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a b s t r a c t 

We introduce a fast Branch-and-Bound algorithm for optimal feature selection based on a U-curve as- 

sumption for the cost function. The U-curve assumption, which is based on the peaking phenomenon of 

the classification error, postulates that the cost over the chains of the Boolean lattice that represents the 

search space describes a U-shaped curve. The proposed algorithm is an improvement over the original 

algorithm for U-curve feature selection introduced recently. Extensive simulation experiments are carried 

out to assess the performance of the proposed algorithm (IUBB), comparing it to the original algorithm 

(UBB), as well as exhaustive search and Generalized Sequential Forward Search. The results show that the 

IUBB algorithm makes fewer evaluations and achieves better solutions under a fixed computational bud- 

get. We also show that the IUBB algorithm is robust with respect to violations of the U-curve assumption. 

We investigate the application of the IUBB algorithm in the design of imaging W -operators and in classi- 

fication feature selection, using the average mean conditional entropy (MCE) as the cost function for the 

search. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Feature selection is the problem of finding an optimal subset

of a finite set of features that minimizes a cost function that is

correlated to the classification error (e.g., the estimated classifica-

tion error) [8] . Determining the optimal set of features can be a

complicated task, since for a problem with n features, an exhaus-

tive search requires considering all 2 n possible feature sets. The

Cover–Campenhout theorem [3] stipulates that to be guaranteed to

find the optimal feature set, no algorithm can avoid the exponen-

tial complexity of exhaustive search, in a worst-case sense, unless

there is extra information about the problem. 

Algorithms have been proposed that use heuristics to attempt

to find the optimal feature set in fewer evaluations than exhaus-

tive search; among them are feature selection algorithms based on

the well-known Branch-and-Bound (BB) paradigm for discrete and

combinatorial optimization [5,12] . A BB algorithm uses some prop-

erty of the cost function, such as monotonicity, to accomplish a
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ystematic enumeration of the features sets in the form of a tree .

t each step of the algorithm, the tree is traversed ( Branch ) and

he cost of the best feature set found until that step is recorded

 Bound ). If the cost of a node is smaller than the bound, its succes-

or nodes are explored further and the bound is updated. Other-

ise, the successors of that node can be safely discarded or pruned ,

y exploring the monotonicity of the cost. If the tree is organized

n such a way that large sections of it can be pruned en masse,

hen the BB algorithm is successful. Different improvements have

een proposed to enhance the performance of the basic BB al-

orithm [11] . Yu and Yuan [17] suggest avoiding the evaluation

f intermediate single-branching nodes by obtaining a “minimum

earch tree.” Also ordering the nodes in the tree based on the sig-

ificance of the features is used in some of the variants of the BB

lgorithm [11] . In addition, to minimize the number of cost evalua-

ions, some algorithms use analytical properties of the search space

16] . 

It is well-known that the optimal classification error is mono-

onically nonincreasing with an increasing number of features [4] ,

aking it a perfect candidate for a cost function for a BB algo-

ithm. However, the optimal classifier and optimal classification er-

or are rarely known in practice, and the criterion used is typically

he classification error for a classifier designed using sample data,

hich does not generally decrease monotonically. Rather, increas-

http://dx.doi.org/10.1016/j.patcog.2017.08.013
http://www.ScienceDirect.com
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Fig. 1. Peaking phenomenon. (a) Slightly correlated features. ρ = 0 . 125 . (b) Highly correlated features. ρ = 0 . 5 . Reproduced from [15] . 

Fig. 2. Lattice for 5 features, with 4 chains highlighted in red. The cost function for this example is decomposable in U-shaped curves. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

i  

fi  

s  

p

 

e  

f  

(  

s  

a  

o  

c  

p

 

s  

d  

t  

c  

U  

w  

t  

s  

o  

s  

i  

n  

s  

p  

a  

d  

r

 

g  

t  

d  

fi  

o  

I  
ng the number of features used to design the classifier, with a

xed sample size, generally makes the expected error of the de-

igned classifier decrease and then increase. This is known as the

eaking phenomenon , which was first studied in [7] . 

Fig. 1 (a) and (b) shows the peaking phenomenon for the Lin-

ar Discriminant Analysis (LDA) classification rule. In Fig. 1 (a) the

eatures are slightly correlated. In this case, peaking occurs earlier

i.e., for a smaller number of features) or later depending on the

ample size. For example, for sample size 30, peaking occurs with

bout 6 features, but when sample size increases to 100, peaking

ccurs at a larger feature size. In Fig. 1 (b) the features are highly

orrelated. As we see in this case, even for a large sample size,

eaking occurs early. 

Due to the peaking phenomenon, the error of the designed clas-

ifier (as opposed to the optimal classification error) is likely to

isplay a U-shaped behavior along a chain of increasing nested fea-

ure sets. Thus, it is reasonable to make the assumption that all the

hains of the Boolean lattice that represent the search space have

-shaped behavior (U-curve assumption). The U-curve assumption
as used by Ris and colleagues to formulate the U-curve optimiza-

ion problem, which in turn can be employed to model the feature

election step of classifier design [14] . To solve this problem, the

riginal BB algorithm, or its variants mentioned previously, are not

uitable, as all of these algorithms assume that the cost function

s monotone. Hence, the solution found by these algorithms will

ot necessarily be the globally best possible feature set. A feature

election algorithm based on a U-shaped cost function was pro-

osed in [14] . They also presented some principles for a Branch-

nd-Bound procedure to tackle the U-curve problem, which were

eveloped by Reis into the U-curve Branch-and-Bound (UBB) algo-

ithm [13] . 

In this paper, we propose and evaluate a Branch-and-Bound al-

orithm for the U-curve optimization problem, which outperforms

he original UBB algorithm, and investigate its application in the

esign of imaging W -operators and in feature selection for classi-

er design. Section 2 presents a formal description of the U-curve

ptimization problem and also reviews the original UBB algorithm.

n Section 3 , we introduce the Improved UBB (IUBB) algorithm, a
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Fig. 3. The UBB algorithm. (a) Search space. (b) The tree produced by enumeration scheme. (c–f) Four iterations of the algorithm. Visited nodes are colored pink, while 

pruned nodes are colored red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. (a) Illustration of the bisection algorithm steps for a sample chain of size 30 with i ∗ = 18 . (b) Number of function evaluations required by bisection to find the 

minimum-cost feature set F i ∗ of the chain F vs. |F| , when i ∗ is uniformly distributed in the set 2 , . . . , |F| − 1 and the cost function is c(F i ) = (i − i ∗) 2 . 
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ast method to solve the U-curve optimization problem, which has

wo main innovations in relation to the original UBB algorithm: it-

rative updating of optimal chains and the use of bisection to find

hain minima. In Section 4 , we introduce a model for the U-curve

eature selection problem and employ it as a synthetic benchmark

o assess the performance of the IUBB algorithm, as well as com-

are it to the original UBB algorithm; the case where the U-curve

ssumption is violated is also investigated. Section 6 considers the

pplication of the IUBB algorithm in the design of imaging W -

perators using the average mean conditional entropy (MCE) as the

ost function for the search. Section 7 assesses the performance of

he IUBB algorithm in an actual classification problem using syn-

hetic data. In all our experiments, we have observed that IUBB

isplays a qualitative superior performance to the original UBB al-

orithm. This and other conclusions and directions for future re-

earch are discussed in Section 8 . 

. U-curve Branch and Bound algorithm 

In this section, we introduce the U-curve optimization problem

ormally, and review the UBB algorithm. Let S be a set of features,

nd let P(S) denote the set of all possible feature sets. 

efinition 2.0.1 (Chain) . A chain is a collection of feature sets F =
 F 1 , F 2 , . . . , F k } ⊆ P(S) , such that F 1 ⊆ F 2 ⊆ . . . ⊆ F k . 

efinition 2.0.2 (U-shaped curve) . Let F ⊆ P(S) be a chain. A

unction f : F → R describes a U-shaped curve if F 1 ⊆F 2 ⊆F 3 implies

hat f ( F 2 ) ≤ max { f ( F 1 ), f ( F 3 )}, for F 1 , F 2 , F 3 ∈ F . 

efinition 2.0.3 (Decomposability in U-shaped curves) . A cost

unction c : P(S) → R is decomposable in U-shaped curves if, for

ach chain F ⊆ P(S) , the restriction of c to F describes a U-shaped

urve. 

efinition 2.0.4 (Minimum cost) . Let F ∗ ∈ F ⊆ P(S) and let c be

 cost function defined on P(S) . If there does not exist another

eature set F ∈ F such that c ( F ) < c ( F ∗), then F ∗ is of minimum cost

n F . If F = P(S) , then we say that F ∗ is of minimum cost. 

The previous definitions are illustrated in Fig. 2 , which displays

 Boolean lattice corresponding to P(S) , where S is a set of 5

eatures. Each node in the lattice denotes a distinct feature set

 ∈ P(S) , where “0” and “1” indicate whether the corresponding

eature is absent or present, respectively. Four different chains are

hown in red. The cost c ( F ) of each feature set F ∈ P(S) is indicated

ext to the corresponding node. Notice that c is decomposable in

-shaped curves. The feature set F ∗ of minimum cost in this exam-

le has cost zero and is highlighted in yellow. 
The U-curve problem may be defined as follows: for a cost

unction c : P(S) → R that is decomposable in U-shaped curves,

nd a feature set F ∗ ∈ P(S) of minimum cost. 

.1. U-curve Branch and Bound (UBB) algorithm 

The UBB algorithm, proposed in [13] , uses the U-assumption to

nd the feature set of minimum cost in P(S) without evaluating

ll the elements in P(S) . Through a recursive enumeration scheme,

t first constructs a tree and then uses it as the search space. The

act that c is decomposable in U-shaped curves is used to prune

he tree during the search: the tree is pruned when the cost of an

lement in the search chain starts increasing. Although in the early

terations of the UBB algorithm, finding a minimum element in a

hain leads to removal of many elements in the tree, in later it-

rations the search chains are not the best possible chains in the

earch space and the pruning becomes very slow. UBB iterates over

he pruned tree until the search space is exhausted. Fig. 3 illus-

rates the UBB algorithm, using the lattice in Fig. 2 . More details

bout the UBB algorithm, including pseudocode, can be found in

13] . 

. Improved U-curve Branch and Bound algorithm 

The results in [13] show that the UBB algorithm requires fewer

unction calls compared to Exhaustive Search (ES) in finding the

lobal best solution of the U-curve problem. However, the num-

er of function calls in UBB is still high: in the numerical experi-

ents of [13] , UBB required about half of the function calls of ES.

o tackle the large number of function calls of UBB, an improved

lgorithm is proposed here. The Improved UBB (IUBB) algorithm is

ased on two main innovations: 

(1) Iterative updating of optimal chains. 

To improve the pruning process, instead of limiting the search

o the tree structure constructed through the enumeration process

f UBB, at each step of IUBB, we determine a chain in the search

pace that leads to pruning the maximum number of elements;

uch chain is called optimal. In order to update the search after

ach pruning, at the beginning of each iteration, we need to up-

ate a data structure that manages the current state of the search

pace. This is done as follows. For a feature selection problem with

 features, the search space can be represented by a Boolean lat-

ice L of degree n . Let L be organized in layers, as represented

n Figs. 2 and 3 , where L l denotes the l th layer, for l = 0 , 1 , . . . , n,

hat is, let L l contain all possible feature sets of size l . The pro-

osed data structure contains vectors that store the pruning gain of
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Fig. 5. The IUBB algorithm. (a) The original search space. (b–f) Five iterations of the algorithm. Visited nodes are colored pink, while pruned nodes are colored red. The 

selected optimal chain in each iteration is shown by a red dashed line in all the diagrams. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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each element in the current search space. Those vectors are com-

puted recursively with the assistance of adjacency matrices. For

l = 0 , 1 , . . . , n − 1 , let R l = [ r i j ] be a matrix of size 

(
n 

l 

)
×

(
n 

l + 1 

)
,

 

ith ( i , j )-element given by 

 i j = 

{ 

1 , if the Hamming distance between F l 
j 

and F l+1 
i 

is equal to 1, 
0 , otherwise, 

(1)
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Fig. 6. A sample U-shaped cost function and the U-shaped chains generated using the proposed benchmark function model with n = 5 and α = 0 . 6 . (a) 3D representation. 

(b) 2D representation. 
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Algorithm 1 Bisection 

Initialize the algorithm for the chain F = { F 1 , F 2 , . . . , F k } . 
i L ⇐ 1 , i ML ⇐ � k/ 3 	 , i MH ⇐ � 2 × k/ 3 	 , i H ⇐ k 

c L ⇐ c(F i L ) , c ML ⇐ c(F i ML 
) , c MH ⇐ c(F i MH 

) , c H ⇐ c(F i H ) 

(i Best , c Best ) ⇐ min (c L , c ML , c MH , c H ) 

while ((i H − i MH ≥ 1) ∨ (i MH − i ML ≥ 1) ∨ (i ML − i L ) do 

if ((c L ≥ c ML ) ∧ (c ML ≥ c MH ) then 

if (i H − i MH ) ≥ (i MH − i ML ) then 

i L ⇐ i ML , i ML ⇐ � (i ML + i MH ) / 2 	 , i MH ⇐ i MH , i H ⇐ i H 
else 

i L ⇐ i ML , i ML ⇐ i MH , i MH ⇐ � (i MH + i H ) / 2 	 , i H ⇐ i H 
end if 

else if ((c H ≥ c MH ) ∧ (c MH ≥ c ML ) then 

if (i MH − i ML ) ≥ (i ML − i L ) then 

i H ⇐ i MH , i MH ⇐ � (i ML + i MH ) / 2 	 , i ML ⇐ i ML , i L ⇐ i L 
else 

i H ⇐ i MH , i MH ⇐ i ML , i ML ⇐ � (i L + i ML ) / 2 	 , i L ⇐ i L 
end if 

end if 

c L ⇐ c(F i L ) , c ML ⇐ c(F i ML 
) , c MH ⇐ c(F i MH 

) , c H ⇐ c(F i H ) 

(i Best , c Best ) ⇐ min (c L , c ML , c MH , c H ) 

end while 

return i Best and c Best 

U  
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u  
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r  
here F l 
i 

and F l+1 
j 

are elements of L l and L l+1 , respectively. Thus,

f r i j = 1 , then the two feature sets F l 
i 

and F l+1 
j 

are on the same

hain. For each l = 0 , 1 , . . . , n let V l = [ v li ] be an auxiliary vector

uch that 

 li = 

| L l+1 | ∑ 

j=1 

r i j , i = 1 , . . . , | L l | . (2)

inally, let the main vectors that control the current search space

e constructed recursively as 

T n = 0 , 

T l = V l + R l × T l+1 , l = n − 1 , n − 2 , . . . , 0 . 
(3) 

he i th element of T l indicates the pruning gain of its correspond-

ng element in the search space. We use T l to find chains for which

nding the minimum element results in maximum pruning of the

earch space. At each step of the algorithm, an optimal chain F 

∗ is

ound, and after determining the minimum element of the chain,

ll the states connected to the optimal element are removed from

he search space. Then the matrices R l , C l and T l are updated, and

he algorithm continues until there are no remaining elements in

he search space. 

(2) Use of bisection to find the chain minimum. 

A drawback of UBB is that in finding the minimum element

f a chain, it searches all the nodes in the chain before reaching

 feature set that shows an increase in cost value. That is, for a

hain F = { F 1 , F 2 , . . . , F k } , if the U-curve cost function has a min-

mum F ∗ = F i ∗ , the algorithm evaluates the cost function (i ∗ + 1)

imes to find F ∗. When dealing with a large number of features,

he algorithm will tend to need a large number of unnecessary

unction calls to find F ∗. To use the U-curve assumption efficiently,

 faster method based on bisection is proposed to find the min-

mum element of the chain. Bisection changes the complexity of

nding the minimum of the chain F from O (|F| ) to O ( log (|F| )) .
he pseudocode for the bisection algorithm is given in Algorithm 1 .

ig. 4 (a) illustrates the bisection algorithm steps for a sample chain

f size 30 with i ∗ = 18 . As we see, bisection requires only 9 func-

ion calls to find the F ∗ while 19 function evaluations needed by

he linear search in the original UBB algorithm for the same prob-

em. Fig. 4 (b) displays the number of function calls required to

nd the minimum-cost feature set F ∗ in the chain when i ∗ is uni-

ormly distributed in the set 2 , . . . , |F| − 1 and the cost function

s c(F i ) = (i − i ∗) 2 . As we see, at |F| = 500 , bisection requires on

verage 17 function evaluations, while |F| / 2 = 250 function evalu-

tions are needed on average by the method in UBB to find the

inimum-cost feature set F ∗
i 
, which is 14 times the number of

unction evaluations made by IUBB. The UBB algorithm uses the
-curve assumption only as the stopping criterion for the search,

hereas the IUBB algorithm uses the assumption for optimizing

he chain search process, as well as using it as a stopping crite-

ion. 

With the aforementioned modifications to increase efficiency,

he IUBB pseudocode is displayed below as Algorithm 2 . 

Compared to the original UBB algorithm, the proposed IUBB

lgorithm uses the U-assumption efficiently by first using a dif-

erent search structure which focuses on an optimal chain F 

∗ in

he search space at each step of the algorithm. Then using the

-assumption for not only pruning the search space but also for

nding the minimum element F ∗ of each chain ( Bisection mod-

le). This improved and efficient use of the U-curve assumption

nables the proposed algorithm to outperform UBB in most prob-

ems. Fig. 5 illustrates the UBB algorithm, using the lattice in Fig. 2 .

n the next section, feature selection experiments are conducted to

ssess the performance of both algorithms. 

. Feature selection experiments 

In this section, the performances of the proposed IUBB algo-

ithm and the original UBB algorithm are compared in various fea-
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Fig. 7. Performance of the IUBB and UBB algorithms for α = 0 . 75 and different values of n . All quantities are plotted against the number of feature sets visited n FE . (a) Best 

cost found by each algorithm. (b) Number of feature sets not visited, pruned or removed n UD . (c) Number of feature sets pruned or removed n DD . (d) Ratio of n DD for IUBB 

over n DD for UBB. 

Algorithm 2 IUBB Algorithm 

Initialize Boolean lattice L of degree n . 

N r ⇐ Number of elements is the search space that are not vis- 

ited. 

c opt ⇐ ∞ 

while N r ≥ 0 do 

Find the optimal chain F 

∗

Bisection ( F 

∗) ⇒ F ∗

if c(F ∗) < c opt then 

c opt ⇐ c(F ∗) 
F opt ⇐ F ∗

end if 

Prune ( L , F 

∗, F ∗) ⇒ (L , N r ) 

end while 

return F opt and c opt 
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ture selection experiments. The analysis is broken into two dif-

ferent parts. First, the algorithms are compared in a set of syn-

thetic benchmark U-curve problems. The parameters in the syn-
hetic problems allow us to study the effects the U-shape assump-

ion can have on the underlying cost function and their impact

n the behavior of the algorithms. Next, the robustness of the

lgorithms are studied under violation of the U-curve assump-

ion, which would typically happen in wrapper feature selection

9] when the estimated classification error is used as the cost. 

.1. Synthetic benchmark 

In this section, we report results of numerical experiments us-

ng synthetic data. 

.1.1. Cost function 

The model for the cost function is given by: 

(F | F 0 , W , c max ) = c max 

[ 
1 − exp 

(
−1 

2 

(F − F 0 ) 
T W (F − F 0 ) 

)] 
(4)
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Fig. 8. Performance of the IUBB and UBB algorithms for α = 0 . 75 and different values of n . All quantities are plotted against the number of feature sets visited n FE . (a) Ratio 

of n UD for IUBB over n UD for UBB. (b) Number of feature sets not visited, pruned or removed n UD as a percentage of the entire search space. (c) Difference between n UD for 

UBB and n UD for IUBB as a percentage of the entire search space. (d) Search efficiency. 
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that the algorithm uses the assumption inefficiently. 
here 

 ∈ { 0 , 1 } n : Feature set (binary string representation) 
 0 ∈ { 0 , 1 } n : Global minimum of the cost function 

 ∈ R 

(n ×n ) : Positive-definite weighting matrix (shaping matrix
 max : Cost scale, or ideal maximum value of cost 

(5) 

he density of 1’s in the global minimum, 

= 

1 

n 

n ∑ 

i =1 

F 0 (i ) , (6)

ith 0 ≤α ≤ 1, indicates how late peaking occurs. Note that n α is

he number of features in the optimal feature set. Fig. 6 displays a

ample U-shaped cost function for n = 5 and α = 0 . 6 . Fig. 6 (a) and

b) display the U-shaped chains of the search space in 2D and 3D,

espectively. We can see that the parameter α of the cost function

odel controls the peaking latency. The proposed benchmark func-

ion set and its controlling parameters enable us to compare the

erformance of the algorithms over different classes of problems.

his benchmark can be used in future work to study the peak-

ng phenomenon and assess the capability of any feature selection

lgorithm that incorporates the U-assumption and deals with U-

haped cost functions. 
.1.2. Performance metrics 

Let n FE be the number of function evaluations, i.e., the number

f feature sets visited and evaluated by the algorithm, n PR be the

umber of feature sets pruned by applying the U-curve assump-

ion on the search, and n RM 

be the number of feature sets removed

rom the search for reasons other than pruning, e.g., removal of

eature sets from a chain using bisection to find the minimum el-

ment. 

The algorithms will be compared using the following metrics: 

• Cost of best feature set found by the algorithm. 
• Number of feature sets pruned or removed: n DD = n PR + n RM 

. 
• Number of feature sets not visited, pruned or removed: n UD =

2 n − n F E − n PR − n RM 

. 
• Number of function evaluations required to find the optimal

feature set. 
• Search Efficiency ( SE ): 

SE = 

n F E + n DD 

n F E 

. (7) 

The SE measures how efficient the algorithm is in using the

U-curve assumption to discard undesired solutions from the

search space. The minimum value SE = 1 is achieved by an ex-

haustive search, when n DD = 0 . A small value of SE will show
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Fig. 9. (a) Plot of the average number of feature set evaluations required by each algorithm to find the optimal feature set, for n = 15 . (b) Barplot of the average gain in 

efficiency displayed by IUBB over UBB in terms of feature set evaluations required to find the global best feature set. 
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4.1.3. Results 

Figs. 7 and 8 display plots of several of the metrics discussed

in the previous section vs. the number of feature sets visited, for

α = 0 . 75 and varying n . One can observe that IUBB presents a large

search gain for small n FE , which is significant, as this represents the

case where computational resources are limited. 

Fig. 9 displays the average number of function evaluations

needed to find the best feature set, as a function of α, for n = 15 .

Varying α allows us to observe the relative performance of the al-

gorithms with respect to early and late peaking. We can see in

Fig. 9 (a) that the increase of α from 0 to 0.5 increases the num-

ber of feature set evaluations required by each algorithm. This be-

havior is expected, as the increase of α delays success in finding

the best feature sets. Both algorithms have the worst performance

when α is about 0.5. However, increasing α in the interval [0.5, 1]

improves the performance of the two algorithms. When α is close

to 1, the optimal solution is in the first few selected chains and

both algorithms perform well, but with a noticeable superiority of

IUBB. Fig. 9 (b) shows that UBB might require about 40 times more

feature set evaluations for a problem with late peaking. 

Fig. 10 compares the two algorithms using the minimum cost

found, search efficiency SE , and SE ratio plots as a function of α,

for n F E = 5% and n F E = 10% of the search space, and n = 15 . Limit-

ing the total number of functions evaluations models the realistic

scenario of limited computational resources. We can see that IUBB

has a better performance in terms of the minimum cost found and

search efficiency, over the entire range of α. We also see that the

two algorithms display large search efficiency for small values of

α and, as α increases, the search efficiency decreases quickly for

both algorithms. 

Fig. 11 allows us to examine the loss of performance typically

displayed by Branch-and-Bound algorithms in the face of increas-

ing dimensionality, by plotting the average minimum cost found

(with error bars) as a function of the number of features, with

α = 0 . 85 . We can see that IUBB outperforms UBB, but that the per-

formance of both algorithms degrade as dimensionality increases. 

Fig. 12 displays the number of function calls and the percent-

age of the search space evaluated by each algorithm in order to

find the best feature set, as a function of the dimensionality, for

α = 0 . 85 . One can observe that, on average, IUBB makes a smaller

number of function evaluations and explores a smaller percentage

of the search space than UBB in finding the optimal feature set.

The difference tends to increase with larger dimensionality. The

(  
maller error bars displayed by IUBB indicate good stability with

espect to random changes in the structure of the problem. 

.2. Violation of the U-curve assumption 

In order to study the robustness of the algorithms, in this sec-

ion we allow violation of the U-curve assumption; for instance,

his would be the case in wrapper feature selection when classi-

er error estimators are used to obtain the cost function. This is

ccomplished by adding a sinusoidal disturbance to the cost model

o allow violation of the U-assumption: 

(F | F 0 , W , c max ) = c max 

[ 
1 − exp 

(
−1 

2 

(F − F 0 ) 
T W (F − F 0 ) 

)
+ A cos (2 π fβ(F )) 

] 
, (8)

here 

(F ) = 

1 
n 

∑ n 
i =1 F (i ) , 

 : Amplitude of the sinusoidal disturbance , 
f : Frequency of the sinusoidal disturbance ;

(9)

ll the other parameters are as before. The value of f controls the

umber (frequency) of local minima and A controls the depth of

he local minima. If A is set to 0, then the U-curve assumption is

ot violated, whereas if A > 0, then the problem does not satisfy

he U-curve assumption and each chain might have more than one

ocal minimum. A robust Branch-and-Bound algorithm should be

ble to avoid most of these minima and display a small reduction

n its ability to find the global minimum of each chain and pruning

he search space, provided that A and f are not too large. In Fig. 13 ,

e display the average cost of the best feature sets found as the

alue of A increases. As we see, for A ≤ 0.075 and f = 2 the two al-

orithms are able to tolerate the violation of the U-curve assump-

ion. However, as A becomes greater than 0.075, the performance

f UBB degrades suddenly, while IUBB is robust. With f = 3 , even

 small value of deviation from U-assumption is enough for UBB to

et stuck in local minima of the function. 

. Comparison with Generalized Sequential Forward Search 

In order to assess the performance of the IUBB algorithm in

omparison with classical feature selection algorithms, in this sec-

ion IUBB is compared with Generalized Sequential Forward Search

GSFS). Many classical feature selection algorithms, including GSFS,
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Fig. 10. Performance for fixed number of visited feature sets, n FE = 5% and n FE = 10% of the search space, and n = 15 . All quantities are plotted against α. (a,b) Average 

minimum cost found. (c,d) Search efficiency. 
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o not search for the optimal features, but rather try to find a

easonable suboptimal solution in fewer function calls than opti-

al feature selection. In this case, the main criterion becomes the

umber of function calls rather than the quality of the solution

r finding the optimal set of features. On the other hand. IUBB

nsures that for U-curved functions it not only uses a reasonable

umber of function evaluations but also the set of features found

y the algorithm is the global best solution. Hence, comparing the

wo algorithms based on the quality of the results will not be fair

s IUBB will outperform the suboptimal search methods in U-curve

roblems. 

In order to compare the results of the two algorithms, first GSFS

s used to find the best suboptimal feature set, and this solution

s passed to IUBB as the stopping criterion. Then the number of

unction evaluations needed by IUBB to reach the same solution

t

s GSFS is used to compare the two algorithms. The result is dis-

layed in Fig. 14 for different values for n and α. As we see, in

ll the cases IUBB outperforms GSFS. In addition, for larger values

f α and the delay in peaking, IUBB reaches the same solution as

SFS with 4 to 10 times fewer function evaluations. 

. Application to the design of imaging W-operators 

In this section, we employ the IUBB algorithm in the design

f W-operators, a class of morphological imaging operators that

re translation-invariant and locally defined inside a window [1] .

he design of a W-operator involves a feature selection procedure,

hich requires the choice of a suitable cost function. Previous re-

ults have shown that an effective cost function for W-operator

indow design is the minimization of the mean conditional en-

ropy [10] . 
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Fig. 11. Average minimum cost vs. dimension for fixed number of function evaluations, (a) n FE = 200 and (b) n FE = 300 . 

Fig. 12. Number of function calls and the percentage of the search space evaluated by each algorithm in order to find the best feature set, as a function of the dimensionality, 

for α = 0 . 85 . (a) Number of function evaluations used by each algorithm. (b) Percentage of the search space evaluated by each algorithm. 
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The cost function to be employed is the (estimated) mean con-

ditional entropy [2] . The conditional entropy of a discrete random

variable Y taking values in Y given a realization of another discrete

random variable X taking values in X is defined by 

H(Y | X = x ) = −
∑ 

y ∈Y 
P (Y = y | X = x ) log P (Y = y | X = x ) , for x ∈ X 

(10)

so that the mean conditional entropy (MCE) of Y given X is ex-

pressed by 

E[ H(Y | X )] = 

∑ 

x ∈X 
H(Y | X = x ) P (X = x ) (11)

= −
∑ 

x ∈X 
P (X = x ) 

∑ 

y ∈Y 
P (Y = y | X = x ) log P (Y = y | X = x ) (12)
p  
= −
∑ 

x ∈X 

∑ 

y ∈Y 
P (Y = y, X = x ) log 

P (Y = y, X = x ) 

P (X = x ) 
, (13)

here 0 log 0 is to be interpreted as zero. Since P (Y = y, X = x ) ≤
 (X = x ) , one has E [ H ( Y | X )] ≥ 0. It can be shown that the minimum

alue of zero is obtained if and only if Y is completely determined

y X . 

Given t independent and identically distributed (i.i.d.) pairs

(X 1 , Y 1 ) , . . . , (X t , Y t ) distributed as ( X , Y ), plugging in the standard

ample-based estimators for the probabilities in (13) leads to an

stimator ˆ E [ H(Y | X )] for the MCE of Y given X . However, since t is

sually small, the estimation error is typically large. To minimize

his, we penalize pairs that are observed only once by considering

uch occurrences as following a uniform distribution, which leads

o maximum entropy. Given that the probability of a pair ( X i , Y i )

ccurring only once is 1/ t and the fact that the number of such

airs is m , the total penalty contribution to the MCE estimator is
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Fig. 13. Average minimum cost for fixed number of function evaluations, n FE = 5% and n FE = 10% of the search space, and n = 15 . All quantities are plotted against A . Top 

row: α = 0 . 75 , f = 2 . Bottom row: α = 0 . 85 , f = 3 . 
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a  
 / t . Therefore, the final MCE estimator is given by 

ˆ 
 [ H(Y | X )] = 

m 

t 
−

∑ 

x ∈X 

∑ 

y ∈Y 
ˆ P (Y = y, X = x ) 

× log 
ˆ P (Y = y, X = x ) 

ˆ P (X = x ) 
I ˆ P (Y = y, X = x )≥ 2 

t 
. (14) 

ow, consider an ideal binary image I and a corresponding noisy

inary image I N . Let W be a window centered on a pixel x ∈ I , and

et X be a set of pixels in W . A W -operator ψ : X �→ {0, 1} tries to

redict the value Y = I(x ) ∈ { 0 , 1 } using the values taken by I N on

 . The W -operator is assumed to be translation-invariant, that is,

he same set of pixels X (relative to the translated window) is used

or all x ∈ I . The design of a W -operator, for a given window W ,

nvolves determining the appropriate subset of pixels X and the

apping ψ . Now assume that a sample realization of an image
air ( I , I N ) is available. By assuming stationarity, one can slide the

indow W across the images and obtain t approximately i.i.d. re-

lizations of the pair ( X , Y ), for a given subset of pixels X , where

 is the number of pixels in the image I (ignoring border effects),

hich allows one to compute the MCE estimator ˆ E [ H(Y | X )] in (14) ,

or the given X . We propose to apply the IUBB algorithm to select

he best X using the MCE estimator as the cost function — once

he best X is selected, the value of ψ( X ) is determined by majority

oting over the t realizations of ( X , Y ). 

We conducted an experiment where the noisy image I N was

reated by adding 30% salt-and-pepper noise to the original ideal

mage I — an example is shown in Fig. 15 . Such pairs of im-

ges were screened considering windows of size ranging from 8

o 16 pixels, some of which are displayed in Fig. 16 . 

Performance was evaluated by means of the search efficiency

nd best cost criteria defined previously, averaged over a set of
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Fig. 14. Comparing IUBB and Generalized Sequential Forward Search (GSFS). For the 

GSFS the parameter r , which indicates the number of selected features at each step, 

is set to 2. Each algorithm is run 50 times and the ratio of the average number of 

function calls is plotted. 
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fifty pairs of ideal/noisy images. We also computed the results ob-

tained by the original UBB algorithm, for comparison. Fig. 17 dis-

plays the values of the performance metrics as a function of the

window size, which plays the role of dimensionality in this case.

The left and right columns depict results for 5% and 10% of the

search space explored, respectively. We can see that both the av-

erage search efficiency and the average minimum value of MCE

found improve with an increasing window size — there will usu-

ally be a point at which increasing window size further will not

improve performance and may indeed degrade it, for a fixed im-

age size, but the window sizes employed in the experiment were

small enough, compared to the image size, to avoid this peaking

phenomenon. We can also see that IUBB outperforms UBB in each

case. 

Fig. 18 displays the result of applying the W-operator found by

each algorithm to the noisy image shown in Fig. 15 . Each algorithm

is run with n F E = 20 0 0 and the best 16-pixel W-operator found by

each algorithm is applied twice on the noisy image to enhance the

image and reduce the noise. As we see the W-operator found by

IUBB achieves a smaller noise level and cleaner image than the one

found by UBB. 
Fig. 15. An example of a pair of images that was used in the design
. Application to classification feature selection 

In this section, we report the results of a feature selection ex-

eriment in the classification of synthetic data generated from a

aussian model, using the Mean Conditional Entropy (MCE) crite-

ion, introduced in the previous section, as the cost function. 

We generate synthetic data according to the model proposed in

6] . The individual features are divided into two different groups,

arkers and non-markers (i.e. “noise”). A Gaussian block model is

sed for the abundance of markers and non-markers, with the

atter group being divided into two groups, high-variance and

ow-variance. There are altogether D gm 

global markers. The class-

onditional distributions for the markers are D gm 

-dimension Gaus-

ian: N(μgm 

0 
, �gm 

0 
) for class 0 and N(μgm 

1 
, �gm 

1 
) for class 1, where

gm 

0 
and μgm 

1 
are the mean vectors of class 0 and 1, respectively,

nd �gm 

0 
and �gm 

1 
are the covariance matrices. The means are set

o μgm 

0 
= (0 , 0 , . . . , 0) and μgm 

1 
= (1 , 1 , . . . , 1) , while a block-based

tructure is used to define the covariance matrices, whereby mark-

rs are divided into groups of D m 

markers each. Markers from dif-

erent groups are uncorrelated and markers of the same group pos-

ess the same correlation ρ between each other. More specifically,

e define �gm 

0 
and �gm 

1 
as �gm 

0 
= σ 2 

0 × � and �gm 

1 
= σ 2 

1 × �,

ith 

= 

⎡ 

⎢ ⎢ ⎣ 

R ρ 0 · · · 0 

0 R ρ · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 · · · R ρ

⎤ 

⎥ ⎥ ⎦ 

, (15)

here R ρ is a D m 

× D m 

matrix with 1’s on the diagonal and ρ ’s

lsewhere. On the other hand, the non-markers are features that

rovide no discriminating power between two classes. The non-

arker features are uncorrelated and their distribution is a mix-

ure of Gaussians, N(0 , σ 2 
0 
) and N(1 , σ 2 

1 
) , where σ 2 

0 
and σ 2 

1 
are

he same values used for the markers. 

Using this data model and the estimated MCE as the cost func-

ion, the IUBB algorithm was used to find the best feature set. Re-

ults are also computed for the original UBB algorithm for com-

arison. The specific parameter values used in the simulation are

isplayed in Table 1 . 

Fig. 19 displays the results of the experiment. As we can see,

ncreasing the dimension decreases the search efficiency of UBB,

hile IUBB is able to exploit the problem assumptions and prunes

he search space very fast. 
 of imaging W -operators. (a) Ideal image I . (b) Noisy image I N . 
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Fig. 16. A few of the W -operator windows used in the experiment. (a) 9-pixel window. (b) 14-pixel window. (c) 16-pixel window. 

Fig. 17. Performance of W -operator design. The left and right columns depict results for 5% and 10% of the search space explored, respectively. All quantities plotted as a 

function of the window size. 
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. Conclusion 

In this paper, we proposed a new and improved Branch and

ound algorithm for the U-curve optimization problem, assessed

ts performance by means of simulated optimization problems, and

emonstrated its application in the design of imaging W -operators

nd in feature selection for classification. The proposed algorithm

IUBB) improves on a previous algorithm (UBB), which requires
ewer number of function calls compared to exhaustive search.

owever, the experiments in the present paper show that the UBB

lgorithm does not use the U-curve assumptions efficiently. The

UBB algorithm uses the U-assumption efficiently by reorganizing

he tree structure in an optimal fashion and using bisection to find

he minimum along the chains. Different indices were used to eval-

ate the performance of the proposed algorithm. The number of

unction calls needed to find the best feature set, the minimum
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Fig. 18. Results produced by the 16-pixel W-operators found by each algorithm applied to the noisy image shown in Fig. 15 . (a) The result for UBB (b) The result for IUBB. 

Fig. 19. Search efficiency vs. dimension, (a) NF E = 5% of search space, and (b) NF E = 10% of search space. 

Table 1 

Summary of parameters. 

Parameter Value 

No. of sample size nTr 100 

Block size D m 2 

Correlation ρ 0.5 

Variances σ 2 
0 = σ 2 

1 0.3 2 
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cost vs. number of function calls, and the search efficiency were

three major indices used to assess the performance. The results

showed that the proposed IUBB algorithm requires a qualitatively

smaller number of function evaluations to find the optimal solu-

tion than UBB. In addition, for a fixed budget, i.e., with the same

number of function evaluations, IUBB generally reaches a feature

set with lower cost value compared to UBB. 
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