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Abstract

Rubber components subjected to fluctuating loads often fail due to the nucleation and growth of defects or cracks. The prevention
of such failures depends upon an understanding of the mechanics underlying the failure process. This paper reviews analysis
approaches that are currently available for predicting fatigue life in rubber. Both crack nucleation and crack growth approaches are
considered. A discussion of each approach’s strengths and limitations, and examples of how these approaches have been applied
in engineering analysis are presented. 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Rubber’s ability to withstand very large strains with-
out permanent deformation or fracture makes it ideal for
many applications. Applications include tires, vibration
isolators, seals, hoses, belts, structural bearings, impact
bumpers, medical devices, and footwear, to name a few.
These applications impose large static and time-varying
strains over a long time. Long-term durability is there-
fore a critical issue. While many factors contribute to
long-term durability, mechanical fatigue, the nucleation
and growth of cracks in the rubber, is often the primary
consideration. To address the issue effectively and econ-
omically, engineers need to model and design for mech-
anical fatigue early in the product development process.
This need has partially been addressed by the develop-
ment of simulation software capable of predicting stress
and strain histories [1–4]. The question remains, how-
ever, of how to use these histories to estimate compo-
nent life.

The objective of this paper is to review analytical
approaches that are currently available for predicting
fatigue life in rubber. Typically, the fatigue failure pro-
cess involves two distinct phases. The first phase is a
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period during which cracks nucleate in regions that were
initially free of observable cracks. The second phase is
a period during which nucleated cracks grow to the point
of failure. It will be seen that nucleation, growth, and
final failure may all be rationalized in terms of the frac-
ture mechanical behavior of rubber. There are, however,
issues unique to the crack nucleation phase, which
deserve careful study.

Models for predicting fatigue life in rubber follow two
overall approaches. One approach focuses on predicting
crack nucleation life, given the history of quantities that
are defined at a material point, in the sense of continuum
mechanics. Stress and strain are examples of such quan-
tities. The other approach, based on ideas from fracture
mechanics, focuses on predicting the growth of a parti-
cular crack, given the initial geometry and energy release
rate history of the crack. For each approach, existing
theories are presented. A discussion of each approach’s
strengths and limitations, and examples of how these
approaches have been applied in engineering analysis are
also included.

Some of the information presented in this paper has
been reviewed previously [5–13]. This literature survey
updates these existing reviews to reflect recent and pre-
viously unnoticed developments. This survey also offers
new interpretations of existing studies and theories, and
identifies areas where additional research is needed.
Another paper reviews factors that affect the fatigue life
of rubber [14]. These include the effects of mechanical
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loading history, environmental effects, effects of rubber
formulation, and effects due to dissipative aspects of the
constitutive response of rubber.

2. Crack nucleation approaches

The crack nucleation approach considers that a
material has an intrinsic life determined by the history of
stresses or strains at a point. This approach is convenient
because it is formulated in terms of stresses and strains,
which are familiar to designers. The fatigue crack
nucleation life may be defined as the number of cycles
required to cause the appearance of a crack of a certain
size. The earliest known study of this type was August
Wöhler’ s work with railroad axles in the 1860s [15]. A
similar analysis approach was applied to rubber as early
as the 1940s [16,17], and remains in use today [18,19].
The approach is particularly appropriate in applications
where the initial flaws that eventually determine compo-
nent life are several orders of magnitude smaller than
component features, and where it is desired to analyze
the spatial distribution of fatigue life.

The two widely used fatigue life parameters for crack
nucleation prediction in rubber are maximum principal
strain (or stretch), and strain energy density. The octa-
hedral shear strain has also been used, but less com-
monly. Strain is a natural choice because it can be
directly determined from displacements, which can be
readily measured in rubber. When strain energy density
is applied to fatigue analysis in rubber, it is often esti-
mated from a hyperelastic strain energy density function,
which is defined entirely in terms of strains. Stress,
apparently, has rarely been used as a fatigue life para-
meter in rubber [20]. This seems to be related to the
fact that fatigue testing in rubber has traditionally been
conducted in displacement control, and that accurate
stress determination in rubber components can be for-
midably difficult.

2.1. Maximum principal strain

A common hypothesis [21], implicit in many studies,
is that the alternating and mean values of the maximum
principal strain uniquely predict nucleation life. Note
that it is commonly observed in rubber that cracks
initiate on a plane normal to the maximum tensile strain.
The earliest fatigue studies in rubber focused on
developing an empirical description of the number of
cycles to failure as a function of alternating strain and
minimum strain. In 1940, Cadwell and co-workers [16]
studied unfilled, vulcanized natural rubber. They investi-
gated minimum engineering strains in the range �40%
to greater than +500%, and strain amplitudes in the range
12.5% to 350%. They found that, for constant strain
amplitude, the fatigue life of natural rubber improves

with increasing minimum strain, up to a moderately high
minimum strain level (200%), beyond which additional
minimum strain decreased the life. Similar effects were
observed in both axial and shear fatigue tests. Several
years later, Fielding [17] applied the same approach
(based simply on axial engineering strain) in studying
the effect of minimum strain on two newly developed
synthetic rubbers. In general, for rubbers that strain crys-
tallize, increasing the minimum strain (i.e. increasing
R-ratio) of the strain cycle can significantly lengthen the
fatigue life. A detailed discussion of the minimum strain
effects on fatigue crack nucleation as well as growth for
both crystallized and non-crystallized rubber is presented
in [14].

While both uniaxial and shear experiments had been
performed in the study of Cadwell et al. [16], it was
not attempted to quantitatively reconcile the results from
different strain states, or to explicitly develop a theory
of how to relate relatively simple lab tests to more com-
plicated strain histories.

Roberts and Benzies [22] and Roach [23] investigated
fatigue life under conditions of simple and equibiaxial
tension. When plotted against the maximum principal
stretch (or strain), fatigue life is longer in simple tension
than in equibiaxial tension. The difference was pro-
nounced for natural rubber (NR), and much less pro-
nounced in styrene butadiene rubber (SBR). Ro [24]
reanalyzed the data from these studies, using other
strain-based parameters, including octahedral shear
strain, and maximum shear strain. Ro concluded that
none of these parameters were generally optimal for uni-
fying simple and equibiaxial tension data.

2.2. Strain energy density

In the late 1950s and early 1960s, success with crack
growth models [25–37] had a significant impact on the
subsequent development of the nucleation life approach
in rubber. Prior to this work, the independent variables
in fatigue studies were usually taken as alternating and
minimum tensile strain, or stretch. After the develop-
ment of fracture mechanics for rubber, strain energy den-
sity came into use as a parameter to predict fatigue crack
initiation [12].

Under certain conditions, the energy release rate is
proportional to the product of strain energy density (far
from the crack), and the crack size [36,38,39]. When this
is the case, it may be considered that the strain energy
density is a measure of the energy release rate of nat-
urally occurring flaws. The conditions under which the
strain energy density may be uniquely related to the
energy release rate are limited. For the relationship to
hold, it is assumed that crack growth is self-similar, that
the far-field strain gradient across the crack is negligible,
and that the stress state is one of simple tension. Several



951W.V. Mars, A. Fatemi / International Journal of Fatigue 24 (2002) 949–961

researchers have investigated strain energy density as a
fatigue life parameter in rubber [22–24,40–42].

Roberts and Benzies [22], and Roach [23], found that
for NR, equibiaxial tension fatigue life was longer than
simple tension fatigue life by a factor of approximately
four, when compared based on equal strain energy den-
sity. For SBR, equibiaxial tension fatigue life was longer
than simple tension fatigue life by a factor of approxi-
mately 16, when compared based on equal strain energy
density. Note that this ranking is opposite of that found
when compared on the basis of maximum principal
strain. Roach proposed that these differences could be
explained by considering only that portion of the strain
energy density that was actually available for flaw
growth. For simple tension, Roach proposed that all of
the strain energy density is available for flaw growth,
while for equibiaxial tension, only one half of the strain
energy density is available for flaw growth. This hypoth-
esis gave the best correlation between simple and equibi-
axial tension fatigue data.

Ro [24] re-analyzed the data of Roach, and Roberts
and Benzies and concluded that strain energy density is
a better correlation parameter for high-cycle fatigue of
rubber than other strain-based parameters. It should be
noted, however, that Ro’s analysis is entirely dependent
upon assumptions of a contrived dependence of Pois-
son’ s ratio on strain, and of linear elastic stress–strain
behavior. Curiously, Ro did not further investigate
Roach’s idea of an available energy density, despite the
fact that it appeared to give the most consistent expla-
nation of Roach’s results. To this point, no distinction
has been made between total strain energy density, and
distortional strain energy density. Ro correctly pointed
out that, because of rubber’ s near incompressibility, the
distinction is usually unnecessary.

Strain energy density was proposed and studied as a
fatigue parameter in metals [43], but the correlation was
not satisfactory, and theoretical objections have been
raised [44,45]. Findley et al. [43] devised an experiment
in which the stresses were cycled, but the strain energy
density remained constant. Specimen failure was still
observed to occur. Applied as a scalar criterion, strain
energy density does not predict the fact that cracking
appears in a specific orientation. In addition, the strain
energy density cannot be a general measure of energy
release rate, since the energy released depends on how
the flaw is oriented with respect to the strains.

A number of other approaches have been proposed
and evaluated for multiaxial fatigue nucleation life in
metals [46–57]. It is particularly worthwhile mentioning
the critical plane approaches, which have enjoyed a great
deal of success. In critical plane approaches, the history
of parameters associated with specific material planes
are used to predict fatigue life. For rubber, however,
multiaxial loading effects are not yet well understood.

Rubber components are quite commonly subjected to

compressive loading, and this fact must be considered
carefully in any analysis of fatigue life. Compressive
loading along one direction is almost always associated
with simultaneous shear and/or tensile loading in other
directions. The only exception would be the case of pure
hydrostatic compression. Although planes perpendicular
to a compression axis experience closure, planes in other
orientations experience shear and/or tension. Cracks will
tend to nucleate and grow on these planes. Fatigue crack
nucleation criteria (maximum principal strain, strain
energy density) which do not consider crack closure may
be particularly unreliable for cases involving compress-
ive loading [58].

2.3. Applications of crack nucleation approaches

Many engineers and researchers have used strain
energy density to correlate analysis results to experi-
mental component life data. Often, such studies refer to
the original work of Gent, Lindley, and Thomas [25,36],
or the follow-up studies of Lake and Lindley [59,60],
reflecting the argument presented in the previous section,
that the strain energy density is a measure of the energy
release rate of naturally occurring flaws.

Grosch [61] developed a simple analytical model to
predict the endurance mileage of tires under various
operating conditions. This model uses an analytical esti-
mate of the strain energy density in a tire, along with a
semi-empirical relationship between strain energy den-
sity and fatigue life. His model predicts relative differ-
ences in failure mileage, given differences in operating
conditions. The model does not attempt to account for
differences due to tire design.

Building on Ro’s results [24], DeEskinazi et al. [62]
used the Finite Element Method to compute the strain
energy density in three tires with design differences.
They correlated observed differences in fatigue life to
computed strain energy density levels. Oh [63] and
Yamashita [64] used strain energy density to predict the
fatigue life of bushings and vibration damping devices,
respectively.

The presumption of a unique relationship between
strain energy density and crack nucleation life is implicit
in these studies. While many in the rubber industry have
used strain energy density as a predictive parameter, few
have tried to ascertain its range of validity under the
general conditions experienced by components in ser-
vice.

Taken together, the studies cited here show that a
nucleation life approach to design analysis with rubber
is often needed, and that the approach must be general
enough to handle situations involving multiaxial loading.
Existing approaches have not been very successful in
this regard, based on the limited data that have been
reported for multiaxial conditions.
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3. Crack growth approach

The crack growth approach explicitly considers pre-
existing cracks or flaws. The idea of focusing attention
on individual flaws was introduced by Inglis [65] in
1913, and Griffith [66] in 1920. Griffith proposed a frac-
ture criterion based on an energy balance including both
the mechanical energy of a cracked body, and the energy
associated with the crack surfaces. Griffith’ s approach
was further developed for rubber by Thomas,
Greensmith, Lake, Lindley, Mullins, and Rivlin in the
1950s and 1960s [25–37]. Irwin [67–69], Rice [70], and
others developed the approach in metals. While the orig-
inal application of this approach to rubber was to predict
static strength [25,71–78], in the late 1950s Thomas [29]
extended the approach to analyze the growth of cracks
under cyclic loads in natural rubber. He discovered a
square-law relationship between peak energy release rate
and crack growth rate for unfilled natural rubber. Paris
et al. [79] independently found a similar power-law
relationship in metals.

Two important developments in the fracture mech-
anics of rubber predated the analogous developments in
metals. In his work on the J-integral, Rice [70] credits
Thomas [26] for first showing the connection between
the energy release rate and the strain concentration at the
crack tip. Also, Thomas’ proposal that the relationship
between the cyclic energy release rate and the rate of
fatigue crack growth follows a square-law [29], predated
Paris’ work with a power-law [79] by 3 years.

3.1. The energy release rate

Griffith’ s [66] hypothesis was that crack growth is due
to the conversion of a structure’ s stored potential energy
to surface energy associated with new crack surfaces. He
was able to show that the surface energy associated with
the crack faces of a broken glass filament was equal to
the elastic energy released by the fracture. In rubber, the
potential energy released from surrounding material is
spent on both reversible and irreversible changes to cre-
ate the new surfaces [5,25,80]. In any case, the energy
release rate is simply the change in the stored mechanical
energy dU, per unit change in crack surface area dA. In
the rubber literature, this quantity is often called the tear-
ing energy T, regardless of whether the applied loading
results in fatigue crack growth or sudden fracture
(“ tearing” ).

T � �
dU
dA

(1)

The energy release rate was first applied to the analy-
sis of rubber specimens under static loading [25]. It was
quickly realized, however, that the concept also applied
to crack growth under cyclic loading. In this case, it was
found that the maximum energy release rate achieved

during a cycle determined the crack growth rate, for
R � 0 cycles [29].

3.2. Fracture mechanics test specimens for rubber

Rivlin and Thomas [25] showed that static crack
growth occurs above a critical value of the energy
release rate, independent of the type of test specimen
they used, suggesting that the critical energy release rate
may be considered a true material property. Their initial
study used three specimen types: a center-cracked sheet,
an edge-cracked sheet, and a “ trouser” test piece. A sub-
sequent study by Thomas with three additional test
specimen types confirmed the independence of the criti-
cal energy release rate from specimen geometry [30].
Other studies [29,36,37,81,82], using the same specimen
types, showed that the fatigue crack growth rate is also
uniquely determined by the energy release rate.

The aforementioned studies did not investigate the
effect of specimen thickness on the fatigue or fracture
properties of the material. Thickness effects have been
reported by Kadir and Thomas [83], and by Mazich et
al. [84]. Kadir and Thomas showed that thickness depen-
dence is related to the development of crack tip rough-
ness. They hypothesized that under hydrostatic tension,
rubber can cavitate, and that this may be the cause of the
roughness developed around the tip. When the fracture
surface remained smooth during growth, little depen-
dence of the growth rate on specimen thickness was
observed. Thicknesses ranging from 0.1 mm to 10 mm
were investigated. When so called rough, or stick–slip
crack growth occurs, however, a thickness effect can
arise. On a plot of crack growth rate, at constant energy
release rate, as a function of specimen thickness, two
plateaus were observed. Below 0.5 mm, and above 5
mm, thickness had little effect. Between these thick-
nesses, however, the crack growth rate changes by more
than an order of magnitude. The crack growth rate for
thin specimens was larger than for thick specimens, by
an order of magnitude, at equal energy release rate. Their
explanation is that the transition in crack growth rate
with thickness is related to the scale of the observed
crack tip roughness, which is of the same order of mag-
nitude as the transition thickness.

Mazich et al. [84] looked at the dependence of the
critical energy release rate for fracture on specimen
thickness. They found that, in the range from 1 mm to
3 mm, the critical energy release rate for crack growth
increased by a factor of two. Note that these results are
broadly consistent with those of Kadir and Thomas,
since higher crack growth rates are associated with lower
critical energy release rates. Both of these studies were
conducted with gum SBR.

The two most commonly used specimens in rubber
fatigue crack growth studies are the single edge cut
planar tension specimen and single edge cut simple ten-
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sion specimen. The planar tension specimen geometry
(also known as the pure shear specimen in the rubber
literature) has proven to be especially useful in fracture
mechanics tests for rubber [81,85]. This specimen is
short and wide such that lateral contraction is prevented
by the grips, while an axial strain is introduced in the
direction of the short dimension. The pure shear desig-
nation arises because, for small, volume-conserving
strains, this strain state is one of pure shear, in a coordi-
nate system suitably rotated with respect to the speci-
men.

In the single edge cut, planar tension specimen, the
energy release rate T has an especially simple form, pro-
vided that the cut is sufficiently deep and that growth of
the cut results only in translation of the crack tip fields.
The expression depends only on the strain energy den-
sity W remote from the crack and from specimen edges,
and the specimen height h. Note that, in displacement
control, the energy release rate for this specimen is inde-
pendent of the crack size [25].

T � Wh (2)

In the single edge cut, simple tension specimen, the
energy release rate T depends on the gauge section strain
energy density W, the size of the crack a, and a strain-
dependent parameter k.

T � 2kWa (3)

The dependence of the parameter k on strain was studied
by Greensmith [34], and Lindley [72], for the case in
which the crack is much smaller than the specimen
width. Nait-Abdelaziz et al. [82] have extended the para-
meter for cracks of finite size, relative to specimen
width. A plot of Greensmith’ s data is shown in Fig. 1.
A practical approximation of the data is given in terms
of the engineering strain e by [72]:

k �
2.95�0.08e
(1 � e)1/2 (4)

The trouser specimen, shown in Fig. 2, was used in
early studies of fatigue crack growth in rubber [29] to
demonstrate geometry independence of the relationship
between the energy release rate and the fatigue crack
growth rate. The energy release rate T depends on the
applied force F, the extension ratio l and strain energy
density W in the “ legs” of the specimen, the specimen
thickness t, and the “ leg” width b.

T �
2Fl

t
�bW (5)

Energy release rate calculations have been developed
for other specimen types that have occasionally been
used in fracture mechanics studies of rubber. These
include the so-called angled, and split specimens. Since
these have been reviewed previously [5–

Fig. 1. Greensmith’ s [34] data for variation of k with maximum prin-
cipal stretch l, in the energy release rate of a crack in the simple
tension specimen, T � 2kWa. Different data point types are for differ-
ent rubber compounds.

11,25,30,59,81,85,86], and since their application has
been limited primarily to static strength measurements,
the corresponding energy release rate calculations are
not given here.

3.3. Regimes of fatigue crack growth

Lake and Lindley [59] identified four distinct regimes
of fatigue crack growth behavior, based on the maximum
energy release rate per cycle, T, for R � 0 cycles in rub-
ber. The full range of behavior is shown in Fig. 3, for
unfilled NR and SBR.

So long as the peak energy release rate T remains
below a threshold To, crack growth proceeds at a con-
stant rate r, due solely to environmental attack. The
crack growth rate da /dN below To is independent of the
mechanical loading, and is denoted Regime 1.

da
dN

� r T�To (6)

There is then a range of T, between To and Tt, over
which there is a transition. The transition is described
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Fig. 2. Trouser test specimen used in early fatigue crack growth stud-
ies.

by the following relationship, in which A is a material
property. This is denoted Regime 2.

da
dN

� A(T�To) � r To�T�Tt (7)

After the transition, there is a range between Tt and
Tc, over which the relationship between the fatigue crack
growth rate and the energy release rate obeys a power-
law. The associated material properties are B and F. This
is denoted Regime 3.

da
dN

� BT F Tt�T�Tc (8)

Finally, beyond Tc, unstable crack growth ensues. In
this regime, the crack growth rate is essentially infinite.
This is denoted Regime 4.

da
dN

� � T � Tc (9)

Aglan and Moet [87] developed a single relationship
that predicts Regimes 2, 3, and 4, for R � 0 loading.

Fig. 3. Regimes of fatigue crack growth behavior in unfilled rubber
under R � 0 loading (×, SBR; �, NR) [59].

Their model, the Crack–Layer theory for rubber, is based
on the irreversible thermodynamics of an “active zone” ,
preceding the crack tip [87–89]. The model takes the
thermodynamic flux to be the crack growth rate, and the
conjugate driving force to be the energy release rate
range �T. The model assumes that the energy dissipation
associated with crack growth is proportional to the
square of the energy-release rate range, in analogy to the
Dugdale strip-yield model [90–92]. In addition to the
critical energy release rate Tc, the model uses material
parameters b and m.

da
dN

�
b�T 2

mTc��T
(10)

Chow and Lu also developed a multi-regime model,
based on thermodynamic arguments [93,94]. Their
model is claimed to be valid for a wide range of
materials. In addition to the critical energy release rate
Tc, the model uses material parameters b and m.

da
dN

�
b�T m

Tc�Tmax
(11)

These multi-regime models resemble models proposed
for fatigue crack growth in metals by Foreman [95], and
by Weertman [96]. Foreman’s model depends on the R
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ratio, the range of the stress intensity factor �K, the frac-
ture toughness Kc, and material parameters b and n.

da
dN

�
b�Kn

(1�R)Kc��K
(12)

Weertman’s model depends also on the peak stress inten-
sity factor, Kmax.

da
dN

�
b�K4

K2
c�K2

max

(13)

In Foreman’s model, the resemblance can be seen by
taking n � 4, and comparing to Aglan and Moet mode
with m � 1. Note that while the Foreman equation is in
terms of the stress intensity factor, the Aglan–Moet and
Chow–Lu equations are in terms of energy release rate
T. The energy release rate is proportional to the square
of the stress intensity factor. All models also contain a
proportionality constant, herein denoted by the common
symbol b to emphasize algebraic similarity.

In some elastomers, the occurrence of compressive
loading during a fatigue cycle can also have a dramatic
effect on crack growth rate through the mechanism of
strain crystallization at the crack tip. For cases in which
the minimum tensile stress of the crack tip during the
load cycle is sufficient to induce crystallization, the
material remains crystalline at all times, retarding crack
growth. For cases where the loading conditions permit
the crack tip crystalline region to “melt” at some point
during the cycle, the fatigue crack growth rate increases
[97]. The effect of R-ratio on strain-crystallizing rubbers
can influence crack growth rate and fatigue life by sev-
eral orders of magnitude.

A major shortcoming of the aforementioned models,
when applied to strain-crystallizing rubbers, is that they
predict increased crack growth rates for R � 0 con-
ditions. In contrast, for strain-crystallizing rubbers, the
crack growth rate is significantly retarded by R � 0 con-
ditions, as shown by Lindley [98]. Environmental effects
can interact significantly with R ratio effects [97]. It
appears that no current multi-regime fatigue crack
growth model predicts the observed R � 0 effects for an
important class of rubbers.

3.4. Relationship of energy release rate to crack tip
conditions

The success of the energy release rate as a parameter
for predicting fatigue crack growth and fracture has been
attributed to its unique relationship to the local con-
ditions at the crack tip. Thomas was the first to demon-
strate this relationship experimentally [26]. He studied
the strain distribution around the tip of a model crack in
a sheet of rubber, in several specimen geometries. He
found that the average strain energy density of material
surrounding an idealized crack tip was uniquely related

to the energy release rate, independent of the speci-
men type.

The relationship between the energy release rate and
local crack tip conditions in rubber has also been con-
firmed in independent studies by Andrews [99,100],
Knauss [101], Lee and Donovan [102], and Morman et
al. [103]. Andrews used a microscopic, photoelastic
technique to quantify the strain field around the crack
tip. He showed that a combination of hysteresis and large
displacements result in blunting of the crack tip in highly
deformable materials. Knauss used a printed-grid tech-
nique. Lee and Donovan used Thomas’ original
approach. Morman et al. developed an analytical
expression relating the energy release rate to the crack
tip radius. The studies of Andrews and Knauss produced
a more detailed map of the crack tip strain distribution
than Thomas’ s; and all studies confirmed Thomas’ con-
clusion.

Rice’ s development of the J-integral [70] provided a
mathematical argument to explain the relationship
between the energy release rate and the local crack tip
conditions. The J-integral expresses an energy balance
on a volume surrounding a crack tip. Rice proved that
the value of the integral is independent of the choice of
integration path. Since the integral is independent of the
integration path, the path can be chosen close to the
crack tip. The integral is therefore a measure of local
crack tip conditions. The integration path may also be
chosen to follow the boundaries of the specimen. In this
case, the integral turns out to be equivalent to the energy
release rate [84,102]. The energy release rate is therefore
a measure of the intensity of local crack tip fields, for a
given material and crack tip geometry. Rice’ s original
formulation was valid for nonlinear elastic materials and
infinitesimal strains. Chang generalized the J-integral for
nonlinear elastic materials at finite strains [104].

A practical consequence of the J-integral is that the
details of the processes occurring at the crack tip often
do not need to be quantified in any way other than the
J-integral in order to model crack growth. Instead, the
details are accounted for by treating them as intrinsic to
the material/crack-tip system. In this manner, nonlin-
earities due to finite network extensibility [105], strain
crystallization [16,17,106–108], frictional losses due to
filler interactions [109–111], and the Mullins effect
[112–114] may be rolled into the fracture properties of
the material [5,6]. A general theory to account for the
effects of general nonlinear, dissipative constitutive
behavior on crack tip fields has been proposed by And-
rews [115]. Of course, this approach remains subject to
the assumption that the crack propagates through an iso-
tropic, homogeneous continuum. It seems that the energy
release rate approach avoids the necessity of modeling
crack tip dissipative processes by focusing on where the
energy for driving the crack comes from (from strain
energy stored beyond the J-integral boundary), instead
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of where that energy is spent (on dissipative processes
near the crack tip).

In situations where the stress–strain behavior is
strongly time-dependent, the J-integral does not uniquely
characterize local crack tip conditions. Lindley presented
an approach for addressing time-dependent crack growth
in SBR [116]. A time-dependent path-integral approach
has also been developed [117–121], but it does not
appear that this approach has been applied to elastomers.

Compressive loading must be considered carefully in
any analysis of crack growth [122]. One consideration
is that crack growth can only occur due to loads which
result in tensile stresses at the crack tip. Purely com-
pressive loading of a crack results in closure of crack
faces until contact is achieved. Further compressive
loading is then transmitted across the crack without caus-
ing crack growth. The strain energy release rate in this
case is zero, despite the fact that the compressive loading
may be large. When compressive and shear loads are
both present, the crack tip can experience tensile loading.
Determination of the strain energy release rate in this
case can be complex, depending not only on the crack
geometry and loading conditions, but also on the fric-
tional properties of the crack faces.

Of course, the details of crack-tip processes are of
interest when a deeper understanding of the failure pro-
cess is sought. Theories for the relationship between the
failure properties of rubber and rubber’ s molecular
characteristics have been proposed and studied by sev-
eral researchers [123–125].

3.5. Applications of the crack growth approach

An early design application of the fracture mechanics
approach in rubber came from Lake and Clapson [126].
They developed an estimate of the energy release rate
cycle at the base of tread pattern grooves in tires, based
on the crack mouth opening displacement. They success-
fully predicted the rate of growth of cracks in tires on a
road test from fatigue crack growth data generated in
the lab.

Southern and Thomas [127] applied a fracture mech-
anics approach to develop a model for abrasive wear of
rubber. Their model is based on fatigue crack growth at
the base of an incipient wear particle. The model relates
observed wear rates to measured fatigue crack growth
properties, for the particular wear mechanism studied.

Huang and Yeoh [128] developed a fatigue crack
growth model to rationalize the nucleation phase of the
belt edge separation process in tires. The model was
based on an estimate of the energy release rate of an
array of penny-shaped cracks, each located at the end of
a cord. Their model was validated via fatigue testing of
a model cord–rubber composite. Choi, Roland, and
Bissonette [129] analyzed failure in a large, elastomeric
torpedo launcher. Medri and Strozzi [130] analyzed

crack growth in elastomeric seals. Lindley [131] ana-
lyzed the life of metal–rubber bonds using a fracture
mechanics approach. Stevenson et al. [132], and Gunder-
son et al. [133] have used FEA to evaluate energy release
rate cycles experienced by cracks in rubber supports on
off-shore structures. Stevenson and Malek [134]
developed a model to predict the puncture behavior of
thick rubber components penetrated by a sharp-cornered
cylindrical indenter.

Ebbott [135] and Wei et al. [136] have used FEA to
evaluate the energy release rate cycle experienced by a
crack at the edge of cord–rubber tire components. Ebbott
used a global–local analysis procedure in which a coarse
mesh of the whole tire was first analyzed, followed by
a refined-mesh analysis involving only the region of
interest. Wei et al. performed the analysis with a single
mesh. In both cases, the assumed crack geometry was
built into the FE model. Both studies reported reasonable
estimates of the crack growth rate for the tires analyzed.
A limitation of this approach is that each potential failure
mode requires its own mesh and analysis. In addition,
each mesh applies only to a given crack size. A full life
analysis with this approach requires large effort and
expense in creating and analyzing multiple models.
Automated mesh adaptation is required to make these
approaches suitable for general use.

A common difficulty of using the crack growth
approach in rubber is that it requires up-front knowledge
of the initial location and state of the crack that causes
the final failure. Often, this information is not available,
or it is the very information the designer needs to predict.
In addition, the changing geometry of the problem must
be considered. Numerical implementations of a direct
fracture mechanics approach remain labor intensive and
computationally expensive. There is a great need for
robust, general-purpose algorithms for crack growth
analyses in rubber.

4. A flaw growth model for crack nucleation

A crack growth approach has been successfully used
to predict uniaxial fatigue crack nucleation life from
fatigue crack growth measurements [36,59]. This unified
analysis is based on integration of the fatigue crack
growth rate. The energy release rate of an assumed, pre-
existing flaw is estimated from the flaw size and the
strain energy density. The analysis only applies to small
cracks, when the energy release rate may be factored
into a product proportional to both strain energy density
and crack size. Nevertheless, the small crack assumption
often covers the most important portion of a compo-
nent’ s life, since the presence of a large crack usually
means the component has already failed.
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4.1. Integrated power-law model

Fatigue life is ultimately determined by a pre-existing
flaw that is the first to grow to a critical size. The life
is obtained by integrating the growth rate of the fastest
growing flaw, from its initial size to its critical or final
size. For the purposes of integration, it is assumed that
flaw growth is planar and self-similar.

Piece-wise integration over the four regimes of fatigue
crack growth behavior is possible, and yields the most
accurate fatigue life predictions [9,137]. A practical
shortcut assumes power-law behavior over the entire life
of the flaw [5,85,138]. This results in a closed-form
relationship between the fatigue life and the fatigue
crack growth properties. Combining Eqs. (8) and (3),

da
dN

� f[T(a,W)] � BT F � B(2kWa)F (14)

Then integrating,

Nf � �
Nf

0

dN � �
af

ao

1
f[T(a,W)]

da � �
af

ao

1
B(2kW)Fa�Fda (15)
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F�1
1

B(2kW)F� 1
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�

1
aF�1

f
� (16)

From Eq. (16), we see that if the initial flaw size ao

is much smaller than the critical flaw size, af, then the
life becomes independent of the critical flaw size.

Nf �
1

F�1
1

B(2kW)F

1
aF�1

0
(17)

If the initial flaw size is regarded as a property intrin-
sic to a given virgin material, and if variation of k with
strain is neglected, the constants of the equation may be
combined into a single material constant D.

Nf � DW�F (18)

This derivation applies only to uniaxial loading, where
the energy release rate can be factored into the strain
energy density and the crack size. For multiaxial situ-
ations, not all of the elastically stored energy is available
to be released [23]. A general-purpose calculation of the
available strain energy density has not been published.

4.2. Intrinsic flaws in rubber

The preceding theory suggests a way to estimate the
size of naturally occurring flaws in rubber, by using the
initial flaw size as a curve fit parameter to obtain agree-
ment between crack nucleation and crack growth experi-
ments [34,59,139]. The resulting flaw size is actually an
effective flaw size, reflecting both the size and shape of
the flaws [36]. Effective flaw sizes in the range of
20 × 10�6 m to 50 × 10�6 m were observed in a study

by Lake and Lindley [59], which covered eight different
polymer types, and various fillers, curatives, and other
compounding variables. It has been confirmed that the
measured flaw size is independent of temperature [140].
Flaw size has some dependence on crosslink density
[59,141], carbon black type [59,142], and degree of dis-
persion of compound ingredients [138]. The flaw size
can also be deduced from static strength measurements
[10,140], and optical microscopy techniques [142], inde-
pendent of fatigue measurements. Agreement of these
methods to within a factor of 2 has been reported
[139,142]. Damage characterization of elastomeric com-
posites using X-ray attenuation has been reported by
Bathias et al. [143].

A basic assumption of fracture mechanics is conti-
nuity and homogeneity of the material. In materials
where the initial flaws are small enough that this
assumption is not true, additional considerations are
necessary, as is the case in metals [144–146]. In rubber,
the intrinsic flaws are larger than features of the molecu-
lar network structure by a factor of more than 10,000,
and larger than individual filler particles by a factor of
more than 100. Agglomerations of carbon black particles
can exhibit dimensions of the same scale of intrinsic
flaws [142]. The actual scale of such features seems
likely to depend on manufacturing processes such as
mixing. Table 1 summarizes the size scales of impor-
tance in filled rubber.

The independent agreement of nucleation and growth
approaches, using initial flaw size as the sole fitting para-
meter suggests that it is appropriate to assume that the
initial flaws are embedded in continuous, homogeneous
material. The precise nature of such flaws remains
obscure because it appears that there are multiple sources
for flaws of the observed effective size. These sources
may include naturally occurring contaminants or voids
in the base polymer, imperfectly dispersed compounding

Table 1
Geometric features of filled rubber

Feature Size

Large carbon black agglomerate [142] 200 × 10�6 m
Smallest flaw visible to naked eye 100 × 10�6 m
Typical size of intrinsic defects [139] 40 × 10�6 m
Small carbon black agglomerate [142] 20 × 10�6 m
Coarse carbon black particle [147] 500 × 10�9 m
Fine carbon black particle [147] 10 × 10�9 m
Distance along polymer chain between crosslinks 1 × 10�9 m
(assuming 300% macro-stretch � 100% chain
extension, crosslink density of 5.8 × 1019/cm3)
[148]
Length of a single monomer unit (isoprene) 500 × 10�12 m
[123,149]
Spatial distance between crosslinks (based on 300 × 10�12 m
crosslink density of 5.8 × 1019/cm3) [148]
Length of a main-chain, polysulfidic bond [150] 100 × 10�12 m
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ingredients, filler agglomerates, mold lubricants, and
imperfections in mold surfaces.

5. Summary

Two approaches have developed for analyzing fatigue
life in rubber components, the crack nucleation
approach, and the crack growth approach. In rubber, the
crack growth approach has been studied and used exten-
sively. The nucleation approach has received less atten-
tion in the literature, although many engineers still use
this approach for its simplicity and familiarity.

The nucleation approach is advantageous for analyz-
ing the spatial distribution of fatigue life, since it is based
on quantities that are defined at a material point, in the
sense of continuum mechanics. In rubber, uniaxial
fatigue life results are most commonly correlated based
on maximum principal strain (or stretch), and strain
energy density. Neither of these parameters has been
robustly successful in correlating results from different
strain states, particularly simple tension and equibiax-
ial tension.

Some success has been achieved in developing and
applying the crack growth approach in rubber. A major
practical challenge is computation of the energy release
rate associated with the crack of interest, and predicting
the location and path of the fastest growing crack,
especially when the geometry and loading are compli-
cated. Robust numerical procedures are inevitably
required, but are not widely available. When the crack
of interest is small, another problem is determining the
initial size and shape of the crack. Small flaws are often
of particular importance, since most of a component’ s
life may be spent on the growth of small flaws.

For uniaxial situations in which failure initiates from
a small flaw, the strain energy density can be used to
estimate the energy release rate of the flaw, from which
fatigue life can be computed, given the fatigue crack
growth curve. For multiaxial situations, the strain energy
density is not generally appropriate because not all of
the energy is available to be released by the growth of
a flaw. An adequate multiaxial nucleation life approach
is needed to accurately predict fatigue life in rubber
components.
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