

Catenary Risers: Global Analysis

Static Problem general equations

Celso P. Pesce

Professor of Mechanical Sciences

PhD in Ocean Engineering, MSc Marine Hydrodynamics, Naval Architect

ceppesce@usp.br

LMO - Offshore Mechanics Laboratory

Escola Politécnica

University of São Paulo

Brazil

Catenary lines

Effective Tension Concept

$$p_{ext}(s) = \rho_a g \Big(H - y(s) \Big)$$

General Kirshoff-Clebsh-Love Equations (KCL equations)

Curved bars – large displacements, small deformations

$$\frac{dT}{ds} - Q_v \kappa_w + Q_w \kappa_v + f_u = 0$$

$$\frac{dQ_v}{ds} - Q_w \kappa_u + T\kappa_w + f_v = 0$$

$$\frac{dQ_w}{ds} - T\kappa_v + Q_v \kappa_u + f_w = 0$$

$$\frac{dM_u}{ds} - M_v \kappa_w + M_w \kappa_v + K_u = 0$$

$$\frac{dM_v}{ds} - M_w \kappa_u + M_u \kappa_w - Q_w + K_v = 0$$

$$\frac{dM_w}{ds} - M_u \kappa_v + M_v \kappa_u + Q_v + K_w = 0$$

Euler angles and Curvature analogy

$$\kappa_{u} = \frac{d\psi}{ds} + \frac{d\phi}{ds}\cos\theta$$
$$\kappa_{v} = \frac{d\theta}{ds}\sin\psi - \frac{d\phi}{ds}\sin\theta\cos\psi$$
$$\kappa_{w} = \frac{d\theta}{ds}\cos\psi + \frac{d\phi}{ds}\sin\theta\sin\psi$$

Rigid Body Dynamic Equations

$$\frac{d\mathbf{Q}}{ds} + \mathbf{c} \wedge \mathbf{Q} + \mathbf{f} = \mathbf{0}$$

$$\frac{d\mathbf{M}}{ds} + \mathbf{c} \wedge \mathbf{M} + \mathbf{u} \wedge \mathbf{Q} + \mathbf{K} = \mathbf{0}$$

$$\mathbf{c} = (\kappa_u, \kappa_v, \kappa_w)$$

$$\mathbf{Q} = (T, Q_v, Q_w)$$
$$\mathbf{M} = (M_u, M_v, M_w)$$
$$\mathbf{f} = (f_u, f_v, f_w)$$
$$\mathbf{K} = (K_u, K_v, K_w)$$

Mathematically analogous

- **Q** momentum
- **M** angular momentum
- c angular velocity vector
- **K** Moment of external forces wrt an arbitrary point O
- **u** velocity of point O

If stiffness independent on s:

If plane case, no twisting:

If distributed loads absent:

If a constant pitch helix case:

If distributed moment loading absent:

$$\left(K_{u};K_{v};K_{w}\right)=\left(0;0;0\right)$$

$$\frac{dT}{ds} = Q_{v}\kappa_{w} - Q_{w}\kappa_{v} - f_{u}$$

$$B_{u} \frac{d\kappa_{u}}{ds} - (B_{v} - B_{w})\kappa_{v}\kappa_{w} = 0$$

$$B_{v} \frac{d^{2}\kappa_{v}}{ds^{2}} - (B_{w} - B_{u})\frac{d}{ds}(\kappa_{w}\kappa_{u}) - T\kappa_{v} + Q_{v}\kappa_{u} + f_{w} = 0$$

$$B_{w} \frac{d^{2}\kappa_{w}}{ds^{2}} - (B_{u} - B_{v})\frac{d}{ds}(\kappa_{u}\kappa_{v}) + Q_{w}\kappa_{u} - T\kappa_{w} - f_{v} = 0$$
If symmetric section:
$$B_{v} = B_{w} = B_{f} \quad \longrightarrow \quad \kappa_{u} = \tau_{0}, \text{ constant}$$

$$\frac{dT}{ds} = Q_{v}\kappa_{w} - Q_{w}\kappa_{v} - f_{u}$$

$$\kappa_{u} = \tau_{0}$$

$$B_{f} \frac{d^{2}\kappa_{v}}{ds^{2}} - (B_{f} - B_{u})\tau_{0}\frac{d\kappa_{w}}{ds} - T\kappa_{v} + Q_{v}\tau_{0} + f_{w} = 0$$

$$B_{f} \frac{d^{2}\kappa_{w}}{ds^{2}} - (B_{u} - B_{f})\tau_{0}\frac{d\kappa_{v}}{ds} + Q_{w}\tau_{0} - T\kappa_{w} - f_{v} = 0$$

Symmetric sections:

necessary (though not suficient) condition for null twist is the the applied twisting load be null. In this case:

$$\begin{aligned} \frac{dT}{ds} &= Q_v \kappa_w - Q_w \kappa_v - f_u \\ \kappa_u &= 0 \\ B_f \frac{d^2 \kappa_v}{ds^2} - T \kappa_v + f_w = 0 \\ B_f \frac{d^2 \kappa_w}{ds^2} - T \kappa_w - f_v = 0 \end{aligned}$$

Though relevant to instability analysis under twist (see Ramos & Pesce, 2003; Gay neto & Martins, 2011), torsion will be left aside from now on !

Universidade de São Paulo The static problem in the vertical plane

Catenary lines

The static equilibrium equations can be reduced to a single nonlinear ordinary differential equation:

Taking
$$f_v = f_n = -q \cos \theta + h_n(s)$$

 $f_u = f_t = -q \sin \theta + h_t(s)$

Where

- *h* stands for hydrodynamic forces and
- *q* is the immersed weight

It follows, after a long algebraic effort (Love; see also Pesce, 1997),

$$B\frac{d^{2}\theta}{ds^{2}}\sec\theta + qs - \int_{s} \left(h_{n}\sec\theta + \sec^{2}\theta\left(\frac{d\theta}{ds}\right)\int_{s} (h_{n}sen\theta - h_{t}\cos\theta)d\xi\right)ds = T_{0}\tan\theta - Q_{0}$$

Absence of ocean current

In this case, the integral term is identically null:

$$B\frac{d^2\theta}{ds^2}\sec\theta + qs = T_0\tan\theta - Q_0$$

If bending stiffness effect is neglected leads to the Catenary Equation

$$\tan \theta_c(s_c) = \frac{qs_c}{T_{0c}}$$

The catenary curvature is then given by:

$$\chi_{c}(s_{c}) = \frac{d\theta_{c}}{ds_{c}} = \frac{q}{T_{0c}} \cos^{2}\theta_{c}(s_{c}) = \frac{q}{T_{0c}} \frac{1}{1 + \left(\frac{qs_{c}}{T_{0c}}\right)^{2}}$$

Tension is:

$$\frac{dT_c}{ds_c} = q \operatorname{sen} \theta_c \quad \longrightarrow \quad T_c(s_c) = T_{0c} \operatorname{sec} \theta_c$$

$$I$$

$$T_y = T_c(s_c) \operatorname{sen} \theta_c = T_{0c} \tan \theta_c = qs_c$$

$$T_x = T_c(s_c) \cos \theta_c = T_{0c}; \text{ constante}$$

The horizontal component of tension is constant along the catenary line!

Cartesian coordinates

From: $\frac{dx}{ds} = \cos\theta; \quad \frac{dy}{ds} = sen\theta; \quad \frac{dy}{dx} = \tan\theta$ and

$$\frac{d}{ds_c} \left(T_c(s_c) \operatorname{sen} \theta_c \right) = \frac{dT_c}{ds_c} \operatorname{sen} \theta_c + T_c(s_c) \cos \theta_c \frac{d\theta_c}{ds_c} = q \operatorname{sen}^2 \theta_c + q \cos^2 \theta_c = q$$

follows:

$$\frac{d^2 y_c}{dx_c^2} - \frac{q}{T_{0c}} \left(1 + \left(\frac{dy_c}{dx_c}\right)^2\right)^{1/2} = 0$$

Whose solution is the wellknown catenary equation:

$$y_{c}(x) = \frac{T_{0c}}{q} \cosh\left(\frac{q}{T_{0}}x_{c} + C_{1}\right) + C_{2}$$

Special interest: existence of a TDP, ou "touch down point":

Special interest: existence of a TDP, ou "touch down point":

$$y_c = dy_c/dx_c = 0$$
 at $x_c = 0$

Leading to:

$$y_c(x) = \frac{T_{0c}}{q} \left\{ \cosh\left(\frac{q}{T_0} x_c\right) - 1 \right\}$$

Parametric Equations

1

Back to the catenary curvature function:

$$\chi_{c}(s_{c}) = \frac{d\theta_{c}}{ds_{c}} = \frac{q}{T_{0c}} \cos^{2}\theta_{c}(s_{c}) = \frac{q}{T_{0c}} \frac{1}{1 + \left(\frac{qs_{c}}{T_{0c}}\right)^{2}}$$

And observing that

$$\chi_c(0) = \chi_{0c} = \frac{q}{T_{0c}}$$

is the curvature at TDP:

•
$$\chi_c(s) = \chi_{0c} \cos^2 \theta_c(s_c) = \chi_{0c} \frac{1}{1 + (\chi_{0c} s_c)^2}$$

$$\chi_c(s) \cong \chi_{0c} \left(1 - \left(\chi_{0c} s_c \right)^2 \right); \quad \chi_{0c} s_c \ll 1$$

Other useful relations:

$$L_c = \frac{T_{0c}}{q} \tan \Theta_c^t$$

$$H = \int_{0}^{H} dy_{c} = \frac{T_{0c}}{q} \int_{0}^{\theta_{c}^{t}} \operatorname{sen} \theta_{c} \operatorname{sec}^{2} \theta_{c} d\theta_{c} = \frac{T_{0c}}{q} \left(\operatorname{sec} \theta_{c}^{t} - 1 \right)$$

$$\cos \theta_{c}^{t} = \left(\frac{qH}{T_{0c}} + 1\right)^{-1}$$

$$\sin \theta_{c}^{t} = \left(\left(1 + \frac{qH}{T_{0c}}\right)^{2} - 1\right)^{1/2} \left(\frac{qH}{T_{0c}} + 1\right)^{-1}$$

$$L_{c} = \frac{T_{0c}}{q} \left(\left(1 + \frac{qH}{T_{0c}}\right)^{2} - 1\right)^{1/2}$$

Catenary with a TDP on a horizontal bottom No current

Nondimensional curves; parameterized wrt angle at upper end

 $\theta_{cL} = 1.0; 1.25; 1.5 \text{rad}$

- Effective tension is a fundamental concept in submerged lines.
- The classic Kirschoff-Clebsh-Love equilibrium equations are a essential tool in catenary riser analysis.
- In the planar problem Love equations can be reduced to a single second-order ODE in $\theta(s)$.
- This equation must be solved iteratively, since the hydrodynamic forces depend on the sought equilibrium configuration.
- In the absence of current KCL equations reduce to the well known catenary equation.

Appendix: The planar static problem under current

Curvature at TDP

• Under or not current forces curvature at TDP is given by:

$$\chi_0 = \frac{d\theta}{ds}\Big|_{s=0} = \frac{q}{T_0}$$

• Current effect is implicit to the tension at TDP: T_0

First-order approximate solution under constant current profile

In first-order, around the catenary solution:

Horizontal coordinates of upper end point and center of mass

$$\frac{x_{Lc}}{H} = \frac{\ln(\tan\theta_{cL} + \sec\theta_{cL})}{\sec\theta_{cL} - 1} \qquad \frac{x_{Gc}}{H} = \frac{\cot\theta_{cL}}{\sec\theta_{cL} - 1} \left\{ 1 - \sec\theta_{cL} + \tan\theta_{cL} \ln(\tan\theta_{cL} + \sec\theta_{cL}) \right\}$$

Hydrodynamic forces center coordinates:

$$\frac{x_{Y_C}}{H} = \frac{1}{\sec \theta_{cL} - 1} \left\{ \frac{a_Y(\theta_{cL}) + \eta b_Y(\theta_{cL})}{c_Y(\theta_{cL}) + \eta d_Y(\theta_{cL})} \right\} \qquad \frac{y_{X_C}}{H} = \frac{1}{\sec \theta_{cL} - 1} \left\{ \frac{a_X(\theta_{cL}) + \eta b_X(\theta_{cL})}{c_X(\theta_{cL}) + \eta d_X(\theta_{cL})} \right\}$$

Angle at upper end:
$$\tan \tilde{\theta}_L = \frac{\tan \theta_{cL} + Y_c/T_{0c}}{T_0/T_{0c} - X_c/T_{0c}}$$

Tension atTDP:
$$\frac{\widetilde{T}_0}{T_{0c}} = \frac{1}{H} \left[\left(x_{Lc} - x_{Gc} \right) \tan \theta_{cL} + \left(x_{Lc} - x_{Yc} \right) \frac{Y_c}{T_{0c}} + \left(H - y_{Xc} \right) \frac{X_c}{T_{0c}} \right]$$

First-order approximate solution under constant current profile

where:

$$a_{Y}(\theta) = -(1/2)\ln^{2}(\sec\theta + \tan\theta) - \sin\theta\ln(\sec\theta + \tan\theta) - \ln(\cos\theta)$$

$$b_{Y}(\theta) = \theta - \cos\theta\ln(\sec\theta + \tan\theta)$$

$$c_{Y}(\theta) = \sin\theta - \ln(\sec\theta + \tan\theta)$$

$$d_{Y}(\theta) = 1 - \cos\theta$$

and:

$$a_{X}(\theta) = 2 - \cos\theta - \sec\theta + \frac{1}{2}\tan^{2}\theta + \ln(\cos\theta)$$
$$b_{X}(\theta) = \theta - sen\theta$$
$$c_{X}(\theta) = \cos\theta + \sec\theta - 2$$
$$d_{X}(\theta) = sen\theta$$

 $\eta = C_T / C_D$

Normalized tension at TDP, referred to the catenary solution, vs catenary angle at upper end parametrized wrt the current intensity

force

$$C_D \frac{\alpha}{q} = \frac{1}{2} C_D \frac{\rho_a D U_0^2}{q} = 2,5; 5,0; 7,5 \text{ e} 10\%$$

tetat

Normalized tension at TOP, referred to the catenary solution, vs catenary angle at upper end parametrized wrt the current intensity

tetat

Approximate solution under constant current profile

Angle variation (rad) at TOP vs catenary angle at upper end parametrized wrt the current intensity force

$$C_D \frac{\alpha}{q} = \frac{1}{2} C_D \frac{\rho_a D U_0^2}{q} = 2,5; 5,0; 7,5 \text{ e} 10\%$$

Approximate vs 'exact' numerical solution SCR:10"3/4 in 910m deep waters

Summary

- In the planar problem, curvature at TDP depends only on tension and immersed weight. Tension brings implicitly all information from the equilibrium configuration.
- A first-order approximation gives the static configuration under a constant current profile.
- Such an approximation is fair enough in mild current conditions, up to 1.0m/s for a standard 10 inches SCR.

Acknowledgements

LIFE&MO

FLUID-STRUCTURE INTERACTION AND OFFSHORE MECHANICS LABORATORY