

Catenary Risers Analytical approaches

Brasil – Japan Cooperative Courses

Celso P. Pesce

Professor of Mechanical Sciences

PhD in Ocean Engineering, MSc Marine Hydrodynamics, Naval Architect

ceppesce@usp.br

LMO - Offshore Mechanics Laboratory

Escola Politécnica

University of São Paulo

Brazil

Catenary lines

Riser Dynamics research scenario

• Structural dynamics:

٠

 Formulation and numerical methods: Nonlinear boundary conditions at riser top: Nonlinear boundary conditions a TDZ: Riser-soil elastic interaction: Riser-soil nonlinear contact interaction: 	On going OK OK ON going on going
 Clashing and impact loading: 	on going
 Instabilities and post-critical behaviors: 	on going
 Hydroelastic interactions: VIV: Fundamentals: Mitigation: Multiple scales nonlinear interactions: 	on going still open on going still open
 Wake interferences and instabilities: Internal flow interactions: 	on going on going

Basics on Catenary Risers - Analytical approaches

Schedule and outline

Date	Lecture	Theme	Торіс	File		
June 6th 2016					Statics	Lecture SCR CPesce #01ª
	1	Global Analysis	Dynamics	Lecture SCR CPesce #01B		
			Modal Analysis	Lecture SCR CPesce #01C		
June 8th 2016	2	Local Analysis at TDZ and TOP	TDZ Kinematics	Lecture SCR CPesce #02		
			TDZ 'dynamics'			
			Linear soil effect			
			TOP Local 'dynamics'			

References and further reading

- 1. Pesce, C. P. Mecânica de cabos e tubos submersos lançados em catenária: uma abordagem analítica e experimental. Tese de livre docência (in Portuguese), Escola Politécnica da Universidade de São Paulo – EPUSP, 1997.
- 2. Aranha, J.A.P, Martins, C.A., Pesce, C.P. Analytic Approximation For The Dynamic Bending Moment At The Touchdown Point of A Catenary Riser. International Journal of Offshore and Polar Engineering, ISOPE, Golden, Colorado, USA, v. 7, n.4, p. 241-249, 1997.
- 3. Pesce, C.P., Aranha, J.A.P., Martins, C.A., Ricardo, O.G.S, Silva, S. Dynamics Of Curvature In Catenary Risers At The Touch-Down Point Region: An Experimental Study And The Analytical Boundary-Layer Solution. International Journal of Offshore and Polar Engineering, ISOPE, Golden, Colorado ,USA, v. 8, n.3, p. 302-310, 1998.
- 4. Pesce, C.P., Aranha, J.A.P., Martins, C.A. The Soil Rigidity Effect in the Touch-Down Boundary-Layer of a Catenary Riser: Static Problem. In: International Offshore and Polar Engineering Conference,, Montreal. v. 2. p. 207-213, 1998.
- 5. Pesce, CP, et al., Analytical and Closed Form Solutions for Deep Water Riser-Like Eigenvalue Problem, Proceedings of the 9th International Offshore and Polar Engineering Conference, ISOPE'99, Vol. 2, pp. 255-264, 1999.
- 6. Pesce, C.P.; Martins, C.A. Numerical Computation of Riser Dynamics. In: Chakrabarti, S.K. (Ed.) Numerical Methods in Fluid Structure Interaction, Advances in Fluid Mechanics vol. 42, WIT Press, 429 pp, Chapter 7, pgs 253-309, 2005.
- 7. Pesce, C.P., Martins, C.A. and Silveira, L.M.Y., Riser-Soil Interaction: Local Dynamics at TDP and a Discussion on the Eigenvalue and the VIV Problems, J Offshore Mechanics and Arctic Engineering, 128, pp.39-55, 2006.

References and further reading

- 8. Silveira, L.M.Y, Martins, C.A., Cunha, L.D., Pesce, C.P., An Investigation on the Effect of Tension Variation on VIV of Risers, 26th International Conference on Offshore Mechanics and Arctic Engineering, OMAE2007, San Diego, USA, June 2007.
- 9. Chatjigeorgiou, I. K. Application of the WKB method to catenary-shaped slender structures. Mathematical and Computer Modelling, 48, pp. 249–257, 2008.
- 10.Chatjigeorgiou, I. K. Solution of the boundary layer problem for calculating the natural modes of riser type slender structures. Journal of Offshore Mechanics and Arctic Engineering, 130, 2008.
- 11.Pereira, F.R., Pesce, C.P., Gonçalves, R.T., Franzini, G.R., Fujarra, A.L.C., Salles, R., Mendes, P.. Risers Model Tests: Scaling Methodology and Dynamic Similarity In: ISOPE2012, 2012, Rhodes, Greece. Proceedings of the 22th International Offshore and Polar Engineering Conference., 2012. v.2. p.439 – 445, 2012.
- 12.Pereira, F.R., Gonçalves, R.T., Pesce, C.P., Fujarra, A.L.C., Franzini, G.R., Mendes, P. A Model Scale Experimental Investigation on Vortex-Self Induced Vibrations (VSIV) of Catenary Risers In: OMAE2013, 2013, Nantes. Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering. NY: ASME, 2013.
- 13.Pesce, C.P. Riser Dynamics: experiments with small scale models. *LabOceano* Ten-Years Anniversary Celebration Workshop. April 29-30, 2013, Rio de Janeiro, Brazil, 2013.
- 14. Morooka, C.K., Tsukada, R.I. Experiments with a Steel Catenary Riser Model in a Towing Tank. Applied Ocean Research, v. 43, 244-255, 2013.
- 15.Mazzilli, C. E. N., Lenci, S., Demeio, L. Nonlinear free vibrations of tensioned vertical risers. In Proceedings of 8th European Nonlinear Dynamics Conference ENOC2014, 2014.

References and further reading

- 16. Quéau, L.M., Kimiaei, M., Randolph, M.R., Dimensionless groups governing response of steel catenary risers. Ocean Engineering, v. 74, 247-259, 2013.
- 17.Quéau, L.M., Kimiaei, M., Randolph, M.R., Analytical estimation of static stress range in oscillating steel catenary risers at touchdown areas and its application with dynamic amplification factors. Ocean Engineering, v.88, 63-80, 2014.
- 18.Quéau, L.M., Kimiaei, M., Randolph, M.R., Approximation of the maximum dynamic stress range in steel catenary risers using artificial neural networks. Engineering Structures, v.92, 172-185, 2015.
- 19.Franzini, G., Pesce, C.P., Salles, R., Gonçalves, R.T., Fujarra, A.L.C., Mendes, P. Experimental Analysis of a Vertical and Flexible Cylinder in Water: Response to Top Motion Excitation and Parametric Resonance. Journal of Vibration and Acoustics, v. 137, p. 031010, 2015.
- 20.Franzini, G.R., Pesce, C.P., Gonçalves, R.T., Fujarra, A.L.C., Mendes, P. Experimental investigations on vortex-induced vibrations with a long flexible cylinder. Part I: modal-amplitude analysis with avertical configuration. 11th Int Conference on Flow-Induced Vibration, FIV 2016, Den Haag, 2016.
- 21.Franzini, G.R., Pesce, C.P., Gonçalves, R.T., Fujarra, A.L.C., Mendes, P. Experimental investigations on vortex-induced vibrations with a long flexible cylinder. Part II: effect of axial motion excitation in a vertical configuration. 11th Int Conference on Flow-Induced Vibration, FIV 2016, Den Haag, 2016.
- 22.Franzini, G.R., Pesce, C.P., Gonçalves, R.T., Fujarra, A.L.C., Mendes, P. Experimental investigations on vortex-induced vibrations with a long flexible cylinder. Part III: modal-amplitude analysis with a catenary configuration. 11th Int Conference on Flow-Induced Vibration, FIV 2016, Den Haag, 2016.

Cooperative Applied Research

Based on:

- Cooperative Applied Research
- Graduate Studies
- Undergraduate Education

Faculty	Department	Laboratory	Expertise
Celso Pesce	Mechanical	LMO	Ocean Engineering
Clóvis Martins	Mechanical	LMO/NDF	Computational Mechanics
Roberto Ramos	Mechanical	LMO	Structural Mechanics
André Fujarra	UFSC	LMO/TPN	Ocean Engineering
Gustavo Assi	NA & Ocean Eng	LMO/TPN	Ocean Engineering
Kazuo Nishimoto	NA & Ocean Eng	TPN	Offshore Systems Design
Eduardo Tannuri	Mechatronics	TPN	Mechatronics & Control
José Aranha	Mechanical	NDF	Fluid Dynamics
Julio Meneghini	Mechanical	NDF	Fluid Dynamics
Alexandre Simos	NA & Ocean Eng	TPN	Marine Hydrodynamics
Claudio Ruggieri	NA & Ocean Eng	NAVFRAC	Fracture Mechanics
Jorge Baliño	Mechanical	NDF	Fluid Dynamics
Jurandir Yanagihara	Mechanical	LETE	Termo Sciences
Carlos Mazzilli	Civil	LMC	Structure Dynamics
Guilherme Franzini	Civil	LMO	Structure Dynamics
Alfredo Gay Neto	Civil	LMC	Computational Mechanics

Acknowledgements

Programa de Recursos Humanos

Agência Nacional do

Petróleo

pr

LIFE&MO

FLUID-STRUCTURE INTERACTION AND OFFSHORE MECHANICS LABORATORY