q, P \qquad Q, P \vdash Q}{P \rightarrow Q, P \vdash Q} \qquad \frac{R \vdash Q, P \qquad Q, R \vdash Q}{P \rightarrow Q, R \vdash Q}$$
$$\frac{P \rightarrow Q, P \lor R \vdash Q}{P \rightarrow Q \vdash (P \lor R) \rightarrow Q}$$

Where each line represents an application of an inference rule.

- How do we know that the inference rules are well-chosen?
- Which manipulations derive conclusions that hold in the real world?

The "Real World"

G: Aristotle was Greek

H: Aristotle was humanM: Aristotle was mortal

Statements

$$G \rightarrow H$$

$$H \rightarrow M$$

G: Aristotle was Greek

H: Aristotle was human

M: Aristotle was mortal

The "Real World"

G: Aristotle was Greek

H: Aristotle was human

Statements

$$G \rightarrow H$$

 $H \rightarrow M$

Abstract to G, H, M The "Real World" $G \stackrel{H}{\longleftarrow} M$ $G \stackrel{M}{\longleftarrow} M$

G: Aristotle was Greek

H: Aristotle was human

G: Aristotle was Greek

H: Aristotle was human

G: Aristotle was Greek

H: Aristotle was human

G: Aristotle was Greek

H: Aristotle was human

M: Aristotle was mortal

 \mathcal{A} : intended model

 $\mathcal{B}\ldots$: unintended models

Basic idea: Asserting a sentence makes a claim about the world:

• A formula therefore limits the set of worlds that are possible.

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
 - by describing models of these worlds.

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
 - by describing models of these worlds.
 - thus making certain aspects of meaning mathematically tractable

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
 - by describing models of these worlds.
 - thus making certain aspects of meaning mathematically tractable
- The exact makeup of models varies from logic to logic, but they all

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
 - by describing models of these worlds.
 - thus making certain aspects of meaning mathematically tractable
- The exact makeup of models varies from logic to logic, but they all
 - express a view on what kinds of things there are,

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
 - by describing models of these worlds.
 - thus making certain aspects of meaning mathematically tractable
- The exact makeup of models varies from logic to logic, but they all
 - express a view on what kinds of things there are,
 - and the basic relations between these things

Model-theoretic semantics

Basic idea: Asserting a sentence makes a claim about the world:

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
 - by describing models of these worlds.
 - thus making certain aspects of meaning mathematically tractable
- The exact makeup of models varies from logic to logic, but they all
 - express a view on what kinds of things there are,
 - and the basic relations between these things
- By selecting a class of models one selects the basic features of the world

Model-theoretic semantics

Basic idea: Asserting a sentence makes a claim about the world:

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
 - by describing models of these worlds.
 - thus making certain aspects of meaning mathematically tractable
- The exact makeup of models varies from logic to logic, but they all
 - express a view on what kinds of things there are,
 - and the basic relations between these things
- By selecting a class of models one selects the basic features of the world
 - as one chooses to see it.

Model-theoretic semantics

Basic idea: Asserting a sentence makes a claim about the world:

- A formula therefore limits the set of worlds that are possible.
- We can therefore encode meaning/logical content
 - by describing models of these worlds.
 - thus making certain aspects of meaning mathematically tractable
- The exact makeup of models varies from logic to logic, but they all
 - express a view on what kinds of things there are,
 - and the basic relations between these things
- By selecting a class of models one selects the basic features of the world
 - as one chooses to see it.
- Whatever these models all share can be said to be entailed by those features.

Outline

- Why we need semantics
- 2 Model-theoretic semantics from a birds-eye perspective
- Repetition: Propositional Logic
- 4 Simplified RDF semantics

Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r, \ldots is a formula
- 2 if A and B are formulas, then
 - $(A \wedge B)$ is also a formula (read: "A and B")
 - $(A \lor B)$ is also a formula (read: "A or B")
 - $\neg A$ is also a formula (read: "not A")
- Nothing else is. Only what rules [1] and [2] say is a formula.
- Examples of formulae: $p (p \land \neg r) (q \land \neg q) ((p \lor \neg q) \land \neg p)$
- Formulas are just a kind of strings until now:
 - no meaning
 - but every formula can be "parsed" uniquely.

Interpretations

- Logic is about truth and falsity
- Truth of compound formulas depends on truth of letters.
- Idea: put all letters that are "true" into a set!
- \bullet Define: An interpretation ${\cal I}$ is a set of letters.
- Letter p is true in interpretation \mathcal{I} if $p \in \mathcal{I}$.
- E.g., in $\mathcal{I}_1 = \{p, q\}$, p is true, but r is false.

• But in $\mathcal{I}_2 = \{q, r\}$, p is false, but r is true.

Semantic Validity ⊨

• To say that p is true in \mathcal{I} , write

$$\mathcal{I} \models p$$

For instance

• In other words, for all letters p:

$$\mathcal{I} \models p$$
 if and only if $p \in \mathcal{I}$

Validity of Compound Formulas

- Is $((q \land r) \lor (p \land q))$ true in \mathcal{I} ?
- Idea: apply our rule recursively
- For any formulas A and B,...
- \bullet ...and any interpretation $\mathcal{I},...$
 - ... $\mathcal{I} \models A \land B$ if and only if $\mathcal{I} \models A$ and $\mathcal{I} \models B$
 - ... $\mathcal{I} \models A \lor B$ if and only if $\mathcal{I} \models A$ or $\mathcal{I} \models B$ (or both)
 - ... $\mathcal{I} \models \neg A$ if and only if $\mathcal{I} \not\models A$.
- For instance

Truth Table

• Semantics of \neg , \wedge , \vee often given as *truth table*:

Α	В	$\neg A$	$A \wedge B$	$A \vee B$
f	f	t	f	f
f	t	t	f	t
t	f	f	f	t
t	t	f	t	t

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a *theorem* (of propositional logic)
- written:

 $\models A$

- $(p \vee \neg p)$ is a tautology
- True whatever *p* means:
 - The sky is blue or the sky is not blue.
 - P.N. will win the 50km in 2016 or P.N. will not win the 50km in 2016.
 - The slithy toves gyre or the slithy toves do not gyre.
- Possible to derive true statements mechanically...
- ... without understanding their meaning!
- ...e.g. using truth tables for small cases.

Entailment

- Tautologies are true in all interpretations
- Some formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

$$\mathcal{I} \models B$$

for all interpretations \mathcal{I} with $\mathcal{I} \models A$

- Also: "B is a logical consequence of A"
- Whenever A holds, also B holds
- For instance:

$$p \wedge q \models p$$

- Independent of meaning of *p* and *q*:
 - If it rains and the sky is blue, then it rains
 - If P.N. wins the race and the world ends, then P.N. wins the race
 - If 'tis brillig and the slythy toves do gyre, then 'tis brillig
- Also entailment can be checked mechanically, without knowing the meaning of words.

Question

Given the letters

- P Ola answers none of the questions correctly
- Q Ola fails the exam

Which of the following are tautologies of propositional logic?

- Q
- $\bigcirc \neg Q$
- \bullet $P \rightarrow Q$

Outline

- Why we need semantics
- 2 Model-theoretic semantics from a birds-eye perspective
- 3 Repetition: Propositional Logic
- Simplified RDF semantics

Unlike propositions, triples have parts, namely:

Unlike propositions, triples have parts, namely:

- subject
- predicates, and
- objects

Unlike propositions, triples have parts, namely:

- subject
- predicates, and
- objects

Less abstractly, these may be:

Unlike propositions, triples have parts, namely:

- subject
- predicates, and
- objects

Less abstractly, these may be:

- URI references
- literal values, and
- blank nodes

Unlike propositions, triples have parts, namely:

- subject
- predicates, and
- objects

Less abstractly, these may be:

- URI references
- literal values, and
- blank nodes

Triples are true or false on the basis of what each part refers to.

The RDF data model consists of three object types; resources, properties and literals values:

The RDF data model consists of three object types; resources, properties and literals values:

Resources: All things described by RDF are called resources. Resources are identified by URIs

The RDF data model consists of three object types; resources, properties and literals values:

Resources: All things described by RDF are called resources. Resources are identified by URIs

Properties: A property is a specific aspect, characteristic, attribute or relation used to describe a resource. Properties are also resources, and therefore identified by URIs.

The RDF data model consists of three object types; resources, properties and literals values:

Resources: All things described by RDF are called resources. Resources are identified by URIs

Properties: A property is a specific aspect, characteristic, attribute or relation used to describe a resource. Properties are also resources, and therefore identified by URIs.

Literals: A literal value is a concrete data item, such as an integer or a string.

The RDF data model consists of three object types; resources, properties and literals values:

Resources: All things described by RDF are called resources. Resources are identified by URIs

Properties: A property is a specific aspect, characteristic, attribute or relation used to describe a resource. Properties are also resources, and therefore identified by URIs.

Literals: A literal value is a concrete data item, such as an integer or a string.

String literals name themselves, i.e.

The RDF data model consists of three object types; resources, properties and literals values:

Resources: All things described by RDF are called resources. Resources are identified by URIs

Properties: A property is a specific aspect, characteristic, attribute or relation used to describe a resource. Properties are also resources, and therefore identified by URIs.

Literals: A literal value is a concrete data item, such as an integer or a string.

String literals name themselves, i.e.

• "Julius Ceasar" names the string "Julius Ceasar"

The RDF data model consists of three object types; resources, properties and literals values:

Resources: All things described by RDF are called resources. Resources are identified by URIs

Properties: A property is a specific aspect, characteristic, attribute or relation used to describe a resource. Properties are also resources, and therefore identified by URIs.

Literals: A literal value is a concrete data item, such as an integer or a string.

String literals name themselves, i.e.

- "Julius Ceasar" names the string "Julius Ceasar"
- "42" names the string "42"

The RDF data model consists of three object types; resources, properties and literals values:

Resources: All things described by RDF are called resources. Resources are identified by URIs

Properties: A property is a specific aspect, characteristic, attribute or relation used to describe a resource. Properties are also resources, and therefore identified by URIs.

Literals: A literal value is a concrete data item, such as an integer or a string.

String literals name themselves, i.e.

- "Julius Ceasar" names the string "Julius Ceasar"
- "42" names the string "42"

The semantics of typed and language tagged literals is considerably more complex.

• We will simplify things by only looking at certain kinds of RDF graphs.

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
 - Properties like foaf:knows, dc:title

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
 - Properties like foaf:knows, dc:title
 - Classes like foaf: Person

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
```

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
\begin{array}{ll} \text{individual property individual }.\\ \\ \text{individual } & \text{rdf:type class} \end{array}.
```

```
class rdfs:subClassOf class .
```

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
```

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
```

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .
```

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint kinds:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

```
individual property individual .
individual rdf:type class .
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .
```

• Forget blank nodes and literals for a while!

• Resources and Triples are no longer all alike

- Resources and Triples are no longer all alike
- No need to use the same general triple notation

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

Triples	Abbreviation
indi prop indi .	$ \begin{array}{c} r(i_1, i_2) \\ C(i_1) \end{array} $
indi rdf:type class .	$C(i_1)$
class rdfs:subClassOf class .	$C \sqsubseteq D$
<pre>prop rdfs:subPropOf prop .</pre>	$C \sqsubseteq D$ $r \sqsubseteq s$
<pre>prop rdfs:domain class .</pre>	dom(r, C) $rg(r, C)$
<pre>prop rdfs:range class .</pre>	rg(<i>r</i> , <i>C</i>)

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

Triples	Abbreviation
indi prop indi .	$r(i_1, i_2)$ $C(i_1)$
indi rdf:type class .	$C(i_1)$
class rdfs:subClassOf class .	$C \sqsubseteq D$
<pre>prop rdfs:subPropOf prop .</pre>	$r \sqsubseteq s$
<pre>prop rdfs:domain class .</pre>	$\frac{-}{\text{dom}(r,C)}$ $rg(r,C)$
<pre>prop rdfs:range class .</pre>	rg(<i>r</i> , <i>C</i>)

• This is called "Description Logic" (DL) Syntax

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

Triples	Abbreviation
indi prop indi .	$r(i_1, i_2)$ $C(i_1)$
indi rdf:type class .	$C(i_1)$
class rdfs:subClassOf class .	$C \sqsubseteq D$
<pre>prop rdfs:subPropOf prop .</pre>	$r \sqsubseteq s$
<pre>prop rdfs:domain class .</pre>	dom(r, C) $rg(r, C)$
<pre>prop rdfs:range class .</pre>	rg(<i>r</i> , <i>C</i>)

- This is called "Description Logic" (DL) Syntax
- Used much in particular for OWL

• Triples:

Triples:

```
ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .
```


Triples:

```
ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .
```

• DL syntax, without namespaces:

Triples:

```
ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .
```

• DL syntax, without namespaces:

```
loves(romeo, juliet)

Lady(juliet)

Lady \sqsubseteq Person

loves \sqsubseteq knows

dom(loves, Lover)

rg(loves, Beloved)
```


• To interpret propositional formulas, we need to know how to interpret

- To interpret propositional formulas, we need to know how to interpret
 - Letters

- To interpret propositional formulas, we need to know how to interpret
 - Letters
- To interpret the six kinds of triples, we need to know how to interpret

- To interpret propositional formulas, we need to know how to interpret
 - Letters
- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects

- To interpret propositional formulas, we need to know how to interpret
 - Letters
- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects

- To interpret propositional formulas, we need to know how to interpret
 - Letters
- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects

- To interpret propositional formulas, we need to know how to interpret
 - Letters
- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- ullet A *DL-interpretation* ${\mathcal I}$ consists of

- To interpret propositional formulas, we need to know how to interpret
 - Letters
- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- ullet A *DL-interpretation* ${\mathcal I}$ consists of
 - ullet A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}

- To interpret propositional formulas, we need to know how to interpret
 - Letters
- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- ullet A *DL-interpretation* ${\mathcal I}$ consists of
 - ullet A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - For each individual URI i, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

- To interpret propositional formulas, we need to know how to interpret
 - Letters
- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- ullet A *DL-interpretation* ${\mathcal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - For each individual URI i, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
 - ullet For each class URI C, a subset $C^\mathcal{I} \subseteq \Delta^\mathcal{I}$

- To interpret propositional formulas, we need to know how to interpret
 - Letters
- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- ullet A *DL-interpretation* $\mathcal I$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - For each individual URI i, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
 - For each class URI C, a subset $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - ullet For each property URI r, a relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

- To interpret propositional formulas, we need to know how to interpret
 - Letters
- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- ullet A *DL-interpretation* ${\mathcal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - For each individual URI i, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
 - For each class URI C, a subset $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - For each property URI r, a relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- Given these, it will be possible to say whether a triple holds or not.

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & &$

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & &$

$$ullet$$
 $romeo^{\mathcal{I}_1} = egin{array}{c} juliet^{\mathcal{I}_1} = egin{array}{c} juliet^{\mathcal{I}_2} = egin{array}$

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$

$$ullet$$
 $romeo^{\mathcal{I}_1} = egin{array}{c} juliet^{\mathcal{I}_1} = egin{array}{c} juliet^{\mathcal{I}_2} = egin{array}$

$$ullet$$
 Lady $^{\mathcal{I}_1} = \left\{ egin{align*} igwedge & ext{Person}^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} \end{array}
ight.$

$$\mathit{Lover}^{\mathcal{I}_1} = \mathit{Beloved}^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & \\ & &$$

$$ullet$$
 $\Delta^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & & \\ & & & & \\ & &$

$$ullet$$
 romeo $^{\mathcal{I}_1}=$ $egin{array}{c} ext{juliet}^{\mathcal{I}_1}= egin{array}{c} ext{initial} \end{array}$

$$juliet^{\mathcal{I}_{\mathbf{1}}} =$$

$$ullet$$
 Lady $^{\mathcal{I}_1} = \left\{egin{array}{c} igwedge^{\mathcal{I}_1} = igwedge^{\mathcal{I}_1} \end{array}
ight\}$ Person $^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1}$

$$\mathit{Person}^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1}$$

$$\mathit{Lover}^{\mathcal{I}_1} = \mathit{Beloved}^{\mathcal{I}_1} = \left\{ egin{align*} & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & &$$

$$ullet$$
 loves $\mathcal{I}_1 = \left\{ \left\langle igwedge, igwedge
ight
angle, \left\langle igwedge, igwedge
ight
angle, \left\langle igwedge, igwedge
ight
angle
ight\}$

$$\textit{knows}^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} imes \Delta^{\mathcal{I}_1}$$

$$ullet$$
 $\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$

- ullet $\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$
- $romeo^{\mathcal{I}_2} = 17$ $juliet^{\mathcal{I}_2} = 32$

- ullet $\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$
- $romeo^{\mathcal{I}_2} = 17$ $juliet^{\mathcal{I}_2} = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$

- $\bullet \ \Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$
- $romeo^{\mathcal{I}_2} = 17$ $juliet^{\mathcal{I}_2} = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$
- $loves^{\mathcal{I}_2} = \langle = \{ \langle x, y \rangle \mid x < y \}$ $knows^{\mathcal{I}_2} = \leq = \{ \langle x, y \rangle \mid x \leq y \}$

- $\bullet \ \Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$
- $romeo^{\mathcal{I}_2} = 17$ $juliet^{\mathcal{I}_2} = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$
- $loves^{\mathcal{I}_2} = \langle = \{ \langle x, y \rangle \mid x < y \}$ $knows^{\mathcal{I}_2} = \leq = \{ \langle x, y \rangle \mid x \leq y \}$
- Just because names (URIs) look familiar, they don't need to denote what we think!

An example "non-intended" interpretation

- $\bullet \ \Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$
- $romeo^{\mathcal{I}_2} = 17$ $juliet^{\mathcal{I}_2} = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$
- $loves^{\mathcal{I}_2} = \langle = \{ \langle x, y \rangle \mid x < y \}$ $knows^{\mathcal{I}_2} = \leq = \{ \langle x, y \rangle \mid x \leq y \}$
- Just because names (URIs) look familiar, they don't need to denote what we think!
- In fact, there is no way of ensuring they denote only what we think!

• Given an interpretation \mathcal{I} , define \models as follows:

- Given an interpretation \mathcal{I} , define \models as follows: $\mathcal{I} \models r(i_1, i_2)$ iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ $\mathcal{I} \models C(i) \text{ iff } i^{\mathcal{I}} \in C^{\mathcal{I}}$

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ $\mathcal{I} \models C(i) \text{ iff } i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
 - $\mathcal{I}_1 \models loves(juliet, romeo)$ because

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
 - $\mathcal{I}_1 \models loves(juliet, romeo)$ because

$$\left. \left\langle \left\langle \right\rangle \right\rangle \in \mathit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle \right\rangle , \left\langle \left\langle \right\rangle \right\rangle \right\}$$

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
 - $\mathcal{I}_1 \models loves(juliet, romeo)$ because

$$\left\langle \left\langle \right\rangle \right\rangle \in \mathit{loves}^{\mathcal{I}_{\mathbf{1}}} = \left\{ \left\langle \left\langle \right\rangle \right\rangle \right\rangle, \left\langle \left\langle \right\rangle \right\rangle \right\}$$

• $\mathcal{I}_1 \models Person(romeo)$ because

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
 - $\mathcal{I}_1 \models loves(juliet, romeo)$ because

$$\left\langle \left\langle \right\rangle \right\rangle \in \mathit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle \right\rangle \right\rangle, \left\langle \left\langle \right\rangle \right\rangle \right\}$$

• $\mathcal{I}_1 \models Person(romeo)$ because

$$\mathit{romeo}^{\mathcal{I}_{\mathbf{1}}} = \bigcap_{i \in Person^{\mathcal{I}_{\mathbf{1}}}} \in \mathit{Person}^{\mathcal{I}_{\mathbf{1}}} = \Delta^{\mathcal{I}_{\mathbf{1}}}$$

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models r(i_1, i_2)$ iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
 - $\mathcal{I}_1 \models loves(juliet, romeo)$ because

$$\left\langle \left\langle \right\rangle \right\rangle \in \mathit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle \right\rangle \right\rangle, \left\langle \left\langle \right\rangle \right\rangle \right\}$$

• $\mathcal{I}_1 \models Person(romeo)$ because

$$romeo^{\mathcal{I}_{\mathbf{1}}} = \bigcap_{i=1}^{\mathcal{I}_{\mathbf{1}}} \in \mathit{Person}^{\mathcal{I}_{\mathbf{1}}} = \Delta^{\mathcal{I}_{\mathbf{1}}}$$

• $\mathcal{I}_2 \not\models loves(juliet, romeo)$ because

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
 - $\mathcal{I}_1 \models loves(juliet, romeo)$ because

$$\left\langle \left\langle \right\rangle \right\rangle \in \mathit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle \right\rangle \right\rangle, \left\langle \left\langle \right\rangle \right\rangle \right\}$$

• $\mathcal{I}_1 \models Person(romeo)$ because

$$\mathit{romeo}^{\mathcal{I}_{\mathbf{1}}} = \bigcap_{i \in Person^{\mathcal{I}_{\mathbf{1}}}} \in \mathit{Person}^{\mathcal{I}_{\mathbf{1}}} = \Delta^{\mathcal{I}_{\mathbf{1}}}$$

• $\mathcal{I}_2 \not\models loves(juliet, romeo)$ because $loves^{\mathcal{I}_2} = <$ and $juliet^{\mathcal{I}_2} = 32 \not< romeo^{\mathcal{I}_2} = 17$

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
 - $\mathcal{I}_1 \models loves(juliet, romeo)$ because

$$\left\langle \left\langle \right\rangle \right\rangle \in \mathit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle \right\rangle \right\rangle, \left\langle \left\langle \right\rangle \right\rangle \right\}$$

• $\mathcal{I}_1 \models Person(romeo)$ because

$$\mathit{romeo}^{\mathcal{I}_{\mathbf{1}}} = \bigcap_{i \in Person^{\mathcal{I}_{\mathbf{1}}}} \in \mathit{Person}^{\mathcal{I}_{\mathbf{1}}} = \Delta^{\mathcal{I}_{\mathbf{1}}}$$

- $\mathcal{I}_2 \not\models loves(juliet, romeo)$ because $loves^{\mathcal{I}_2} = \langle and \ juliet^{\mathcal{I}_2} = 32 \not< romeo^{\mathcal{I}_2} = 17$
- $\mathcal{I}_2 \not\models Person(romeo)$ because

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- Examples:
 - $\mathcal{I}_1 \models loves(juliet, romeo)$ because

$$\left\langle \left\langle \right\rangle \right\rangle \in \mathit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \left\langle \right\rangle \right\rangle , \left\langle \left\langle \right\rangle \right\rangle \right\}$$

• $\mathcal{I}_1 \models Person(romeo)$ because

$$\mathit{romeo}^{\mathcal{I}_{\mathbf{1}}} = \bigcap_{i \in \mathit{Person}^{\mathcal{I}_{\mathbf{1}}}} \in \mathit{Person}^{\mathcal{I}_{\mathbf{1}}} = \Delta^{\mathcal{I}_{\mathbf{1}}}$$

- $\mathcal{I}_2 \not\models loves(juliet, romeo)$ because $loves^{\mathcal{I}_2} = \langle \text{ and } juliet^{\mathcal{I}_2} = 32 \not< romeo^{\mathcal{I}_2} = 17$
- $\mathcal{I}_2 \not\models Person(romeo)$ because
- $romeo^{\mathcal{I}_2} = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$

• Given an interpretation \mathcal{I} , define \models as follows:

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s \text{ iff } r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \text{dom}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $x \in C^{\mathcal{I}}$

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s \text{ iff } r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \text{dom}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $x \in C^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{rg}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $y \in C^{\mathcal{I}}$

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s \text{ iff } r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \text{dom}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $x \in C^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{rg}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $y \in C^{\mathcal{I}}$
- Examples:

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s \text{ iff } r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \text{dom}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $x \in C^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{rg}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $y \in C^{\mathcal{I}}$
- Examples:
 - $\mathcal{I}_1 \models Lover \sqsubseteq Person$ because

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models C \sqsubseteq D \text{ iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s \text{ iff } r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \text{dom}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $x \in C^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{rg}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $y \in C^{\mathcal{I}}$
- Examples:
 - $\mathcal{I}_1 \models Lover \sqsubseteq Person$ because

$$Lover^{\mathcal{I}_{1}} = \left\{ \left\{ \left\{ \left\{ \right\} , \left\{ \right\} \right\} \right\} \subseteq Person^{\mathcal{I}_{1}} = \left\{ \left\{ \left\{ \left\{ \right\} , \left\{ \right\} \right\} \right\} \right\} \right\}$$

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models C \sqsubseteq D \text{ iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \mathsf{dom}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $x \in C^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{rg}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $y \in C^{\mathcal{I}}$
- Examples:
 - $\mathcal{I}_1 \models Lover \sqsubseteq Person$ because

$$Lover^{\mathcal{I}_{\mathbf{1}}} = \left\{ \bigcirc, \bigcirc \right\} \subseteq Person^{\mathcal{I}_{\mathbf{1}}} = \left\{ \bigcirc, \bigcirc, \bigcirc, \bigcirc \right\}$$

- Given an interpretation \mathcal{I} , define \models as follows:
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s \text{ iff } r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\mathcal{I} \models \text{dom}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $x \in C^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{rg}(r, C)$ iff for all $\langle x, y \rangle \in r^{\mathcal{I}}$, we have $y \in C^{\mathcal{I}}$
- Examples:
 - ullet $\mathcal{I}_1 \models \mathit{Lover} \sqsubseteq \mathit{Person}$ because

$$Lover^{\mathcal{I}_{\mathbf{1}}} = \left\{ \left\{ \left\{ \right\}, \left\{ \right\} \right\} \subseteq Person^{\mathcal{I}_{\mathbf{1}}} = \left\{ \left\{ \left\{ \right\}, \left\{ \right\}, \left\{ \right\} \right\} \right\} \right\}$$

• $\mathcal{I}_2 \not\models Lover \sqsubseteq Person \text{ because}$ $Lover^{\mathcal{I}_2} = \mathbb{N} \text{ and } Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$

Finding out stuff about Romeo and Juliet

Finding out stuff about Romeo and Juliet

Finding out stuff about Romeo and Juliet

$$\mathcal{I}_2 \models \mathsf{dom}(knows, Beloved)$$

because...

$$\mathcal{I}_2 \models \mathsf{dom}(knows, Beloved)$$

because...

$$knows^{\mathcal{I}_2} = \leq = \{ \langle x, y \rangle \mid x \leq y \}$$

$$Beloved^{\mathcal{I}_2} = \mathbb{N}$$

$$\mathcal{I}_2 \models \mathsf{dom}(knows, Beloved)$$

because...

$$knows^{\mathcal{I}_2} = \leq = \{ \langle x, y \rangle \mid x \leq y \}$$

$$Beloved^{\mathcal{I}_2} = \mathbb{N}$$

and for any x and y with

$$\langle x, y \rangle \in knows^{\mathcal{I}_2}$$
, i.e. $x \leq y$,

 $\mathcal{I}_2 \models \mathsf{dom}(knows, Beloved)$

because...

$$knows^{\mathcal{I}_2} = \leq = \{\langle x, y \rangle \mid x \leq y\}$$

$$Beloved^{\mathcal{I}_2} = \mathbb{N}$$

and for any x and y with

$$\langle x, y \rangle \in knows^{\mathcal{I}_2}$$
, i.e. $x \leq y$,

we also have

$$x \in \mathbb{N}$$
 i.e. $x \in Beloved^{\mathcal{I}_2}$

ullet Given an interpretation ${\mathcal I}$

- ullet Given an interpretation ${\mathcal I}$
- And a set of triples A (any of the six kinds)

- ullet Given an interpretation ${\mathcal I}$
- And a set of triples A (any of the six kinds)
- \mathcal{A} is valid in \mathcal{I} , written

$$\mathcal{I} \models \mathcal{A}$$

- ullet Given an interpretation ${\mathcal I}$
- And a set of triples A (any of the six kinds)
- \mathcal{A} is valid in \mathcal{I} , written

$$\mathcal{I} \models \mathcal{A}$$

• iff $\mathcal{I} \models A$ for all $A \in \mathcal{A}$.

- ullet Given an interpretation ${\mathcal I}$
- And a set of triples A (any of the six kinds)
- \bullet \mathcal{A} is valid in \mathcal{I} , written

$$\mathcal{I} \models \mathcal{A}$$

- iff $\mathcal{I} \models A$ for all $A \in \mathcal{A}$.
- Then \mathcal{I} is also called a model of \mathcal{A} .

- ullet Given an interpretation ${\mathcal I}$
- ullet And a set of triples ${\cal A}$ (any of the six kinds)
- \bullet \mathcal{A} is valid in \mathcal{I} , written

$$\mathcal{I} \models \mathcal{A}$$

- iff $\mathcal{I} \models A$ for all $A \in \mathcal{A}$.
- Then \mathcal{I} is also called a model of \mathcal{A} .
- Examples:

```
\mathcal{A} = \{loves(romeo, juliet), \ Lady(juliet), \ Lady \sqsubseteq Person, \ loves \sqsubseteq knows, \ dom(loves, Lover), \ rg(loves, Beloved)\}
```

Interpretation of Sets of Triples

- ullet Given an interpretation ${\mathcal I}$
- ullet And a set of triples ${\cal A}$ (any of the six kinds)
- \bullet \mathcal{A} is valid in \mathcal{I} , written

$$\mathcal{I} \models \mathcal{A}$$

- iff $\mathcal{I} \models A$ for all $A \in \mathcal{A}$.
- Then \mathcal{I} is also called a model of \mathcal{A} .
- Examples:

$$A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved)\}$$

ullet Then $\mathcal{I}_1 \models \mathcal{A}$ and $\mathcal{I}_2 \models \mathcal{A}$

ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
 - ullet For any interpretation ${\mathcal I}$ with ${\mathcal I} \models {\mathcal A}$

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
 - For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \models \mathcal{T}$.

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
 - For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \models \mathcal{T}$.
- ullet $\mathcal{A} \models \mathcal{B}$ iff $\mathcal{I} \models \mathcal{B}$ for all \mathcal{I} with $\mathcal{I} \models \mathcal{A}$

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
 - ullet For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
 - $\mathcal{I} \models \mathcal{T}$.
- ullet $\mathcal{A} \models \mathcal{B}$ iff $\mathcal{I} \models \mathcal{B}$ for all \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- Example:

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
 - ullet For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
 - $\mathcal{I} \models \mathcal{T}$.
- ullet $\mathcal{A} \models \mathcal{B}$ iff $\mathcal{I} \models \mathcal{B}$ for all \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- Example:
- $A = \{..., Lady(juliet), Lady \sqsubseteq Person,...\}$ as before

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
 - For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \models \mathcal{T}$.
- ullet $\mathcal{A} \models \mathcal{B}$ iff $\mathcal{I} \models \mathcal{B}$ for all \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- Example:
- $A = \{..., Lady(juliet), Lady \sqsubseteq Person,...\}$ as before
- $A \models Person(juliet)$ because. . .

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
 - For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \models \mathcal{T}$.
- ullet $\mathcal{A} \models \mathcal{B}$ iff $\mathcal{I} \models \mathcal{B}$ for all \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- Example:
- $A = \{..., Lady(juliet), Lady \sqsubseteq Person,...\}$ as before
- $A \models Person(juliet)$ because. . .
- in any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$...

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
 - For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \models \mathcal{T}$.
- ullet $\mathcal{A} \models \mathcal{B}$ iff $\mathcal{I} \models \mathcal{B}$ for all \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- Example:
- $A = \{..., Lady(juliet), Lady \sqsubseteq Person,...\}$ as before
- $A \models Person(juliet)$ because. . .
- in any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$...
- $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$ and $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}, \dots$

- ullet Given a set of triples ${\mathcal A}$ (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
 - For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \models T$.
- ullet $\mathcal{A} \models \mathcal{B}$ iff $\mathcal{I} \models \mathcal{B}$ for all \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- Example:
- $A = \{..., Lady(juliet), Lady \sqsubseteq Person,...\}$ as before
- $A \models Person(juliet)$ because. . .
- in any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$...
- $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$ and $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}, \dots$
- so by set theory $juliet^{\mathcal{I}} \in Person^{\mathcal{I}}...$

- Given a set of triples A (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
 - For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \models T$.
- ullet $\mathcal{A} \models \mathcal{B}$ iff $\mathcal{I} \models \mathcal{B}$ for all \mathcal{I} with $\mathcal{I} \models \mathcal{A}$
- Example:
- $A = \{..., Lady(juliet), Lady \sqsubseteq Person,...\}$ as before
- $A \models Person(juliet)$ because. . .
- in any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$...
- $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$ and $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}, \dots$
- so by set theory $juliet^{\mathcal{I}} \in Person^{\mathcal{I}}...$
- and therefore $\mathcal{I} \models Person(juliet)$

Finding out stuff about Romeo and Juliet

Finding out stuff about Romeo and Juliet

Countermodels

- If $A \not\models T, \dots$
- ullet then there is an \mathcal{I} with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an \mathcal{I} is called a *counter-model* (for the assumption that \mathcal{A} entails \mathcal{T})
- To show that $A \models T$ does *not* hold:
 - Describe an interpretation \mathcal{I} (using your fantasy)
 - Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)
 - Prove that $\mathcal{I} \not\models T$ (using the semantics)

• A as before:

```
A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved)\}
```

 \bullet A as before:

```
A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved)\}
```

• Does $A \models Lover \sqsubseteq Beloved$?

• A as before:

```
A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved)\}
```

- Does $A \models Lover \sqsubseteq Beloved$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .

 \bullet \mathcal{A} as before:

```
A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved)\}
```

- Does $A \models Lover \sqsubseteq Beloved$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretaion with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.

 \bullet A as before:

```
A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved)\}
```

- Does $A \models Lover \sqsubseteq Beloved$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretaion with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.
- Interpret $romeo^{\mathcal{I}} = a$ and $juliet^{\mathcal{I}} = b$

 \bullet \mathcal{A} as before:

```
\mathcal{A} = \{loves(romeo, juliet), \ Lady(juliet), \ Lady \sqsubseteq Person, \ loves \sqsubseteq knows, \ dom(loves, Lover), \ rg(loves, Beloved)\}
```

- Does $A \models Lover \sqsubseteq Beloved$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretaion with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.
- Interpret $romeo^{\mathcal{I}} = a$ and $juliet^{\mathcal{I}} = b$
- Then $\langle a, b \rangle \in loves^{\mathcal{I}}$, $a \in Lover^{\mathcal{I}}$, $b \in Beloved^{\mathcal{I}}$.

ullet ${\cal A}$ as before:

```
A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved)\}
```

- Does $A \models Lover \sqsubseteq Beloved$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretaion with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.
- Interpret $romeo^{\mathcal{I}} = a$ and $juliet^{\mathcal{I}} = b$
- Then $\langle a, b \rangle \in loves^{\mathcal{I}}$, $a \in Lover^{\mathcal{I}}$, $b \in Beloved^{\mathcal{I}}$.
- With $Lover^{\mathcal{I}} = \{a\}$ and $Beloved^{\mathcal{I}} = \{b\}$, $\mathcal{I} \not\models Lover \sqsubseteq Beloved!$

 \bullet \mathcal{A} as before:

```
A = \{loves(romeo, juliet), Lady(juliet), Lady \sqsubseteq Person, loves \sqsubseteq knows, dom(loves, Lover), rg(loves, Beloved)\}
```

- Does $A \models Lover \sqsubseteq Beloved$?
- Holds in \mathcal{I}_1 and \mathcal{I}_2 .
- Try to find an interpretaion with $\Delta^{\mathcal{I}} = \{a, b\}$, $a \neq b$.
- Interpret $romeo^{\mathcal{I}} = a$ and $juliet^{\mathcal{I}} = b$
- Then $\langle a, b \rangle \in loves^{\mathcal{I}}$, $a \in Lover^{\mathcal{I}}$, $b \in Beloved^{\mathcal{I}}$.
- With $Lover^{\mathcal{I}} = \{a\}$ and $Beloved^{\mathcal{I}} = \{b\}$, $\mathcal{I} \not\models Lover \sqsubseteq Beloved!$
- Choose

$$loves^{\mathcal{I}} = knows^{\mathcal{I}} = \{\langle a, b \rangle\}$$
 $Lady^{\mathcal{I}} = Person^{\mathcal{I}} = \{b\}$

to complete the counter-model while satisfying $\mathcal{I} \models \mathcal{A}$

Countermodels about Romeo and Juliet

Countermodels about Romeo and Juliet

Model-theoretic semantics yields an unambigous notion of entailment,

- Model-theoretic semantics yields an unambigous notion of entailment,
- ② which is necessary in order to liberate data from applications.

- Model-theoretic semantics yields an unambigous notion of entailment,
- which is necessary in order to liberate data from applications.
- Shown today: A simplified semantics for parts of RDF
 - Only RDF/RDFS vocabulary to talk "about" predicates and classes
 - 2 Literals and blank nodes next time

- Model-theoretic semantics yields an unambigous notion of entailment,
- which is necessary in order to liberate data from applications.
- Shown today: A simplified semantics for parts of RDF
 - Only RDF/RDFS vocabulary to talk "about" predicates and classes
 - 2 Literals and blank nodes next time

Supplementary reading on RDF and RDFS semantics:

- http://www.w3.org/TR/rdf-mt/
- Section 3.2 in Foundations of SW Technologies