

Catenary Risers: Global Analysis

Linear Vibration Modes

Analytical approaches

Celso P. Pesce

Professor of Mechanical Sciences

PhD in Ocean Engineering, MSc Marine Hydrodynamics, Naval Architect

ceppesce@usp.br

LMO - Offshore Mechanics Laboratory Escola Politécnica University of São Paulo Brazil

Catenary lines

The dynamic problem

- Global dynamics governed by catenary rigidity.
- Bending stiffness effetcs are importante at the extremities and TDP, or for high-order vibration modes for which the mode vibrattion length is of same order of the local flexural length.
- There are several time scales that govern the overall dynamics of a riser.

Classic dynamic analysis

- Extensible cable static equilibrium solution under current.
- Linearized dynamic solution in frequency domain or in time domain extensible cable.
- Bending stiffness effects can be accounted for a posteriori, through boundary layer techniques at Top and TDZ.
- Vibration modes may be determined numerically or assessed analytically.

Recalling.. the bending stiffness effect

Recalling.. the bending stiffness effect

Rigid risers (Steel):
$$\mathcal{E} \approx O(10^{-2})$$
Flexible risers: $\mathcal{E} \approx O(10^{-3})$

Neglecting secon-order terms (bending stiffness):

$$\hat{T}\hat{\chi} + \frac{\partial \hat{T}}{\partial \hat{s}}\gamma + \hat{c}_n + \hat{\sigma}_n - \hat{\chi}_0 \cos\theta = \frac{\partial^2 \hat{u}_n}{\partial \hat{t}^2} (1 + O(\varepsilon^2))$$

Time scales

The classic vibrating string problem

The classic vibrating string problem

$$T(x) = T_0$$
 e $\mu(x) = \mu = \text{const} \Longrightarrow$

$$\begin{split} \mu \frac{\partial^2 y}{\partial t^2} = T_0 \frac{\partial^2 y}{\partial x^2} \quad \text{or} \quad \boxed{\frac{\partial^2 y}{\partial t^2} = c_0^2 \frac{\partial^2 y}{\partial x^2}} \quad \text{with} \quad \boxed{c_0 = \sqrt{\frac{T_0}{\mu}}} \\ \text{Solution} \quad y_n(x,t) = \varphi_n(x)e^{i\Omega_n t} \\ \frac{\partial^2 y_n}{\partial t^2} = -\Omega_n^2 \varphi_n(x)e^{i\Omega_n t} \quad \text{e} \quad \frac{\partial^2 y_n}{\partial x^2} = \varphi_n'' e^{i\Omega_n t} \longrightarrow \quad \left(c_0^2 \varphi_n'' + \Omega_n^2 \varphi_n(x)\right)e^{i\Omega_n t} = 0 \\ \text{Leading to} \quad \boxed{\left(c_0^2 \varphi_n'' + \Omega_n^2 \varphi_n(x)\right) = 0} \\ \text{Solution of the form:} \quad \varphi_n(x) = A_n e^{ik_n x} \implies \left(-k_n^2 + \frac{\Omega_n^2}{c_0^2}\right)\varphi_n(x) = 0 \end{split}$$

The classic vibrating string problem

Characteristic equation:

$$\left(-k_n^2 + \frac{\Omega_n^2}{c_0^2}\right) = 0$$

Boundary conditions:

$$\left[\varphi_n\right]_{x=0} = \left[\varphi_n\right]_{x=L} \equiv 0 \Longrightarrow k_n L = n\pi$$

$$\therefore k_n = \frac{n\pi}{L}$$

Therefore:

x

 $T(L) = T_0 + \gamma L$

The vertical vibrating string problem

$$\mu(x)\frac{\partial^2 y}{\partial t^2} = \frac{\partial}{\partial x} \left(T(x)\frac{\partial y}{\partial x} \right) \quad \text{with,} \quad \begin{array}{l} \mu(x) = m(x) + m_a(x) \\ T(x) = T_0 + \int_0^x \gamma(x) dx \end{array}$$

Solution of the form: $y(x,t) = \varphi(x)\eta(t)$

Since:
$$\frac{\partial^2 y}{\partial t^2} = \varphi \ddot{\eta}$$
 and $\frac{\partial y}{\partial x} = \varphi' \eta \rightarrow \frac{\ddot{\eta}}{\eta} = \frac{1}{\mu \varphi} \frac{d}{dx} (T(x)\varphi') = -\Omega^2$
Then: $\ddot{\eta} + \Omega^2 \eta = 0 \rightarrow \eta_n(t) = e^{i(\Omega_n t + \theta_n)}$

Leading to:

$$\frac{d}{dx} (T(x)\varphi') + \mu(x)\Omega^2 \varphi = 0$$

X=0

 T_0

L

L

X=

 T_0

х

The vertical vibrating string problem

$$T(L) = T_0 + \gamma L \qquad \gamma(x) = \gamma = \text{cte} \implies T(x) = T_0 + \gamma x$$
$$\mu(x) = \mu = \text{cte} \implies \left(T_0 + \gamma x\right) \varphi'' + \gamma \varphi' + \mu \Omega^2 \varphi = 0$$

Defining:

$$\xi = \frac{T_0}{\gamma} + x \quad e \quad \beta^2 = \frac{\mu}{\gamma} \Omega^2$$

 \boldsymbol{T}

Then:

$$\xi\varphi'' + \varphi' + \beta^2\varphi = 0$$

This equation can be transformed into a modified Bessel equation, with known solutions.

L

The vertical vibrating string problem

X $T(L) = T_0 + \gamma L$ In fact, defining a new variable: $\xi = \zeta^2$ Such that: $d\zeta = \frac{1}{2}\xi^{-1/2}d\xi = \frac{1}{2}\frac{1}{\zeta}d\xi$ $\frac{d\varphi}{d\xi} = \frac{d}{d\zeta} \left[\varphi(\xi(\zeta)) \right] \frac{d\zeta}{d\xi} = \frac{1}{2\zeta} \frac{d\varphi}{d\zeta}$ follows: $\left|\frac{d^{2}\varphi}{d\xi^{2}} = \frac{d}{d\xi}\left[\frac{d\varphi}{d\xi}\right] = \frac{d}{d\zeta}\left[\frac{1}{2\zeta}\frac{d\varphi}{d\zeta}\right]\frac{d\zeta}{d\xi} =$ and: $= \left| \frac{1}{2\zeta} \frac{d^2 \varphi}{d\zeta^2} - \frac{1}{2\zeta^2} \frac{d\varphi}{d\zeta} \right| \frac{1}{2\zeta} = \frac{1}{4\zeta^2} \left| \frac{d^2 \varphi}{d\zeta^2} - \frac{1}{\zeta} \frac{d\varphi}{d\zeta} \right|$ $\left|\xi\varphi'' = \frac{1}{4}\right| \frac{d^2\varphi}{d\zeta^2} - \frac{1}{\zeta} \frac{d\varphi}{d\zeta} \right|$ resulting:

The vertical vibrating string problem

L

X

The vertical vibrating string problem

$$I = T_{0} + \gamma L \quad \text{Recalling that:} \quad \xi = \frac{T_{0}}{\gamma} + x \quad \text{e} \quad \beta^{2} = \frac{\mu}{\gamma} \Omega^{2}$$

$$\int \varphi(x) = C_{1}J_{0} \left(2\Omega \left(\frac{\mu}{\gamma} \right)^{1/2} \left(\frac{T_{0}}{\gamma} + x \right)^{1/2} \right) + C_{2}Y_{0} \left(2\Omega \left(\frac{\mu}{\gamma} \right)^{1/2} \left(\frac{T_{0}}{\gamma} + x \right)^{1/2} \right) \right)$$

$$\text{Boundary conditions at extremities:} \quad \varphi_{n}(0) = \varphi_{n}(L) = 0$$

$$\int \left(\int U_{0} \left(2\Omega_{n} \left(\frac{\mu}{\gamma} \right)^{1/2} \left(\frac{T_{0}}{\gamma} + L \right)^{1/2} \right) + Y_{0} \left(2\Omega_{n} \left(\frac{\mu}{\gamma} \right)^{1/2} \left(\frac{T_{0}}{\gamma} + L \right)^{1/2} \right) \right) = 0$$

$$X=0 \quad (D_{1} = 0)$$

$$(D_{2} = 0)$$

$$(D_{2}$$

х

T

The vertical vibrating string problem

$$T(L) = T_0 + \gamma L$$

Once determined the eigenvalues

$$\Omega_n = \Omega_n(T_0, \mu, \gamma, L)$$

The natural vibration modes are given by:

$$\varphi_n(x) = C_{1n} J_0 \left(2\Omega_n \left(\frac{\mu}{\gamma} \right)^{1/2} \left(\frac{T_0}{\gamma} + x \right)^{1/2} \right) + C_{2n} Y_0 \left(2\Omega_n \left(\frac{\mu}{\gamma} \right)^{1/2} \left(\frac{T_0}{\gamma} + x \right)^{1/2} \right)$$

with:

$$C_{2n} = -C_{1n} \frac{J_0 \left(2\Omega_n \left(\frac{\mu}{\gamma} \right)^{1/2} \left(\frac{T_0}{\gamma} \right)^{1/2} \right)}{Y_0 \left(2\Omega_n \left(\frac{\mu}{\gamma} \right)^{1/2} \left(\frac{T_0}{\gamma} \right)^{1/2} \right)} = -C_{1n} \frac{J_0 \left(2\Omega_n \left(\frac{\mu}{\gamma} \right)^{1/2} \left(\frac{T_0}{\gamma} + L \right)^{1/2} \right)}{Y_0 \left(2\Omega_n \left(\frac{\mu}{\gamma} \right)^{1/2} \left(\frac{T_0}{\gamma} + L \right)^{1/2} \right)}$$

L

X=

х

The vertical vibrating string problem

$$T(L) = T_0 + \gamma L$$

Singular case: $T_0 = 0$ since $[Y_0(0)] \rightarrow \infty$

The singularity could be removed by setting :

 $C_{1n} - C_{2n}$

=0

$$C_{2n}\equiv 0$$

But, as:

$$C_{2n} = -C_{1n} \frac{J_0 \left(2\Omega_n \left(\frac{\mu}{\gamma} \right)^{1/2} \left(\frac{T_0}{\gamma} + L \right)^{1/2} \right)}{Y_0 \left(2\Omega_n \left(\frac{\mu}{\gamma} \right)^{1/2} \left(\frac{T_0}{\gamma} + L \right)^{1/2} \right)}$$

$$C_{1n} = C_{2n} \equiv 0$$

Trivial solution

X=

L

L

X=0

х

 $T(L) = T_0 + \gamma L$

The vertical vibrating string problem

Singular case: $T_0 = 0$

Physical interpretation:

when tension is null the wave celerity is also null:

$$c(x) = \sqrt{\frac{T(x)}{\mu}}$$

Locally, the bending stiffness effect has to be included, what cand be done through the *Boundary Layer Technique; Triantafyllou, 1984.*

An analytical solution – Bessellike modes- has been obtained, by reducing the beam equation to a second-order one, accounting for the bending stiffness effect through an equivalent tension (in an average sense);

see Mazzilli & Lenci, 2014.

The catenary-like problem under current action; Pesce et al 1999

The catenary-like problem under current action

In the absence of external forces the linearized dynamic equations take the nondimensional form:

$$F(\xi)\left(\frac{\partial\eta}{\partial\xi} + \upsilon\frac{d\theta}{d\xi}\right)\frac{d\theta}{d\xi} + \frac{1}{1+a}\frac{\partial^{2}\upsilon}{\partial\xi^{2}} = 0$$
$$-\frac{\partial}{\partial\xi}\left(F(\xi)\left(\frac{\partial\eta}{\partial\xi} + \upsilon\frac{d\theta}{d\xi}\right)\right) + \frac{\partial^{2}\eta}{\partial t^{2}} = 0$$
Added mass

 $\xi = s/L; \quad \upsilon = u/L; \quad \eta = v/L$ $t = c_0 t/L; \quad c_0 = \sqrt{T_0/(m+m_a)} \qquad e \qquad a = \frac{m_a}{m}$

 $F(\xi) = \frac{T(\xi)}{T_0} = \left(\frac{c(\xi)}{c_0}\right)^2$

Dimensionless tension function

The catenary-like problem under current action

Neglecting second order terms in the static curvature:

The catenary-like problem under current action

/

The catenary-like problem under current action: a Bessel equation approximation

Approximating (mimimum quadratic method) as:

$$F(\zeta) \approx \alpha^2 + b\zeta \quad \text{com} \quad \beta = b/\alpha^2$$

And defining: $z^2 = 1 + \beta\zeta = 1 + (b/\alpha^2)\zeta$

A modified Bessel equation is obtained in the form:

$$z^{2}\phi'' + z\phi' + 4K^{2}z^{2}\phi = 0$$
$$K = \frac{\omega}{\alpha\beta\tan\theta_{L}}$$

With solution:

$$\varphi(z) = C_1 J_0(2Kz) + C_2 Y_0(2Kz)$$

The catenary-like problem under current action: a Bessel equation approximation

For a 'catenary' riser:

Satisfying the characteristic equation:

$$J_{0}\left(2\frac{\omega}{\alpha\beta\tan\theta_{L}}\left(1+\beta\tan\theta_{L}\right)^{1/2}\right)Y_{0}\left(2\frac{\omega}{\alpha\beta\tan\theta_{L}}\right)=$$
$$=-J_{0}\left(2\frac{\omega}{\alpha\beta\tan\theta_{L}}\right)Y_{0}\left(2\frac{\omega}{\alpha\beta\tan\theta_{L}}\left(1+\beta\tan\theta_{L}\right)^{1/2}\right)$$

The catenary-like problem under current action: a WKB approximation

WKB: Wentzel, Kramers, Brillouin (bem como Rayleygh e Jeffreys)

The catenary-like problem under current action: a WKB approximation

See, e.g., Bender & Orszag, pg. 490.

Local wave

number

Local wave

celerity

Local phase

 $\dot{\mathbf{A}}(s,t)$

The catenary-like problem under current action: a WKB approximation

Direct 'actonomy' ricor

Eigenvalues are quadratures of the static solution!!!!

$$\varphi_n(\zeta) \cong A_n F^{-1/4}(\zeta) \sin\left(\Lambda_n \int_0^{\zeta} F^{-1/2}(u) du\right) \stackrel{\longrightarrow}{\rightarrow}$$

Linear in n

0

Vibration modes are sinusoidal functions, modulated in amplitude and phase, ressembling Bessel functions

 $\Lambda_n \cong n\pi \left(\int_0^\mu \frac{d\zeta}{\sqrt{F(\zeta)}} \right)^{-1}; \quad \omega_n = \Lambda_n \tan \theta_L$

$$\phi_n(\zeta) = \Lambda_n \int^{\zeta} F^{-1/2} d\zeta \qquad \kappa_n = \frac{d\phi}{d\zeta} = \frac{\Lambda_n}{\sqrt{F(\zeta)}} \qquad \qquad \frac{c(\zeta)}{c_0} = \frac{\Lambda_n}{\kappa_n(\zeta)}$$

becal phase Local wave number Local wave celerity

The catenary-like problem under current action: a WKB approximation

Particular case: NO CURRENT

WKB solution

$$\varphi_n(\theta;\theta_L) \cong A_n(\cos\theta)^{-1/4} \sin\left\{\Lambda_n \int_0^{\theta_L} \frac{d\theta}{(\cos\theta)^{3/2}}\right\}$$
$$\Lambda_n = \Lambda_n(\theta_L) \cong \frac{n\pi}{\int_0^{\theta_L} \frac{d\theta}{(\cos\theta)^{3/2}}}$$

Since
$$T_0 = \frac{qL}{\tan \theta_L} \longrightarrow \Omega_n \cong \Lambda_n \sqrt{\frac{q \tan \theta_L}{(m+m_a)L}}$$

Particular case: NO CURRENT

WKB solution

Taking
$$m_a \cong \rho \pi D^2 / 4 \longrightarrow q \cong (m - m_a)g$$

And, with
$$a = m_a/m \longrightarrow \Omega_n \cong \Lambda_n \sqrt{\tan \theta_L \frac{(1-a)}{(1+a)}} \sqrt{\frac{g}{L}}$$

However,
$$L = H \sin \theta_L / (1 - \cos \theta_L)$$

$$\mathbf{\Omega}_{n} \cong \Lambda_{n} \sqrt{\frac{(1 - \cos\theta_{L})}{\cos\theta_{L}}} \sqrt{\frac{(1 - a)}{(1 + a)}} \sqrt{\frac{g}{H}}$$

Particular case: NO CURRENT

WKB solution for a catenary riser

Catenary riser

Bessel's $\mu=5.7$

1

1

WKB vs. POLIFLEX

WKB vs. POLIFLEX

Flexible Pipe

EA (kN)	312500
EJ (kNm ²)	49.61
<i>q</i> (kN/m)	0.914
<i>m</i> (t/m)	0.218
<i>D</i> (m)	0.3934
<i>H</i> (m)	785
Total length (m)	3000
L (m) for $\theta_L = 80^{\circ}$	935.5
L (m) for $\theta_L = 60^o$	1359.6

WKR

Flexible Pipe

Transversal Displacement - Mode 4 w=0.42rad/s

Axial Displacement - Mode 4

Arc Length (m)

POLIFLEX

Transversal Displacement - Mode 30 w=3.22rad/s

Arc Length (10el (m))

Axial Displacement - Mode 30

Arc Length (10el (m))

WKB

Tranversal Displacement - Mode 5 0.5584rad/s

1.0 (10e-1)

Displacement (10e-2)

ent Displace

Arc Length (m)

$$\tan \theta_L = 5.7$$
$$\theta_L = 80^\circ$$

WKB vs. POLIFLEX

Typical SCR

Axial Rigidity, EA (kN)	$2.314 \text{ x} 10^6$
Bending Stiffness, <i>EI</i> (kNm ²)	9915
Immersed weight, q (kN/m)	0.727
<i>m</i> (kg/m) (filled with water)	108.0
External diameter, D (m)	0.2032
Thickness (mm)	19.05
Depth $H(\mathbf{m})$	1800
Total length (m)	_5047
Angle at top, $\theta_L(^{\circ})$ (no current)	70 (w.r.t. horizontal)
Soil Rigidity, k (kN/m/m)	466.37
Suspended length, $L(\underline{m})$	2571
Static tension at TDP, T_0 (kN)	680.55
Flexural length, $\lambda(m)$	3.82
Curvature at TDP, χ_0 (m ⁻¹)	1.077E-03
Nondimensional curvature at	4.114E-03
TDP, $X_0 = \chi_0 \lambda$	
Local scale, $\varepsilon = \lambda/L$	1.486E-03
Nondimensional soil rigidity	10
parameter, $K = kEI/T_0^2$	

WKB vs. POLIFLEX SCR

Natural Frequencies for a Catenary Riser; WKB compared to numerical approach

WKB vs. POLIFLEX

SCR: Mode 25

Transversal Displacement - Mode 25

Data	Scaled (1:100)	Designed model	As built
Internal diameter (mm)	1.826	15.800	15.800
External diameter (mm)	2.191	22.200	22.200
Weight in water (N/m)	0.726	7.308	7.308
Axial rigidity, EA (kN)	2.362	1.910	1.0 - 1.6
Bending stiffness, EI (Nm ²)	1.20E-03	8.86E-02	5.60E-02
Flexural length, λ_f (mm)	71.0	61.0	49.0
Added mass, <i>a=m_a/m</i>	0.522	0.520	0.520

	Natural Frequencies (Hz)		1st mode is out-of-plane		mode is of-plane	Natural Frequencies (Hz)		
Mode	POLIFLEX	Experimental	Plane		Mode	POLIFLEX	Experimental	Plane
1	0,42	0,42	out		1	0,42	0,43	out
2	0,70	0,72	in		2	0,72	0,76	in
3	0,83	0,87	out		3	0,84	0,85	out
4	1,10	1,15	in		4	1,09	1,18	in
5	1,25	1,26	out		5	1,26	1,25	out
6	1,52		in		6	1,44		in
7	1,68	1,79	out		7	1,67	1,66	in
8	1,68	1,66	in		8	1,69	1,77	out
9	2,13	2,23	out		9	2,13	2,24	in
10	2,12	2,22	in		10	2,14	2,27	out
11	2,59	2,73	out		11	2,56	2,74	in
12	2,56	2,56	in		12	2,59	2,71	out
13	3,07	3,02	out		13	3,05	3,18	in
14	3,05	3,19	in		14	3,51		out
15		3,80	out		15		3,22	in

Longitudinal to the flow

Transversal to the flow

Modal reconstruction: snapshots

mode

Rateiro 2015, Rateiro et al 2016

mode

mode

mode

Rateiro 2015, Rateiro et al 2016

Modal RMS vs First Modal Reduced Velocity

Rateiro 2015, Rateiro et al 2016

Summary

- It is possible to construct a closed form analytical solution through the WKB asymptotic technique for the planar case of a catenary line under current.
- In the particular case when current is absent the WKB solution is analytical.
- Numerical solutions recover the WKB solution when the line is asynptotically inextensible.
- Experimental assessment with small scale models confirm the power of analytical solutions.

Acknowledgements

LIFE&MO

FLUID-STRUCTURE INTERACTION AND OFFSHORE MECHANICS LABORATORY