INF3580/4580 – Semantic Technologies – Spring 2018 Lecture 5: Mathematical Foundations

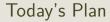
Martin Giese

13th February 2018

UNIVERSITY OF OSLO

- Remember: Hand-in Oblig 3 by tomorrow.
- Oblig 4 published after next lecture.

MSc project in Brazil?



2 Pairs and Relations

Outline

2 Pairs and Relations

3 Propositional Logic

• The great thing about Semantic Technologies is...

- The great thing about Semantic Technologies is...
- ...Semantics!

- The great thing about Semantic Technologies is...
- ...Semantics!
- "The study of meaning"

Image ©Colourbox.no

- The great thing about Semantic Technologies is...
- ...Semantics!
- "The study of meaning"

- The great thing about Semantic Technologies is...
- ...Semantics!
- "The study of meaning"
- RDF has a precisely defined semantics (=meaning)

- The great thing about Semantic Technologies is...
- ...Semantics!
- "The study of meaning"
- RDF has a precisely defined semantics (=meaning)
- Mathematics is best at precise definitions

- The great thing about Semantic Technologies is...
- ...Semantics!
- "The study of meaning"
- RDF has a precisely defined semantics (=meaning)
- Mathematics is best at precise definitions
- RDF has a mathematically defined semantics

• From the inventor of Set Theory, Georg Cantor (1845–1918):

• From the inventor of Set Theory, Georg Cantor (1845–1918):

Unter einer "Menge" verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.

• From the inventor of Set Theory, Georg Cantor (1845–1918):

Unter einer "Menge" verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.

• Translated:

• From the inventor of Set Theory, Georg Cantor (1845–1918):

Unter einer "Menge" verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.

• Translated:

A 'set' is any collection M of definite, distinguishable objects m of our intuition or intellect (called the 'elements' of M) to be conceived as a whole.

• From the inventor of Set Theory, Georg Cantor (1845–1918):

Unter einer "Menge" verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.

• Translated:

A 'set' is any collection M of definite, distinguishable objects m of our intuition or intellect (called the 'elements' of M) to be conceived as a whole.

• There are some problems with this, but it's good enough for us!

• A set is a mathematical object like a number, a function, etc.

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
 - knowing what is in it

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
 - knowing what is in it
 - knowing what is not

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
 - knowing what is in it
 - knowing what is not
- Need to know whether elements are equal or not!

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
 - knowing what is in it
 - knowing what is not
- Need to know whether elements are equal or not!
- There is no order between elements

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
 - knowing what is in it
 - knowing what is not
- Need to know whether elements are equal or not!
- There is no order between elements
- Nothing can be in a set several times

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
 - knowing what is in it
 - knowing what is not
- Need to know whether elements are equal or not!
- There is no order between elements
- Nothing can be in a set several times
- Two sets A and B are equal if they contain the same elements

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
 - knowing what is in it
 - knowing what is not
- Need to know whether elements are equal or not!
- There is no order between elements
- Nothing can be in a set several times
- Two sets A and B are equal if they contain the same elements
 - everything that is in A is also in B

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
 - knowing what is in it
 - knowing what is not
- Need to know whether elements are equal or not!
- There is no order between elements
- Nothing can be in a set several times
- Two sets A and B are equal if they contain the same elements
 - everything that is in A is also in B
 - everything that is in B is also in A

Elements, Set Equality

• Notation for finite sets:

• Notation for finite sets:

$$\{\mathsf{`a'},1, \triangle\}$$

• Contains 'a', 1, and \triangle , and nothing else.

• Notation for finite sets:

$$\{`a', 1, riangle\}$$

- \bullet Contains 'a', 1, and \bigtriangleup , and nothing else.
- There is no order between elements

$$\{1, \bigtriangleup\} = \{\bigtriangleup, 1\}$$

• Notation for finite sets:

$$\{`a', 1, riangle\}$$

- \bullet Contains 'a', 1, and \bigtriangleup , and nothing else.
- There is no order between elements

$$\{1, \bigtriangleup\} = \{\bigtriangleup, 1\}$$

• Nothing can be in a set several times

$$\{1, \triangle, \triangle\} = \{1, \triangle\}$$

• Notation for finite sets:

$$\{`a', 1, riangle\}$$

- \bullet Contains 'a', 1, and \bigtriangleup , and nothing else.
- There is no order between elements

$$\{1, \bigtriangleup\} = \{\bigtriangleup, 1\}$$

• Nothing can be in a set several times

$$\{1, \triangle, \triangle\} = \{1, \triangle\}$$

• Sets with different elements are different:

$$\{1,2\} \neq \{2,3\}$$

 $\{\cdots\}$

Element of-relation

• We use \in to say that something is element of a set:

$$\stackrel{1 \in \{\text{`a'}, 1, \triangle\}}{\text{`b'} \notin \{\text{`a'}, 1, \triangle\}} \in$$

Element of-relation

• We use \in to say that something is element of a set:

$$\stackrel{1 \in \{\texttt{`a'}, 1, \triangle\}}{\texttt{`b'} \notin \{\texttt{`a'}, 1, \triangle\}} \in$$

• $\{3, 7, 12\}$: a set of numbers

Element of-relation

 \bullet We use \in to say that something is element of a set:

$$1 \in \{ ext{`a'}, 1, riangle\}$$

`b' $ot\in \{ ext{`a'}, 1, riangle\}$

 \in

- $\{3, 7, 12\}$: a set of numbers
 - $3 \in \{3, 7, 12\}, 0 \notin \{3, 7, 12\}$

Element of-relation

 \bullet We use \in to say that something is element of a set:

$$1 \in \{$$
'a', $1, riangle \}$ 'b' $ot\in$ $\{$ 'a', $1, riangle \}$

- $\{3, 7, 12\}$: a set of numbers • $3 \in \{3, 7, 12\}, 0 \notin \{3, 7, 12\}$
- {'a', 'b', ..., 'z'}: a set of letters

 \in

Element of-relation

 \bullet We use \in to say that something is element of a set:

$$1 \in \{ ext{`a'}, 1, riangle \}$$

`b' $ot\in \{ ext{`a'}, 1, riangle \}$

- $\{3, 7, 12\}$: a set of numbers
 - $3 \in \{3, 7, 12\}, 0 \notin \{3, 7, 12\}$
- {'a', 'b', ..., 'z'}: a set of letters
 - 'y' \in {'a', 'b',..., 'z'}, 'æ' \notin {'a', 'b',..., 'z'},

Element of-relation

• We use \in to say that something is element of a set:

$$1 \in \{\text{`a'}, 1, \triangle\}$$
$$\text{`b'} \notin \{\text{`a'}, 1, \triangle\}$$

- $\{3, 7, 12\}$: a set of numbers
 - $3 \in \{3, 7, 12\}, 0 \notin \{3, 7, 12\}$
- {'a', 'b', ..., 'z'}: a set of letters
 - 'y' \in {'a', 'b',..., 'z'}, 'æ' \notin {'a', 'b',..., 'z'},
- $\mathbb{N} = \{1, 2, 3, \ldots\}$: the set of all natural numbers

Element of-relation

• We use \in to say that something is element of a set:

$$1 \in \{\text{`a'}, 1, \triangle\}$$

`b' $\notin \{\text{`a'}, 1, \triangle\}$

- $\{3, 7, 12\}$: a set of numbers
 - $3 \in \{3, 7, 12\}, 0 \notin \{3, 7, 12\}$
- {'a', 'b', ..., 'z'}: a set of letters
 - 'y' \in {'a', 'b',..., 'z'}, 'æ' \notin {'a', 'b',..., 'z'},
- $\mathbb{N} = \{1, 2, 3, \ldots\}$: the set of all natural numbers
 - $3580 \in \mathbb{N}, \ \pi \notin \mathbb{N}.$

Element of-relation

• We use \in to say that something is element of a set:

$$1 \in \{\text{`a'}, 1, \triangle\}$$

`b' $\notin \{\text{`a'}, 1, \triangle\}$

- $\{3, 7, 12\}$: a set of numbers
 - $3 \in \{3, 7, 12\}, 0 \notin \{3, 7, 12\}$
- {'a', 'b', ..., 'z'}: a set of letters
 - 'y' \in {'a', 'b',..., 'z'}, 'æ' \notin {'a', 'b',..., 'z'},
- $\mathbb{N} = \{1, 2, 3, \ldots\}$: the set of all natural numbers
 - $3580 \in \mathbb{N}, \pi \notin \mathbb{N}$.
- $\mathbb{P}=\{2,3,5,7,11,13,17,\ldots\}:~$ the set of all prime numbers

Element of-relation

 \bullet We use \in to say that something is element of a set:

$$1 \in \{\text{`a'}, 1, \triangle\}$$

`b' $\not\in \{\text{`a'}, 1, \triangle\}$

- $\{3, 7, 12\}$: a set of numbers
 - $3 \in \{3, 7, 12\}, 0 \notin \{3, 7, 12\}$
- {'a', 'b', ..., 'z'}: a set of letters
 - 'y' \in {'a', 'b', ..., 'z'}, 'æ' \notin {'a', 'b', ..., 'z'},
- $\mathbb{N} = \{1, 2, 3, \ldots\}$: the set of all natural numbers
 - $3580 \in \mathbb{N}, \pi \notin \mathbb{N}$.
- $\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$: the set of all prime numbers
 - $257 \in \mathbb{P}$, $91 \notin \mathbb{P}$.

Element of-relation

• We use \in to say that something is element of a set:

$$1 \in \{\text{`a'}, 1, riangle\}$$

`b' $ot \in \{\text{`a'}, 1, riangle\}$

- $\{3, 7, 12\}$: a set of numbers
 - $3 \in \{3, 7, 12\}, 0 \notin \{3, 7, 12\}$
- {'a', 'b', ..., 'z'}: a set of letters
 - 'y' \in {'a', 'b',..., 'z'}, 'æ' \notin {'a', 'b',..., 'z'},
- $\mathbb{N} = \{1, 2, 3, \ldots\}$: the set of all natural numbers
 - $3580 \in \mathbb{N}, \ \pi \notin \mathbb{N}.$
- $\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$: the set of all prime numbers
 - $257 \in \mathbb{P}$, $91 \notin \mathbb{P}$.
- The set P_{3580} of people in the lecture room right now

Element of-relation

• We use \in to say that something is element of a set:

$$1 \in \{\text{`a'}, 1, riangle\}$$

`b' $ot \in \{\text{`a'}, 1, riangle\}$

- $\{3, 7, 12\}$: a set of numbers
 - $3 \in \{3, 7, 12\}, 0 \notin \{3, 7, 12\}$
- {'a', 'b', ..., 'z'}: a set of letters
 - 'y' \in {'a', 'b',..., 'z'}, 'æ' \notin {'a', 'b',..., 'z'},
- $\mathbb{N} = \{1, 2, 3, \ldots\}$: the set of all natural numbers
 - $3580 \in \mathbb{N}, \ \pi \notin \mathbb{N}.$
- $\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$: the set of all prime numbers
 - $257 \in \mathbb{P}$, $91 \notin \mathbb{P}$.
- The set P_{3580} of people in the lecture room right now
 - Martin Giese $\in P_{3580}$, Georg Cantor $\notin P_{3580}$.

• Sets are used a lot in mathematical notation

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. "*n* is a prime number."

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. "*n* is a prime number."
- In mathematics: $n \in \mathbb{P}$

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. "*n* is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being."

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. "*n* is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being."
- In mathematics, $m \in H$, where

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. "*n* is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being."
- In mathematics, $m \in H$, where
 - *H* is the set of all human beings

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. "*n* is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being."
- In mathematics, $m \in H$, where
 - *H* is the set of all human beings
 - *m* is Martin

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. "*n* is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being."
- In mathematics, $m \in H$, where
 - *H* is the set of all human beings
 - *m* is Martin
- One *could* define *Prime*(*n*), *Human*(*m*), etc. but that is not usual

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. "*n* is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being."
- In mathematics, $m \in H$, where
 - *H* is the set of all human beings
 - *m* is Martin
- One could define Prime(n), Human(m), etc. but that is not usual
- Instead of writing "x has property XYZ" or "XYZ(x)",

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. "*n* is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being."
- In mathematics, $m \in H$, where
 - *H* is the set of all human beings
 - *m* is Martin
- One *could* define *Prime*(*n*), *Human*(*m*), etc. but that is not usual
- Instead of writing "x has property XYZ" or "XYZ(x)",
 - let P be the set of all objects with property XYZ

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. "*n* is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being."
- In mathematics, $m \in H$, where
 - *H* is the set of all human beings
 - *m* is Martin
- One *could* define *Prime*(*n*), *Human*(*m*), etc. but that is not usual
- Instead of writing "x has property XYZ" or "XYZ(x)",
 - let P be the set of all objects with property XYZ
 - write $x \in P$.

• Sometimes, you need a set that has no elements.

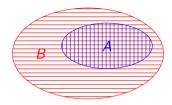
- Sometimes, you need a set that has no elements.
- This is called the *empty set*

- Sometimes, you need a set that has no elements.
- This is called the *empty set*
- Notation: \emptyset or $\{\}$

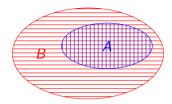
- Sometimes, you need a set that has no elements.
- This is called the *empty set*
- Notation: \emptyset or $\{\}$
- $x \notin \emptyset$, whatever x is!

• Let A and B be sets

- Let A and B be sets
- if every element of A is also in B



- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B



 $A \subseteq B$

Subsets

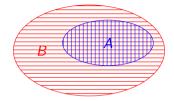
- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B
- This is written

B

- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B
- This is written

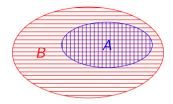
 $A \subseteq B$

• Examples



- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B
- This is written

- Examples
 - $\{1\} \subseteq \{1, \mathsf{`a'}, \triangle\}$

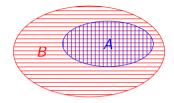


- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B
- This is written

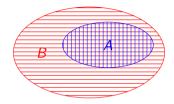
• Examples

•
$$\{1\} \subseteq \{1, \mathsf{`a'}, \triangle\}$$

• $\{1,3\} \not\subseteq \{1,2\}$



- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B
- This is written



 $A \subseteq B$

• Examples

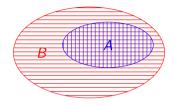
•
$$\{1\} \subseteq \{1, \mathsf{'a'}, \triangle\}$$

• $\{1, 3\} \not\subseteq \{1, 2\}$

•
$$\mathbb{P} \subseteq \mathbb{N}$$

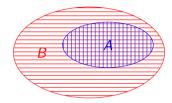
- Let A and B be sets
- *if* every element of A is also in B
- then A is called a subset of B
- This is written

- Examples
 - $\{1\} \subseteq \{1, \mathsf{`a'}, \triangle\}$
 - $\{1,3\} \not\subseteq \{1,2\}$
 - $\mathbb{P} \subseteq \mathbb{N}$
 - $\emptyset \subseteq A$ for any set A



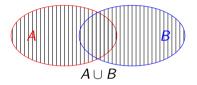
- Let A and B be sets
- *if* every element of A is also in B
- then A is called a subset of B
- This is written

- Examples
 - $\{1\} \subseteq \{1, \mathsf{`a'}, \triangle\}$
 - $\{1,3\} \not\subseteq \{1,2\}$
 - $\mathbb{P} \subseteq \mathbb{N}$
 - $\emptyset \subseteq A$ for any set A
- A = B if and only if $A \subseteq B$ and $B \subseteq A$



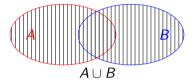
Set Union

• The *union* of A and B contains



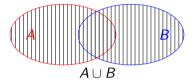
Set Union

- The *union* of A and B contains
 - all elements of A



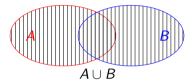
Set Union

- The *union* of A and B contains
 - all elements of A
 - $\bullet\,$ all elements of B



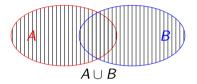
Set Union

- The *union* of A and B contains
 - all elements of A
 - $\bullet\,$ all elements of B
 - also those in both A and B



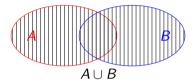
Set Union

- The *union* of A and B contains
 - all elements of A
 - $\bullet\,$ all elements of B
 - also those in both A and B
 - and nothing more.



Set Union

- The *union* of A and B contains
 - all elements of A
 - $\bullet\,$ all elements of B
 - also those in both A and B
 - and nothing more.
- It is written

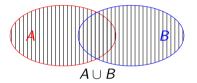


Set Union

- The *union* of A and B contains
 - all elements of A
 - $\bullet\,$ all elements of B
 - also those in both A and B
 - and nothing more.
- It is written

 $A \cup B$

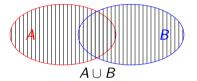
• (A cup which you pour everything into)



Set Union

- The *union* of A and B contains
 - all elements of A
 - $\bullet\,$ all elements of B
 - also those in both A and B
 - and nothing more.
- It is written

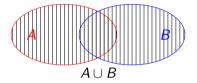
- (A cup which you pour everything into)
- Examples



Set Union

- The union of A and B contains
 - all elements of A
 - $\bullet\,$ all elements of B
 - also those in both A and B
 - and nothing more.
- It is written

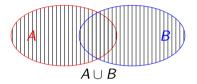
- (A cup which you pour everything into)
- Examples
 - $\{1,2\} \cup \{2,3\} = \{1,2,3\}$



Set Union

- The union of A and B contains
 - all elements of A
 - all elements of B
 - also those in both A and B
 - and nothing more.
- It is written

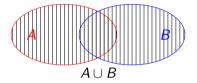
- (A cup which you pour everything into)
- Examples
 - $\{1,2\} \cup \{2,3\} = \{1,2,3\}$
 - $\{1, 3, 5, 7, 9, \ldots\} \cup \{2, 4, 6, 8, 10, \ldots\} = \mathbb{N}$



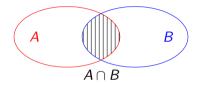
Set Union

- The union of A and B contains
 - all elements of A
 - all elements of B
 - also those in both A and B
 - and nothing more.
- It is written

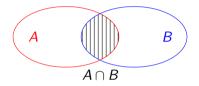
- (A cup which you pour everything into)
- Examples
 - $\{1,2\} \cup \{2,3\} = \{1,2,3\}$
 - $\{1, 3, 5, 7, 9, \ldots\} \cup \{2, 4, 6, 8, 10, \ldots\} = \mathbb{N}$
 - $\emptyset \cup \{1,2\} = \{1,2\}$



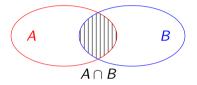
• The *intersection* of A and B contains



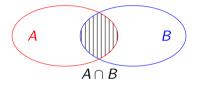
- The *intersection* of A and B contains
 - those elements of A



- The *intersection* of A and B contains
 - those elements of A
 - $\bullet\,$ that are also in B



- The *intersection* of A and B contains
 - those elements of A
 - $\bullet\,$ that are also in B
 - and nothing more.



 $A \cap B$

Set Intersection

- The *intersection* of A and B contains
 - those elements of *A*
 - $\bullet\,$ that are also in B
 - and nothing more.
- It is written

 $A \cap B$

Set Intersection

- The intersection of A and B contains
 - $\bullet\,$ those elements of A
 - $\bullet\,$ that are also in B
 - and nothing more.
- It is written

 $\begin{array}{c|c} A \\ \hline \\ A \\ \hline \\ A \cap B \end{array}$

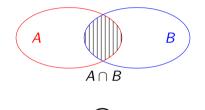
• Examples

Set Intersection

- The intersection of A and B contains
 - those elements of A
 - $\bullet\,$ that are also in B
 - and nothing more.
- It is written

 $A \cap B$

- Examples
 - $\{1,2\} \cap \{2,3\} = \{2\}$

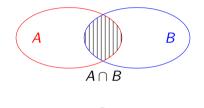


- The *intersection* of A and B contains
 - those elements of A
 - that are also in B
 - and nothing more.
- It is written

 $A \cap B$

Examples

- $\{1,2\} \cap \{2,3\} = \{2\}$ $\mathbb{P} \cap \{2,4,6,8,10,\ldots\} = \{2\}$



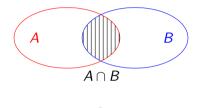
- The *intersection* of A and B contains
 - those elements of A
 - that are also in B
 - and nothing more.
- It is written

 $A \cap B$

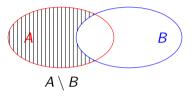
Examples

- $\{1,2\} \cap \{2,3\} = \{2\}$ $\mathbb{P} \cap \{2,4,6,8,10,\ldots\} = \{2\}$

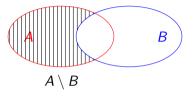
•
$$\emptyset \cap \{1,2\} = \emptyset$$



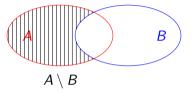
• The set difference of A and B contains



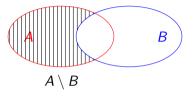
- The set difference of A and B contains
 - those elements of A



- The set difference of A and B contains
 - those elements of A
 - \bullet that are not in B

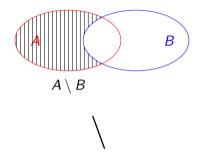


- The set difference of A and B contains
 - $\bullet\,$ those elements of A
 - that are not in B
 - and nothing more.



 $A \setminus B$

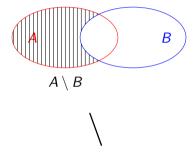
- The set difference of A and B contains
 - $\bullet\,$ those elements of A
 - \bullet that are not in B
 - and nothing more.
- It is written



 $A \setminus B$

Set Difference

- The set difference of A and B contains
 - $\bullet\,$ those elements of A
 - \bullet that are not in B
 - and nothing more.
- It is written

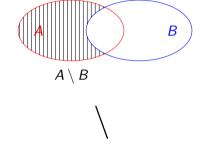


• Examples

 $A \setminus B$

Set Difference

- The set difference of A and B contains
 - $\bullet\,$ those elements of A
 - \bullet that are not in B
 - and nothing more.
- It is written



• $\{1,2\} \setminus \{2,3\} = \{1\}$

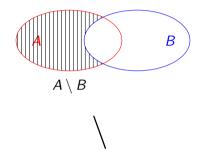
- The set difference of A and B contains
 - $\bullet\,$ those elements of A
 - \bullet that are not in B
 - and nothing more.
- It is written

 $A \setminus B$

• Examples

•
$$\{1,2\} \setminus \{2,3\} = \{1\}$$

• $\mathbb{N} \setminus \mathbb{P} = \{1,4,6,8,9,10,12,\ldots\}$



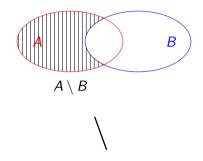
- The set difference of A and B contains
 - $\bullet\,$ those elements of A
 - \bullet that are not in B
 - and nothing more.
- It is written

 $A \setminus B$

• Examples

•
$$\{1,2\} \setminus \{2,3\} = \{1\}$$

• $\mathbb{N} \setminus \mathbb{P} = \{1,4,6,8,9,10,12,\ldots\}$
• $\emptyset \setminus \{1,2\} = \emptyset$



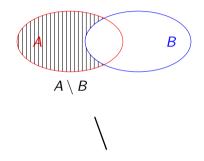
- The set difference of A and B contains
 - $\bullet\,$ those elements of A
 - \bullet that are not in B
 - and nothing more.
- It is written

• Examples

•
$$\{1,2\} \setminus \{2,3\} = \{1\}$$

• $\mathbb{N} \setminus \mathbb{P} = \{1,4,6,8,9,10,12,\ldots\}$
• $\emptyset \setminus \{1,2\} = \emptyset$

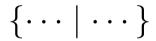
• $\{1,2\}\setminus\emptyset=\{1,2\}$



• Sometimes enumerating all elements is not good enough

- Sometimes enumerating all elements is not good enough
- \bullet E.g. there are infinitely many, and "..." is too vague

- Sometimes enumerating all elements is not good enough
- E.g. there are infinitely many, and "..." is too vague
- Special notation:



- Sometimes enumerating all elements is not good enough
- E.g. there are infinitely many, and "..." is too vague
- Special notation:

 $\{x \in A \mid x \text{ has some property}\}$

• The set of those elements of A which have the property.

- Sometimes enumerating all elements is not good enough
- \bullet E.g. there are infinitely many, and "..." is too vague
- Special notation:

- The set of those elements of A which have the property.
- Examples:

- Sometimes enumerating all elements is not good enough
- E.g. there are infinitely many, and "..." is too vague
- Special notation:

- The set of those elements of A which have the property.
- Examples:
 - $\{n \in \mathbb{N} \mid n = 2k \text{ for some } k \in \mathbb{N}\}$: the even numbers

- Sometimes enumerating all elements is not good enough
- \bullet E.g. there are infinitely many, and "..." is too vague
- Special notation:

- The set of those elements of A which have the property.
- Examples:
 - $\{n \in \mathbb{N} \mid n = 2k \text{ for some } k \in \mathbb{N}\}$: the even numbers
 - $\{n \in \mathbb{N} \mid n < 5\} = \{1, 2, 3, 4\}$

- Sometimes enumerating all elements is not good enough
- \bullet E.g. there are infinitely many, and "..." is too vague
- Special notation:

- The set of those elements of A which have the property.
- Examples:
 - $\{n \in \mathbb{N} \mid n = 2k \text{ for some } k \in \mathbb{N}\}$: the even numbers
 - $\{n \in \mathbb{N} \mid n < 5\} = \{1, 2, 3, 4\}$
 - $\{x \in A \mid x \notin B\} = A \setminus B$

Question

The symmetric difference $A \bigtriangleup B$ of two sets contains

- All elements that are in A or B...
- ...but not in both.

Can you write $A \bigtriangleup B$ using \cap, \cup, \setminus ?

Question

The symmetric difference $A \bigtriangleup B$ of two sets contains

- All elements that are in A or B...
- ...but not in both.

Can you write $A \bigtriangleup B$ using \cap, \cup, \setminus ?

 $A \bigtriangleup B = (A \cup B) \setminus (A \cap B)$

Question

The symmetric difference $A \bigtriangleup B$ of two sets contains

- All elements that are in A or B...
- ...but not in both.

Can you write $A \bigtriangleup B$ using \cap, \cup, \setminus ?

$$A \bigtriangleup B = (A \cup B) \setminus (A \cap B)$$

Or:

$$A \bigtriangleup B = (A \setminus B) \cup (B \setminus A)$$

Outline

Basic Set Algebra

3 Propositional Logic

• RDF is all about

- RDF is all about
 - Resources (objects)

- RDF is all about
 - Resources (objects)
 - Their properties (rdf:type)

- RDF is all about
 - Resources (objects)
 - Their properties (rdf:type)
 - Their relations amongst each other

- RDF is all about
 - Resources (objects)
 - Their properties (rdf:type)
 - Their relations amongst each other
- Sets are good to group objects with some properties!

- RDF is all about
 - Resources (objects)
 - Their properties (rdf:type)
 - Their relations amongst each other
- Sets are good to group objects with some properties!
- How do we talk about relations between objects?

• A pair is an *ordered* collection of two objects

Image ©Colourbox.no

- A pair is an *ordered* collection of two objects
- Written

- A pair is an *ordered* collection of two objects
- Written

$$\langle x, y \rangle$$
 $\langle \cdot \cdot \cdot \rangle$

• Equal if components are equal:

$$\langle a, b \rangle = \langle x, y \rangle$$
 if and only if $a = x$ and $b = y$

- A pair is an *ordered* collection of two objects
- Written

$$\langle x, y \rangle$$
 $\langle \cdot \cdot \cdot \rangle$

1

١

• Equal if components are equal:

$$\langle a, b \rangle = \langle x, y \rangle$$
 if and only if $a = x$ and $b = y$

• Order matters:

$$\langle 1, \mathbf{`a'} \rangle \neq \langle \mathbf{`a'}, 1 \rangle$$

- A pair is an ordered collection of two objects
- Written

$$\langle x, y \rangle$$
 $\langle \cdot \cdot \cdot \rangle$

1

١

• Equal if components are equal:

$$\langle a,b
angle = \langle x,y
angle$$
 if and only if $a = x$ and $b = y$

• Order matters:

$$\langle 1, \mathbf{`a'} \rangle \neq \langle \mathbf{`a'}, 1 \rangle$$

• An object can be twice in a pair:

 $\langle 1,1\rangle$

- A pair is an ordered collection of two objects
- Written

$$\langle x, y \rangle$$
 $\langle \cdot \cdot \cdot \rangle$

1

١

• Equal if components are equal:

$$\langle a,b
angle = \langle x,y
angle$$
 if and only if $a = x$ and $b = y$

• Order matters:

$$\langle 1, \mathbf{`a'} \rangle \neq \langle \mathbf{`a'}, 1 \rangle$$

• An object can be twice in a pair:

 $\langle 1,1\rangle$

• $\langle x, y \rangle$ is a pair, no matter if x = y or not.

• Let A and B be sets.

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

A imes B

 \times

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

A imes B

Х

• Example:

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

$$A \times B$$
 X

- Example:
 - $A = \{1, 2, 3\}, B = \{\text{`a', 'b'}\}.$

Pairs and Relations

Α

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

$$\times B$$

 \times

• Example:

•
$$A = \{1, 2, 3\}, B = \{\text{'a'}, \text{'b'}\}.$$

• $A \times B = \{ \begin{array}{cc} \langle 1, \text{'a'} \rangle, & \langle 2, \text{'a'} \rangle, & \langle 3, \text{'a'} \rangle, \\ \langle 1, \text{'b'} \rangle, & \langle 2, \text{'b'} \rangle, & \langle 3, \text{'b'} \rangle \end{array} \}$

Α

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

 \times

• Example:

•
$$A = \{1, 2, 3\}, B = \{\text{'a'}, \text{'b'}\}.$$

• $A \times B = \{ \langle 1, \text{'a'} \rangle, \langle 2, \text{'a'} \rangle, \langle 3, \text{'a'} \rangle, \langle 1, \text{'b'} \rangle, \langle 2, \text{'b'} \rangle, \langle 3, \text{'b'} \rangle \}$

• Why bother?

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

- Example:
 - $A = \{1, 2, 3\}, B = \{\text{'a'}, \text{'b'}\}.$ • $A \times B = \{ \langle 1, \text{'a'} \rangle, \langle 2, \text{'a'} \rangle, \langle 3, \text{'a'} \rangle, \langle 1, \text{'b'} \rangle, \langle 2, \text{'b'} \rangle, \langle 3, \text{'b'} \rangle \}$
- Why bother?
- Instead of " $\langle a, b \rangle$ is a pair of a natural number and a person in this room"...

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

- Example:
 - $A = \{1, 2, 3\}, B = \{\text{`a'}, \text{`b'}\}.$ • $A \times B = \{ \langle 1, \text{`a'} \rangle, \langle 2, \text{`a'} \rangle, \langle 3, \text{`a'} \rangle, \langle 1, \text{`b'} \rangle, \langle 2, \text{`b'} \rangle, \langle 3, \text{`b'} \rangle \}$
- Why bother?
- Instead of " $\langle a, b \rangle$ is a pair of a natural number and a person in this room"...
- ... $\langle a, b \rangle \in \mathbb{N} \times P_{3580}$

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

- Example:
 - $A = \{1, 2, 3\}, B = \{\text{`a'}, \text{`b'}\}.$ • $A \times B = \{ \langle 1, \text{`a'} \rangle, \langle 2, \text{`a'} \rangle, \langle 3, \text{`a'} \rangle, \langle 1, \text{`b'} \rangle, \langle 2, \text{`b'} \rangle, \langle 3, \text{`b'} \rangle \}$
- Why bother?
- Instead of " $\langle a, b \rangle$ is a pair of a natural number and a person in this room"...
- ... $\langle a, b \rangle \in \mathbb{N} \times P_{3580}$
- But most of all, there are subsets of cross products...

• A relation R between two sets A and B is...

- A relation R between two sets A and B is...
- ...a set of pairs $\langle a, b \rangle \in A \times B$

 $R \subseteq A \times B$

- A relation R between two sets A and B is...
- ...a set of pairs $\langle a, b \rangle \in A \times B$

 $R \subseteq A \times B$

• We often write aRb to say that $\langle a, b \rangle \in R$

- A relation R between two sets A and B is...
- ...a set of pairs $\langle a, b \rangle \in A \times B$

 $R \subseteq A \times B$

- We often write aRb to say that $\langle a, b \rangle \in R$
- Example:

- A relation R between two sets A and B is...
- ...a set of pairs $\langle a, b \rangle \in A \times B$

$$R \subseteq A \times B$$

- We often write aRb to say that $\langle a, b \rangle \in R$
- Example:
 - Let $L = \{ a', b', \dots, z' \}$

- A relation R between two sets A and B is...
- ...a set of pairs $\langle a, b \rangle \in A \times B$

$$R \subseteq A \times B$$

- We often write aRb to say that $\langle a, b \rangle \in R$
- Example:
 - Let $L = \{ `a', `b', \dots, `z' \}$
 - Let \triangleright relate each number between 1 and 26 to the corresponding letter in the alphabet:

$$1 \triangleright$$
 'a' $2 \triangleright$ 'b' ... $26 \triangleright$ 'z'

- A relation R between two sets A and B is...
- ...a set of pairs $\langle a, b \rangle \in A \times B$

$$R \subseteq A \times B$$

- We often write aRb to say that $\langle a, b \rangle \in R$
- Example:
 - Let *L* = {'a', 'b', ..., 'z'}
 - Let \triangleright relate each number between 1 and 26 to the corresponding letter in the alphabet:

$$1 \triangleright$$
 'a' $2 \triangleright$ 'b' ... $26 \triangleright$ 'z'

• Then $\triangleright \subseteq \mathbb{N} \times L$:

$$\triangleright = \left\{ \left< 1, \mathsf{`a'} \right>, \left< 2, \mathsf{`b'} \right>, \dots, \left< 26, \mathsf{`z'} \right> \right\}$$

- A relation R between two sets A and B is...
- ...a set of pairs $\langle a, b \rangle \in A \times B$

$$R \subseteq A \times B$$

- We often write aRb to say that $\langle a, b \rangle \in R$
- Example:
 - Let *L* = {'a', 'b', ..., 'z'}
 - Let \triangleright relate each number between 1 and 26 to the corresponding letter in the alphabet:

$$1 \triangleright$$
 'a' $2 \triangleright$ 'b' ... $26 \triangleright$ 'z'

• Then $\triangleright \subseteq \mathbb{N} \times L$:

$$\triangleright = \{ \langle 1, \mathbf{a}' \rangle, \langle 2, \mathbf{b}' \rangle, \dots, \langle 26, \mathbf{z}' \rangle \}$$

• And we can write:

 $\langle 1, \mathbf{`a'} \rangle \in \triangleright \qquad \langle 2, \mathbf{`b'} \rangle \in \triangleright \quad \dots \quad \langle 26, \mathbf{`z'} \rangle \in \triangleright$

More Relations

• A relation *R* on some set *A* is a relation between *A* and *A*:

$$R \subseteq A \times A = A^2$$

More Relations

• A relation *R* on some set *A* is a relation between *A* and *A*:

$$R \subseteq A \times A = A^2$$

• Example: <

More Relations

• A relation *R* on some set *A* is a relation between *A* and *A*:

$$R \subseteq A \times A = A^2$$

• Example: <

• Consider the < order on natural numbers:

$$1 < 2$$
 $1 < 3$ $1 < 4$... $2 < 3$ $2 < 4$...

More Relations

• A relation *R* on some set *A* is a relation between *A* and *A*:

$$R \subseteq A \times A = A^2$$

0 1

• Example: <

۵

• Consider the < order on natural numbers:

$$< \subseteq \mathbb{N} \times \mathbb{N}:$$

$$< \subseteq \mathbb{N} \times \mathbb{N}:$$

$$< = \left\{ \begin{array}{ccc} \langle 1, 2 \rangle, & \langle 1, 3 \rangle, & \langle 1, 4 \rangle, & \dots \\ & \langle 2, 3 \rangle, & \langle 2, 4 \rangle, & \dots \\ & & \langle 3, 4 \rangle, & \dots \end{array} \right\}$$

1 . 0 1 . 0 1 . 1 0 . 0

More Relations

• A relation *R* on some set *A* is a relation between *A* and *A*:

$$R \subseteq A \times A = A^2$$

• Example: <

• Consider the < order on natural numbers:

 $\bullet \ < = \{ \langle x, y \rangle \in \mathbb{N}^2 \mid x \text{ is less than } y \}$

Family Relations

• Consider the set $S = \{\text{Homer}, \text{Marge}, \text{Bart}, \text{Lisa}, \text{Maggie}\}.$

Family Relations

- Consider the set $S = \{\text{Homer}, \text{Marge}, \text{Bart}, \text{Lisa}, \text{Maggie}\}.$
- Define a relation P on S such that

x P y iff x is parent of y

Family Relations

- Consider the set $S = \{\text{Homer}, \text{Marge}, \text{Bart}, \text{Lisa}, \text{Maggie}\}.$
- Define a relation P on S such that

x P y iff x is parent of y

• For instance:

Homer *P* Bart Marge *P* Maggie

Family Relations

- Consider the set $S = \{\text{Homer}, \text{Marge}, \text{Bart}, \text{Lisa}, \text{Maggie}\}.$
- Define a relation P on S such that

x P y iff x is parent of y

• For instance:

Homer *P* Bart Marge *P* Maggie

• As a set of pairs:

 $\begin{array}{ll} P = & \{ & \langle \mathsf{Homer}, \mathsf{Bart} \rangle \,, & \langle \mathsf{Homer}, \mathsf{Lisa} \rangle \,, & \langle \mathsf{Homer}, \mathsf{Maggie} \rangle \,, \\ & & \langle \mathsf{Marge}, \mathsf{Bart} \rangle \,, & \langle \mathsf{Marge}, \mathsf{Lisa} \rangle \,, & \langle \mathsf{Marge}, \mathsf{Maggie} \rangle \, \, \, \} \subseteq S^2 \end{array}$

Family Relations

- Consider the set $S = \{\text{Homer}, \text{Marge}, \text{Bart}, \text{Lisa}, \text{Maggie}\}$.
- Define a relation P on S such that

x P y iff x is parent of y

• For instance:

Homer *P* Bart Marge *P* Maggie

• As a set of pairs:

 $\begin{array}{ll} P = & \{ & \langle \mathsf{Homer}, \mathsf{Bart} \rangle \,, & \langle \mathsf{Homer}, \mathsf{Lisa} \rangle \,, & \langle \mathsf{Homer}, \mathsf{Maggie} \rangle \,, \\ & & \langle \mathsf{Marge}, \mathsf{Bart} \rangle \,, & \langle \mathsf{Marge}, \mathsf{Lisa} \rangle \,, & \langle \mathsf{Marge}, \mathsf{Maggie} \rangle \, \, \, \} \subseteq S^2 \end{array}$

• For instance:

$$\langle \mathsf{Homer}, \mathsf{Bart} \rangle \in P \qquad \langle \mathsf{Marge}, \mathsf{Maggie} \rangle \in P$$

• Since relations are just sets of pairs, we can use set operations and relations on them.

- Since relations are just sets of pairs, we can use set operations and relations on them.
- We say that R is a subrelation P if $R \subseteq P$.

- Since relations are just sets of pairs, we can use set operations and relations on them.
- We say that R is a subrelation P if $R \subseteq P$.
- E.g.: if F is the father-of-relation,

 $F = \{ \langle \mathsf{Homer}, \mathsf{Bart} \rangle, \langle \mathsf{Homer}, \mathsf{Lisa} \rangle, \langle \mathsf{Homer}, \mathsf{Maggie} \rangle \}$

then $F \subseteq P$.

- Since relations are just sets of pairs, we can use set operations and relations on them.
- We say that R is a subrelation P if $R \subseteq P$.
- E.g.: if F is the father-of-relation,

 $F = \{ \langle \mathsf{Homer}, \mathsf{Bart} \rangle, \langle \mathsf{Homer}, \mathsf{Lisa} \rangle, \langle \mathsf{Homer}, \mathsf{Maggie} \rangle \}$

then $F \subseteq P$.

• If *M* is the mother-of-relation,

 $M = \{ \langle \mathsf{Marge}, \mathsf{Bart} \rangle, \langle \mathsf{Marge}, \mathsf{Lisa} \rangle, \langle \mathsf{Marge}, \mathsf{Maggie} \rangle \}$

then $F \cup M = P$.

• Certain properties of relations occur in many applications

- Certain properties of relations occur in many applications
- Therefore, they are given names

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^2$ is reflexive

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^2$ is reflexive
 - x R x for all $x \in A$.

R

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^2$ is reflexive
 - x R x for all $x \in A$.

• E.g. "=", "≤" in mathematics, "has same color as", etc.

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^2$ is reflexive
 - x R x for all $x \in A$.

• E.g. "=", " \leq " in mathematics, "has same color as", etc.

• $R \subseteq A^2$ is symmetric

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^2$ is reflexive
 - x R x for all $x \in A$.
 - E.g. "=", " \leq " in mathematics, "has same color as", etc.
- $R \subseteq A^2$ is symmetric
 - If x R y then y R x.

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^2$ is reflexive
 - x R x for all $x \in A$.
 - E.g. "=", " \leq " in mathematics, "has same color as", etc.
- $R \subseteq A^2$ is symmetric
 - If x R y then y R x.
 - E.g. "=" in mathematics, friendship in facebook, connected by rail, etc.

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^2$ is reflexive
 - x R x for all $x \in A$.
 - E.g. "=", " \leq " in mathematics, "has same color as", etc.
- $R \subseteq A^2$ is symmetric
 - If x R y then y R x.
 - E.g. "=" in mathematics, friendship in facebook, connected by rail, etc.
- $R \subseteq A^2$ is transitive

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^2$ is reflexive
 - x R x for all $x \in A$.
 - E.g. "=", " \leq " in mathematics, "has same color as", etc.
- $R \subseteq A^2$ is symmetric
 - If x R y then y R x.
 - E.g. "=" in mathematics, friendship in facebook, connected by rail, etc.
- $R \subseteq A^2$ is transitive
 - If x R y and y R z, then x R z

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^2$ is reflexive
 - x R x for all $x \in A$.
 - E.g. "=", " \leq " in mathematics, "has same color as", etc.
- $R \subseteq A^2$ is symmetric
 - If x R y then y R x.
 - E.g. "=" in mathematics, friendship in facebook, connected by rail, etc.
- $R \subseteq A^2$ is transitive
 - If x R y and y R z, then x R z
 - E.g. "=", " \leq ", "<" in mathematics, "is ancestor of", etc.

Let $A = \{1, 2\}$, a set of two elements. How many different relations on A are there?

Let $A = \{1, 2\}$, a set of two elements. How many different relations on A are there?

 $\mathcal{A} \times \mathcal{A} = \left\{ \left\langle 1, 1 \right\rangle, \left\langle 1, 2 \right\rangle, \left\langle 2, 1 \right\rangle, \left\langle 2, 2 \right\rangle \right\}$

Let $A = \{1, 2\}$, a set of two elements. How many different relations on A are there?

$$A \times A = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle\}$$

A relation on A is a subset of $A \times A$. So how many subsets are there?

Let $A = \{1, 2\}$, a set of two elements. How many different relations on A are there?

 $\boldsymbol{A} \times \boldsymbol{A} = \left\{ \left\langle 1, 1 \right\rangle, \left\langle 1, 2 \right\rangle, \left\langle 2, 1 \right\rangle, \left\langle 2, 2 \right\rangle \right\}$

A relation on A is a subset of $A \times A$. So how many subsets are there?

 $\{\}, \quad \{\langle 1,1\rangle\}, \quad \{\langle 1,2\rangle\}, \quad \{\langle 1,1\rangle, \langle 1,2\rangle\}, \ldots$

Let $A = \{1, 2\}$, a set of two elements. How many different relations on A are there?

 $A \times A = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle\}$

A relation on A is a subset of $A \times A$. So how many subsets are there?

 $\{\}, \quad \{\langle 1,1\rangle\}, \quad \{\langle 1,2\rangle\}, \quad \{\langle 1,1\rangle, \langle 1,2\rangle\}, \ldots$

16 relations on A. Generally: $2^{(|A|^2)}$

Outline

Basic Set Algebra

2 Pairs and Relations

Many Kinds of Logic

• In mathematical logic, many kinds of logic are considered

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)
 - modal logic (Alice knows that Bob didn't know yesterday that...)

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)
 - modal logic (Alice knows that Bob didn't know yesterday that...)
 - first-order logic (For all..., for some...)

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)
 - modal logic (Alice knows that Bob didn't know yesterday that...)
 - first-order logic (For all..., for some...)
- All of them formalizing different aspects of reasoning

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)
 - modal logic (Alice knows that Bob didn't know yesterday that...)
 - first-order logic (For all..., for some...)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)
 - modal logic (Alice knows that Bob didn't know yesterday that...)
 - first-order logic (For all..., for some...)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
 - Syntax (pprox grammar. What is a formula?)

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)
 - modal logic (Alice knows that Bob didn't know yesterday that...)
 - first-order logic (For all..., for some...)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
 - Syntax (pprox grammar. What is a formula?)
 - Semantics (What is the meaning?)

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)
 - modal logic (Alice knows that Bob didn't know yesterday that...)
 - first-order logic (For all..., for some...)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
 - Syntax (pprox grammar. What is a formula?)
 - Semantics (What is the meaning?)
 - proof theory: what is legal reasoning?

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)
 - modal logic (Alice knows that Bob didn't know yesterday that...)
 - first-order logic (For all..., for some...)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
 - Syntax (\approx grammar. What is a formula?)
 - Semantics (What is the meaning?)
 - proof theory: what is legal reasoning?
 - model semantics: declarative using set theory.

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)
 - modal logic (Alice knows that Bob didn't know yesterday that...)
 - first-order logic (For all..., for some...)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
 - Syntax (\approx grammar. What is a formula?)
 - Semantics (What is the meaning?)
 - proof theory: what is legal reasoning?
 - model semantics: declarative using set theory.
- For semantic technologies, description logic (DL) is most interesting

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)
 - modal logic (Alice knows that Bob didn't know yesterday that...)
 - first-order logic (For all..., for some...)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
 - Syntax (\approx grammar. What is a formula?)
 - Semantics (What is the meaning?)
 - proof theory: what is legal reasoning?
 - model semantics: declarative using set theory.
- For semantic technologies, description logic (DL) is most interesting
 - talks about sets and relations

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)
 - modal logic (Alice knows that Bob didn't know yesterday that...)
 - first-order logic (For all..., for some...)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
 - Syntax (\approx grammar. What is a formula?)
 - Semantics (What is the meaning?)
 - proof theory: what is legal reasoning?
 - model semantics: declarative using set theory.
- For semantic technologies, description logic (DL) is most interesting
 - talks about sets and relations
- Basic concepts can be explained using predicate logic

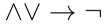
• Formulas are defined "by induction" or "recursively":

- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r, \dots is a formula

- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r, \dots is a formula
- 2 if A and B are formulas, then

- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r, \dots is a formula
- 2 if A and B are formulas, then
 - $(A \land B)$ is also a formula (read: "A and B")

- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r, \dots is a formula
- 2 if A and B are formulas, then
 - $(A \land B)$ is also a formula (read: "A and B")
 - $(A \lor B)$ is also a formula (read: "A or B")



- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r, \dots is a formula
- 2 if A and B are formulas, then
 - $(A \land B)$ is also a formula (read: "A and B")
 - $(A \lor B)$ is also a formula (read: "A or B")
 - $(A \rightarrow B)$ is also a formula (read "A implies B")

- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r, \dots is a formula
- 2 if A and B are formulas, then
 - $(A \land B)$ is also a formula (read: "A and B")
 - $(A \lor B)$ is also a formula (read: "A or B")
 - $(A \rightarrow B)$ is also a formula (read "A implies B")
 - $\neg A$ is also a formula (read: "not A")

- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r, \dots is a formula
- 2 if A and B are formulas, then
 - $(A \land B)$ is also a formula (read: "A and B")
 - $(A \lor B)$ is also a formula (read: "A or B")
 - $(A \rightarrow B)$ is also a formula (read "A implies B")
 - $\neg A$ is also a formula (read: "not A")
- Nothing else is. Only what rules [1] and [2] say is a formula.

$\wedge \vee \to \neg$

- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r, \dots is a formula
- 2 if A and B are formulas, then
 - $(A \land B)$ is also a formula (read: "A and B")
 - $(A \lor B)$ is also a formula (read: "A or B")
 - $(A \rightarrow B)$ is also a formula (read "A implies B")
 - $\neg A$ is also a formula (read: "not A")
- Nothing else is. Only what rules [1] and [2] say is a formula.
- Examples of formulae:

$$p \quad (p \land \neg r) \quad (q \land q) \quad (q \land \neg q) \quad ((p \lor \neg q) \land (\neg p \to q))$$

$\wedge \vee \to \neg$

- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r,...is a formula
- 2 if A and B are formulas, then
 - $(A \land B)$ is also a formula (read: "A and B")
 - $(A \lor B)$ is also a formula (read: "A or B")
 - $(A \rightarrow B)$ is also a formula (read "A implies B")
 - $\neg A$ is also a formula (read: "not A")
- Nothing else is. Only what rules [1] and [2] say is a formula.
- Examples of formulae:

$$p \quad (p \land \neg r) \quad (q \land q) \quad (q \land \neg q) \quad ((p \lor \neg q) \land (\neg p \to q))$$

• Examples of non-formulas:

$$pqr p \neg q \land (p$$

$\wedge \vee \to \neg$

 \bullet The set of all formulas Φ is the least set such that

- $\bullet\,$ The set of all formulas Φ is the least set such that
- 1 All letters $\textit{p},\textit{q},\textit{r},\ldots\in\Phi$

- $\bullet\,$ The set of all formulas Φ is the least set such that
- 1 All letters $p, q, r, \ldots \in \Phi$
- 2 if $A, B \in \Phi$, then

- $\bullet\,$ The set of all formulas Φ is the least set such that
- 1 All letters $p, q, r, \ldots \in \Phi$
- 2 if $A, B \in \Phi$, then
 - $(A \land B) \in \Phi$

- $\bullet\,$ The set of all formulas Φ is the least set such that
- 1 All letters $p, q, r, \ldots \in \Phi$
- 2 if $A, B \in \Phi$, then
 - $(A \land B) \in \Phi$
 - $(A \lor B) \in \Phi$

- $\bullet\,$ The set of all formulas Φ is the least set such that
- 1 All letters $p, q, r, \ldots \in \Phi$
- 2 if $A, B \in \Phi$, then
 - $(A \land B) \in \Phi$
 - $(A \lor B) \in \Phi$
 - $(A \rightarrow B) \in \Phi$

- $\bullet\,$ The set of all formulas Φ is the least set such that
- 1 All letters $p, q, r, \ldots \in \Phi$
- 2 if $A, B \in \Phi$, then
 - $(A \land B) \in \Phi$
 - $(A \lor B) \in \Phi$
 - $(A \rightarrow B) \in \Phi$
 - $\neg A \in \Phi$

- $\bullet\,$ The set of all formulas Φ is the least set such that
- 1 All letters $p, q, r, \ldots \in \Phi$
- 2 if $A, B \in \Phi$, then
 - $(A \land B) \in \Phi$
 - $(A \lor B) \in \Phi$
 - $(A \rightarrow B) \in \Phi$
 - $\neg A \in \Phi$
- Formulas are just a kind of strings until now:

- $\bullet\,$ The set of all formulas Φ is the least set such that
- 1 All letters $\textit{p},\textit{q},\textit{r},\ldots\in\Phi$
- 2 if $A, B \in \Phi$, then
 - $(A \land B) \in \Phi$
 - $(A \lor B) \in \Phi$
 - $(A \rightarrow B) \in \Phi$
 - $\neg A \in \Phi$
- Formulas are just a kind of strings until now:
 - no meaning

- $\bullet\,$ The set of all formulas Φ is the least set such that
- 1 All letters $p, q, r, \ldots \in \Phi$
- 2 if $A, B \in \Phi$, then
 - $(A \land B) \in \Phi$
 - $(A \lor B) \in \Phi$
 - $(A \rightarrow B) \in \Phi$
 - $\neg A \in \Phi$
- Formulas are just a kind of strings until now:
 - no meaning
 - but every formula can be "parsed" uniquely.

• $\neg, \land, \lor, \rightarrow$ are called *connectives*.

- $\neg, \land, \lor, \rightarrow$ are called *connectives*.
- A formula $(A \land B)$ is called a *conjunction*.

- $\neg, \land, \lor, \rightarrow$ are called *connectives*.
- A formula $(A \land B)$ is called a *conjunction*.
- A formula $(A \lor B)$ is called a *disjunction*.

- $\neg, \land, \lor, \rightarrow$ are called *connectives*.
- A formula $(A \land B)$ is called a *conjunction*.
- A formula $(A \lor B)$ is called a *disjunction*.
- A formula $(A \rightarrow B)$ is calles an *implication*.

- $\neg, \land, \lor, \rightarrow$ are called *connectives*.
- A formula $(A \land B)$ is called a *conjunction*.
- A formula $(A \lor B)$ is called a *disjunction*.
- A formula $(A \rightarrow B)$ is calles an *implication*.
- A formula $\neg A$ is called a *negation*.

• Logic is about things being true or false, right?

- Logic is about things being true or false, right?
- Is $(p \land q)$ true?

- Logic is about things being true or false, right?
- Is $(p \land q)$ true?
- That depends on whether p and q are true!

- Logic is about things being true or false, right?
- Is $(p \land q)$ true?
- That depends on whether p and q are true!
- If p is true, and q is true, then $(p \land q)$ is true

- Logic is about things being true or false, right?
- Is $(p \land q)$ true?
- That depends on whether p and q are true!
- If p is true, and q is true, then $(p \land q)$ is true
- Otherwise, $(p \land q)$ is false.

- Logic is about things being true or false, right?
- Is $(p \land q)$ true?
- That depends on whether p and q are true!
- If p is true, and q is true, then $(p \land q)$ is true
- Otherwise, $(p \land q)$ is false.
- So truth of a formula depends on the truth of the letters

- Logic is about things being true or false, right?
- Is $(p \land q)$ true?
- That depends on whether p and q are true!
- If p is true, and q is true, then $(p \land q)$ is true
- Otherwise, $(p \land q)$ is false.
- So truth of a formula depends on the truth of the letters
- We also say the "interpretation" of the letters

- Logic is about things being true or false, right?
- Is $(p \wedge q)$ true?
- That depends on whether p and q are true!
- If p is true, and q is true, then $(p \land q)$ is true
- Otherwise, $(p \land q)$ is false.
- So truth of a formula depends on the truth of the letters
- We also say the "interpretation" of the letters
- In other words, in general, truth depends on the context

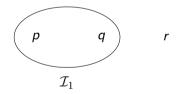
- Logic is about things being true or false, right?
- Is $(p \wedge q)$ true?
- That depends on whether p and q are true!
- If p is true, and q is true, then $(p \land q)$ is true
- Otherwise, $(p \land q)$ is false.
- So truth of a formula depends on the truth of the letters
- We also say the "interpretation" of the letters
- In other words, in general, truth depends on the context
- Let's formalize this context, a.k.a. interpretation, a.k.a. model

• Idea: put all letters that are "true" into a set!

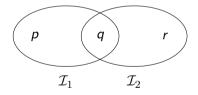
- Idea: put all letters that are "true" into a set!
- Define: An *interpretation* \mathcal{I} is a set of letters.

- Idea: put all letters that are "true" into a set!
- Define: An *interpretation* \mathcal{I} is a set of letters.
- Letter p is true in interpretation \mathcal{I} if $p \in \mathcal{I}$.

- Idea: put all letters that are "true" into a set!
- \bullet Define: An *interpretation* $\mathcal I$ is a set of letters.
- Letter p is true in interpretation \mathcal{I} if $p \in \mathcal{I}$.
- E.g., in $\mathcal{I}_1 = \{p, q\}$, p is true, but r is false.



- Idea: put all letters that are "true" into a set!
- \bullet Define: An *interpretation* $\mathcal I$ is a set of letters.
- Letter p is true in interpretation \mathcal{I} if $p \in \mathcal{I}$.
- E.g., in $\mathcal{I}_1 = \{p, q\}$, p is true, but r is false.
- But in $\mathcal{I}_2 = \{q, r\}$, p is false, but r is true.



Semantic Validity \models

• To say that p is true in \mathcal{I} , write

 $\mathcal{I} \models p$

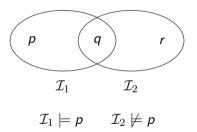
Propositional Logic

Semantic Validity \models

• To say that p is true in \mathcal{I} , write

 $\mathcal{I} \models p$

• For instance



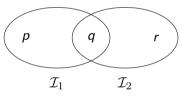
Propositional Logic

Semantic Validity \models

• To say that p is true in \mathcal{I} , write

$$\mathcal{I} \models p$$

• For instance



$$\mathcal{I}_1 \models p$$
 $\mathcal{I}_2 \not\models p$

• In other words, for all letters *p*:

$$\mathcal{I} \models p$$
 if and only if $p \in \mathcal{I}$

• So, is $(p \land q)$ true?

- So, is $(p \land q)$ true?
- That depends on whether p and q are true!

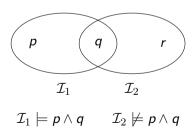
- So, is $(p \land q)$ true?
- That depends on whether p and q are true!
- And that depends on the interpretation.

- So, is $(p \land q)$ true?
- That depends on whether p and q are true!
- And that depends on the interpretation.
- All right then, given some \mathcal{I} , is $(p \land q)$ true?

- So, is $(p \land q)$ true?
- That depends on whether p and q are true!
- And that depends on the interpretation.
- All right then, given some \mathcal{I} , is $(p \land q)$ true?
- Yes, if $\mathcal{I} \models p$ and $\mathcal{I} \models q$

- So, is $(p \land q)$ true?
- That depends on whether p and q are true!
- And that depends on the interpretation.
- All right then, given some \mathcal{I} , is $(p \land q)$ true?
- Yes, if $\mathcal{I} \models p$ and $\mathcal{I} \models q$
- No, otherwise

- So, is $(p \land q)$ true?
- That depends on whether p and q are true!
- And that depends on the interpretation.
- All right then, given some \mathcal{I} , is $(p \land q)$ true?
- Yes, if $\mathcal{I} \models p$ and $\mathcal{I} \models q$
- No, otherwise
- For instance



• That was easy, p and q are only letters...

- That was easy, p and q are only letters...
- ...so, is $((q \land r) \land (p \land q))$ true in \mathcal{I} ?

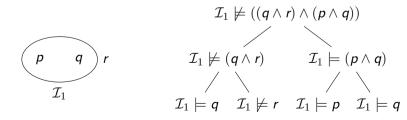
- That was easy, p and q are only letters...
- ...so, is $((q \land r) \land (p \land q))$ true in \mathcal{I} ?
- Idea: apply our rule recursively

- That was easy, p and q are only letters...
- ...so, is $((q \land r) \land (p \land q))$ true in \mathcal{I} ?
- Idea: apply our rule recursively
- For any formulas A and B,...

- That was easy, p and q are only letters...
- ...so, is $((q \land r) \land (p \land q))$ true in \mathcal{I} ?
- Idea: apply our rule recursively
- For any formulas A and B,...
- \bullet ...and any interpretation $\mathcal{I},...$

- That was easy, p and q are only letters...
- ...so, is $((q \land r) \land (p \land q))$ true in \mathcal{I} ?
- Idea: apply our rule recursively
- For any formulas A and B,...
- \bullet ...and any interpretation $\mathcal{I},...$
- ... $\mathcal{I} \models A \land B$ if and only if $\mathcal{I} \models A$ and $\mathcal{I} \models B$

- That was easy, p and q are only letters...
- ...so, is $((q \land r) \land (p \land q))$ true in \mathcal{I} ?
- Idea: apply our rule recursively
- For any formulas A and B,...
- \bullet ...and any interpretation $\mathcal{I},...$
- ... $\mathcal{I} \models A \land B$ if and only if $\mathcal{I} \models A$ and $\mathcal{I} \models B$
- For instance, if $\mathcal{I}_1 = \{p, q\}$:



Semantics for $\neg,$ \rightarrow and \lor

- The complete definition of \models is as follows:
- For any interpretation \mathcal{I} , letter p, formulas A, B:

•
$$\mathcal{I} \models p \text{ iff } p \in \mathcal{I}$$

• $\mathcal{I} \models \neg A \text{ iff } \mathcal{I} \not\models A$
• $\mathcal{I} \models (A \land B) \text{ iff } \mathcal{I} \models A \text{ and } \mathcal{I} \models B$
• $\mathcal{I} \models (A \lor B) \text{ iff } \mathcal{I} \models A \text{ or } \mathcal{I} \models B \text{ (or both)}$
• $\mathcal{I} \models (A \rightarrow B) \text{ iff } \mathcal{I} \models A \text{ implies } \mathcal{I} \models B$

• Semantics of \neg , \land , \lor , \rightarrow often given as *truth table*:

A	В	$\neg A$	$A \wedge B$	$A \lor B$	$A \rightarrow B$
	f		f	f	t
f	t f	t	f	t	t
t	f	f	f	t	f
t	t	f	t	t	t

• Is $(p \lor \neg p)$ true?

- Is $(p \lor \neg p)$ true?
- Only two interesting interpretations:

$$\mathcal{I}_1 = \emptyset$$
 $\mathcal{I}_2 = \{p\}$

- Is $(p \lor \neg p)$ true?
- Only two interesting interpretations:

$$\mathcal{I}_1 = \emptyset$$
 $\mathcal{I}_2 = \{p\}$

• Recursive Evaluation:

$$\begin{array}{cccc} \mathcal{I}_1 \models (p \lor \neg p) & \mathcal{I}_2 \models (p \lor \neg p) \\ \swarrow & \swarrow & \swarrow \\ \mathcal{I}_1 \not\models p & \mathcal{I}_1 \models \neg p & \mathcal{I}_2 \models p & \mathcal{I}_2 \not\models \neg p \\ & & & & & \\ & & & & & \\ \mathcal{I}_1 \not\models p & & \mathcal{I}_2 \models p \end{array}$$

- Is $(p \lor \neg p)$ true?
- Only two interesting interpretations:

$$\mathcal{I}_1 = \emptyset$$
 $\mathcal{I}_2 = \{p\}$

• Recursive Evaluation:

$$\begin{array}{cccccccc} \mathcal{I}_1 \models (p \lor \neg p) & \mathcal{I}_2 \models (p \lor \neg p) \\ \swarrow & \swarrow & \swarrow \\ \mathcal{I}_1 \nvDash p & \mathcal{I}_1 \models \neg p & \mathcal{I}_2 \models p & \mathcal{I}_2 \nvDash \neg p \\ & & & & & \\ & & & & & \\ \mathcal{I}_1 \nvDash p & & \mathcal{I}_2 \models p \end{array}$$

• $(p \lor \neg p)$ is true in *all* interpretations!

• A formula A that is true in all interpretations is called a *tautology*

- A formula A that is true in all interpretations is called a tautology
- also logically valid

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a *theorem* (of propositional logic)

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a *theorem* (of propositional logic)
- written:

 $\models A$

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a *theorem* (of propositional logic)
- written:

$\models A$

• $(p \lor \neg p)$ is a tautology

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a *theorem* (of propositional logic)
- written:

- $(p \lor \neg p)$ is a tautology
- True whatever *p* means:

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a *theorem* (of propositional logic)
- written:

- $(p \lor \neg p)$ is a tautology
- True whatever *p* means:
 - The sky is blue or the sky is not blue.

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a *theorem* (of propositional logic)
- written:

- $(p \lor \neg p)$ is a tautology
- True whatever *p* means:
 - The sky is blue or the sky is not blue.
 - Marit B. will win the race or Marit B. will not win the race.

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a *theorem* (of propositional logic)
- written:

- $(p \lor \neg p)$ is a tautology
- True whatever *p* means:
 - The sky is blue or the sky is not blue.
 - Marit B. will win the race or Marit B. will not win the race.
 - The slithy toves gyre or the slithy toves do not gyre.

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a *theorem* (of propositional logic)
- written:

- $(p \lor \neg p)$ is a tautology
- True whatever *p* means:
 - The sky is blue or the sky is not blue.
 - Marit B. will win the race or Marit B. will not win the race.
 - The slithy toves gyre or the slithy toves do not gyre.
- Possible to derive true statements mechanically...

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a *theorem* (of propositional logic)
- written:

- $(p \lor \neg p)$ is a tautology
- True whatever *p* means:
 - The sky is blue or the sky is not blue.
 - Marit B. will win the race or Marit B. will not win the race.
 - The slithy toves gyre or the slithy toves do not gyre.
- Possible to derive true statements mechanically...
- ...without understanding their meaning!

• Checking whether $\models A$ is the task of SAT-solving

- Checking whether $\models A$ is the task of SAT-solving
- (co-)NP-complete in general (i.e. in practice exponential time)

- Checking whether $\models A$ is the task of SAT-solving
- (co-)NP-complete in general (i.e. in practice exponential time)
- Small instances can be checked with a truth table:

$$\models (\neg p \lor (\neg q \lor (p \land q))) \quad ?$$

р	q	$\neg p$	$\neg q$	$(p \land q)$	$(\neg q \lor (p \land q))$	$(\neg p \lor (\neg q \lor (p \land q)))$
f	f	t	t	f	t	t
f	t	t	f	f	f	t
t	f	f	t	f	t	t
t	t	f	f	t	t	t

- Checking whether $\models A$ is the task of SAT-solving
- (co-)NP-complete in general (i.e. in practice exponential time)
- Small instances can be checked with a truth table:

$$\models (\neg p \lor (\neg q \lor (p \land q))) \quad ?$$

р	q	$\neg p$	$\neg q$	$(p \land q)$	$(\neg q \lor (p \land q))$	$(\neg p \lor (\neg q \lor (p \land q)))$
f	f	t	t	f	t	t
f	t	t	f	f	f	t
t	f	f	t	f	t	t
t	t	f	f	t	t	t

• Therefore: $(\neg p \lor (\neg q \lor (p \land q)))$ is a tautology!

• Tautologies are true in all interpretations

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

 $\mathcal{I} \models B$

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

 $\mathcal{I} \models B$ for all interpretations \mathcal{I} with $\mathcal{I} \models A$

• Also: "B is a logical consequence of A"

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

- Also: "B is a logical consequence of A"
- Whenever A holds, also B holds

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

 $\mathcal{I} \models B$ for all interpretations \mathcal{I} with $\mathcal{I} \models A$

- Also: "B is a logical consequence of A"
- Whenever A holds, also B holds
- For instance:

 $p \wedge q \models p$

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

 $\mathcal{I} \models B$ for all interpretations \mathcal{I} with $\mathcal{I} \models A$

- Also: "B is a logical consequence of A"
- Whenever A holds, also B holds
- For instance:

$$p \wedge q \models p$$

• Independent of meaning of p and q:

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

- Also: "B is a logical consequence of A"
- Whenever A holds, also B holds
- For instance:

$$p \wedge q \models p$$

- Independent of meaning of p and q:
 - If it rains and the sky is blue, then it rains

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

- Also: "B is a logical consequence of A"
- Whenever A holds, also B holds
- For instance:

$$p \wedge q \models p$$

- Independent of meaning of p and q:
 - If it rains and the sky is blue, then it rains
 - $\bullet\,$ If M.B. wins the race and the world ends, then M.B. wins the race

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

- Also: "B is a logical consequence of A"
- Whenever A holds, also B holds
- For instance:

$$p \wedge q \models p$$

- Independent of meaning of p and q:
 - If it rains and the sky is blue, then it rains
 - $\bullet\,$ If M.B. wins the race and the world ends, then M.B. wins the race
 - If 'tis brillig and the slythy toves do gyre, then 'tis brillig

Checking Entailment

• SAT solvers can be used to check entailment:

$$A \models B$$
 if and only if $\models (A \rightarrow B)$

Checking Entailment

• SAT solvers can be used to check entailment:

$$A \models B$$
 if and only if $\models (A \rightarrow B)$

• We can check simple cases with a truth table:

 $(p \wedge \neg q) \models \neg (\neg p \lor q)$?

р	q	$\neg p$	eg q	$(p \land \neg q)$	$(\neg p \lor q)$	$\neg(\neg p \lor q)$
f	f	t	t	f	t	f
f	t	t	f	f	t	f
t	f	f	t	t	f	t
t	t	f	f	f	t	f

Checking Entailment

• SAT solvers can be used to check entailment:

$$A \models B$$
 if and only if $\models (A \rightarrow B)$

• We can check simple cases with a truth table:

 $(p \wedge \neg q) \models \neg (\neg p \lor q)$?

р	q	$\neg p$	eg q	$(p \land \neg q)$	$(\neg p \lor q)$	$\neg(\neg p \lor q)$
f	f	t	t	f	t	f
f	t	t	f	f	t	f
t	f	f	t	t	f	t
t	t	f	f	f	t	f

• So $(p \land \neg q) \models \neg (\neg p \lor q)$

Checking Entailment

• SAT solvers can be used to check entailment:

$$A \models B$$
 if and only if $\models (A \rightarrow B)$

• We can check simple cases with a truth table:

 $(p \wedge \neg q) \models \neg (\neg p \lor q)$?

р	q	$\neg p$	$\neg q$	$(p \wedge \neg q)$	$(\neg p \lor q)$	$\neg(\neg p \lor q)$
f	f	t	t	f	t	f
f	t	t	f	f	t	f
t	f	f	t	t	f	t
t	t	f	f	f	t	f

• So
$$(p \land \neg q) \models \neg (\neg p \lor q)$$

• And $\neg(\neg p \lor q) \models (p \land \neg q)$

• In other words, $(p \land \neg q)$ and $\neg(\neg p \lor q)$ always have the same truth value, no matter the interpretation.

- In other words, $(p \land \neg q)$ and $\neg(\neg p \lor q)$ always have the same truth value, no matter the interpretation.
- We say that A and B are equivalent if A and B always have the same truth value.

- In other words, $(p \land \neg q)$ and $\neg(\neg p \lor q)$ always have the same truth value, no matter the interpretation.
- We say that A and B are equivalent if A and B always have the same truth value.
- For this we often introduce another connective, \leftrightarrow .

- In other words, $(p \land \neg q)$ and $\neg(\neg p \lor q)$ always have the same truth value, no matter the interpretation.
- We say that A and B are equivalent if A and B always have the same truth value.
- \bullet For this we often introduce another connective, $\leftrightarrow.$
- $\mathcal{I} \models (A \leftrightarrow B)$ iff $\mathcal{I} \models A$ if and only if $\mathcal{I} \models B$.

- In other words, $(p \land \neg q)$ and $\neg(\neg p \lor q)$ always have the same truth value, no matter the interpretation.
- We say that A and B are equivalent if A and B always have the same truth value.
- \bullet For this we often introduce another connective, $\leftrightarrow.$
- $\mathcal{I} \models (A \leftrightarrow B)$ iff $\mathcal{I} \models A$ if and only if $\mathcal{I} \models B$.
- To express that two formulas A, B are equivalent, we can write $\models (A \leftrightarrow B)$.

- In other words, $(p \land \neg q)$ and $\neg(\neg p \lor q)$ always have the same truth value, no matter the interpretation.
- We say that A and B are equivalent if A and B always have the same truth value.
- \bullet For this we often introduce another connective, $\leftrightarrow.$
- $\mathcal{I} \models (A \leftrightarrow B)$ iff $\mathcal{I} \models A$ if and only if $\mathcal{I} \models B$.
- To express that two formulas A, B are equivalent, we can write $\models (A \leftrightarrow B)$.
- We actually only need a subset of the connectives:

- In other words, $(p \land \neg q)$ and $\neg(\neg p \lor q)$ always have the same truth value, no matter the interpretation.
- We say that A and B are equivalent if A and B always have the same truth value.
- \bullet For this we often introduce another connective, $\leftrightarrow.$
- $\mathcal{I} \models (A \leftrightarrow B)$ iff $\mathcal{I} \models A$ if and only if $\mathcal{I} \models B$.
- To express that two formulas A, B are equivalent, we can write $\models (A \leftrightarrow B)$.
- We actually only need a subset of the connectives:
- E.g.:

- In other words, $(p \land \neg q)$ and $\neg(\neg p \lor q)$ always have the same truth value, no matter the interpretation.
- We say that A and B are equivalent if A and B always have the same truth value.
- \bullet For this we often introduce another connective, $\leftrightarrow.$
- $\mathcal{I} \models (A \leftrightarrow B)$ iff $\mathcal{I} \models A$ if and only if $\mathcal{I} \models B$.
- To express that two formulas A, B are equivalent, we can write $\models (A \leftrightarrow B)$.
- We actually only need a subset of the connectives:
- E.g.:
 - $\models ((A \lor B) \leftrightarrow \neg (\neg A \land \neg B)).$

- In other words, $(p \land \neg q)$ and $\neg(\neg p \lor q)$ always have the same truth value, no matter the interpretation.
- We say that A and B are equivalent if A and B always have the same truth value.
- \bullet For this we often introduce another connective, $\leftrightarrow.$
- $\mathcal{I} \models (A \leftrightarrow B)$ iff $\mathcal{I} \models A$ if and only if $\mathcal{I} \models B$.
- To express that two formulas A, B are equivalent, we can write $\models (A \leftrightarrow B)$.
- We actually only need a subset of the connectives:
- E.g.:
 - $\models ((A \lor B) \leftrightarrow \neg (\neg A \land \neg B)).$
 - $\models ((A \rightarrow B) \leftrightarrow (\neg A \lor B)).$

Equivalent formulas and redundant connectives

- In other words, $(p \land \neg q)$ and $\neg(\neg p \lor q)$ always have the same truth value, no matter the interpretation.
- We say that A and B are equivalent if A and B always have the same truth value.
- \bullet For this we often introduce another connective, $\leftrightarrow.$

•
$$\mathcal{I} \models (A \leftrightarrow B)$$
 iff $\mathcal{I} \models A$ if and only if $\mathcal{I} \models B$.

- To express that two formulas A, B are equivalent, we can write $\models (A \leftrightarrow B)$.
- We actually only need a subset of the connectives:
- E.g.:

•
$$\models ((A \lor B) \leftrightarrow \neg (\neg A \land \neg B)).$$

•
$$\models ((A \rightarrow B) \leftrightarrow (\neg A \lor B)).$$

$$\bullet \models ((A \leftrightarrow B) \leftrightarrow ((A \rightarrow B) \land (B \rightarrow A))).$$

Equivalent formulas and redundant connectives

- In other words, $(p \land \neg q)$ and $\neg(\neg p \lor q)$ always have the same truth value, no matter the interpretation.
- We say that A and B are equivalent if A and B always have the same truth value.
- \bullet For this we often introduce another connective, $\leftrightarrow.$

•
$$\mathcal{I} \models (A \leftrightarrow B)$$
 iff $\mathcal{I} \models A$ if and only if $\mathcal{I} \models B$.

- To express that two formulas A, B are equivalent, we can write $\models (A \leftrightarrow B)$.
- We actually only need a subset of the connectives:
- E.g.:

•
$$\models ((A \lor B) \leftrightarrow \neg (\neg A \land \neg B)).$$

•
$$\models ((A \rightarrow B) \leftrightarrow (\neg A \lor B)).$$

•
$$\models ((A \leftrightarrow B) \leftrightarrow ((A \rightarrow B) \land (B \rightarrow A))).$$

 \bullet So we actually only need \neg and \wedge to express any formula!

Equivalent formulas and redundant connectives

- In other words, $(p \land \neg q)$ and $\neg(\neg p \lor q)$ always have the same truth value, no matter the interpretation.
- We say that A and B are equivalent if A and B always have the same truth value.
- For this we often introduce another connective, \leftrightarrow .

•
$$\mathcal{I} \models (A \leftrightarrow B)$$
 iff $\mathcal{I} \models A$ if and only if $\mathcal{I} \models B$.

- To express that two formulas A, B are equivalent, we can write $\models (A \leftrightarrow B)$.
- We actually only need a subset of the connectives:
- E.g.:
 - $\models ((A \lor B) \leftrightarrow \neg (\neg A \land \neg B)).$
 - $\models ((A \rightarrow B) \leftrightarrow (\neg A \lor B)).$
 - $\models ((A \leftrightarrow B) \leftrightarrow ((A \rightarrow B) \land (B \rightarrow A))).$
- \bullet So we actually only need \neg and \wedge to express any formula!
- \bullet Any formula is equivalent to a formula containing only the connectives \neg and $\wedge.$

• Sets

Sets

• are collections of objects without order or multiplicity

- Sets
 - are collections of objects without order or multiplicity
 - often used to gather objects which have some property

Sets

- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \setminus

- Sets
 - are collections of objects without order or multiplicity
 - often used to gather objects which have some property
 - $\bullet \mbox{ can be combined using } \cap, \cup, \setminus$
- Relations

- Sets
 - are collections of objects without order or multiplicity
 - often used to gather objects which have some property
 - $\bullet \mbox{ can be combined using } \cap, \cup, \setminus$
- Relations
 - are sets of pairs (subset of cross product $A \times B$)

- Sets
 - are collections of objects without order or multiplicity
 - often used to gather objects which have some property
 - can be combined using \cap,\cup,\setminus
- Relations
 - are sets of pairs (subset of cross product $A \times B$)
 - x R y is the same as $\langle x, y \rangle \in R$

- Sets
 - are collections of objects without order or multiplicity
 - often used to gather objects which have some property
 - can be combined using \cap,\cup,\setminus
- Relations
 - are sets of pairs (subset of cross product $A \times B$)
 - x R y is the same as $\langle x, y \rangle \in R$
 - can use set operations on relations, e.g. $F \subseteq P$.

- Sets
 - are collections of objects without order or multiplicity
 - often used to gather objects which have some property
 - can be combined using \cap, \cup, \setminus
- Relations
 - are sets of pairs (subset of cross product $A \times B$)
 - x R y is the same as $\langle x, y \rangle \in R$
 - can use set operations on relations, e.g. $F \subseteq P$.
- Predicate Logic

- Sets
 - are collections of objects without order or multiplicity
 - often used to gather objects which have some property
 - can be combined using \cap, \cup, \setminus
- Relations
 - are sets of pairs (subset of cross product $A \times B$)
 - x R y is the same as $\langle x, y \rangle \in R$
 - can use set operations on relations, e.g. $F \subseteq P$.
- Predicate Logic
 - has formulas built from letters, \land , \lor , \rightarrow , \neg (syntax)

- Sets
 - are collections of objects without order or multiplicity
 - often used to gather objects which have some property
 - can be combined using \cap, \cup, \setminus
- Relations
 - are sets of pairs (subset of cross product $A \times B$)
 - x R y is the same as $\langle x, y \rangle \in R$
 - can use set operations on relations, e.g. $F \subseteq P$.
- Predicate Logic
 - has formulas built from letters, \land , \lor , \rightarrow , \neg (syntax)
 - which can be evaluated in an *interpretation (semantics)*

- Sets
 - are collections of objects without order or multiplicity
 - often used to gather objects which have some property
 - can be combined using \cap, \cup, \setminus
- Relations
 - are sets of pairs (subset of cross product $A \times B$)
 - x R y is the same as $\langle x, y \rangle \in R$
 - can use set operations on relations, e.g. $F \subseteq P$.
- Predicate Logic
 - has formulas built from letters, \land , \lor , \rightarrow , \neg (syntax)
 - which can be evaluated in an interpretation (semantics)
 - interpretations are sets of letters

- Sets
 - are collections of objects without order or multiplicity
 - often used to gather objects which have some property
 - can be combined using \cap,\cup,\setminus
- Relations
 - are sets of pairs (subset of cross product $A \times B$)
 - x R y is the same as $\langle x, y \rangle \in R$
 - can use set operations on relations, e.g. $F \subseteq P$.
- Predicate Logic
 - has formulas built from letters, \land , \lor , \rightarrow , \neg (syntax)
 - which can be evaluated in an interpretation (semantics)
 - interpretations are sets of letters
 - $\bullet\,$ recursive definition for semantics of $\wedge,\,\vee,\,\rightarrow,\,\neg$

- Sets
 - are collections of objects without order or multiplicity
 - often used to gather objects which have some property
 - can be combined using \cap,\cup,\setminus
- Relations
 - are sets of pairs (subset of cross product $A \times B$)
 - x R y is the same as $\langle x, y \rangle \in R$
 - can use set operations on relations, e.g. $F \subseteq P$.
- Predicate Logic
 - has formulas built from letters, \land , \lor , \rightarrow , \neg (syntax)
 - which can be evaluated in an interpretation (semantics)
 - interpretations are sets of letters
 - $\bullet\,$ recursive definition for semantics of $\wedge,\,\vee,\,\rightarrow,\,\neg$
 - $\models A \text{ if } \mathcal{I} \models A \text{ for all } \mathcal{I} \text{ (tautology)}$

- Sets
 - are collections of objects without order or multiplicity
 - often used to gather objects which have some property
 - can be combined using \cap, \cup, \setminus
- Relations
 - are sets of pairs (subset of cross product $A \times B$)
 - x R y is the same as $\langle x, y \rangle \in R$
 - can use set operations on relations, e.g. $F \subseteq P$.
- Predicate Logic
 - has formulas built from letters, \land , \lor , \rightarrow , \neg (syntax)
 - which can be evaluated in an interpretation (semantics)
 - interpretations are sets of letters
 - $\bullet\,$ recursive definition for semantics of $\wedge,\,\vee,\,\rightarrow,\,\neg$
 - $\models A \text{ if } \mathcal{I} \models A \text{ for all } \mathcal{I} \text{ (tautology)}$
 - $A \models B$ if $\mathcal{I} \models B$ for all \mathcal{I} with $\mathcal{I} \models A$ (entailment)

- Sets
 - are collections of objects without order or multiplicity
 - often used to gather objects which have some property
 - can be combined using \cap,\cup,\setminus
- Relations
 - are sets of pairs (subset of cross product $A \times B$)
 - x R y is the same as $\langle x, y \rangle \in R$
 - can use set operations on relations, e.g. $F \subseteq P$.
- Predicate Logic
 - has formulas built from letters, \land , \lor , \rightarrow , \neg (syntax)
 - which can be evaluated in an interpretation (semantics)
 - interpretations are sets of letters
 - $\bullet\,$ recursive definition for semantics of $\wedge,\,\vee,\,\rightarrow,\,\neg$
 - $\models A \text{ if } \mathcal{I} \models A \text{ for all } \mathcal{I} \text{ (tautology)}$
 - $A \models B$ if $\mathcal{I} \models B$ for all \mathcal{I} with $\mathcal{I} \models A$ (entailment)
 - truth tables can be used for checking validity and etailment.