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a b s t r a c t

This paper presents the formulation of a combinatorial optimization problem with the following

characteristics: (i) the search space is the power set of a finite set structured as a Boolean lattice; (ii) the

cost function forms a U-shaped curve when applied to any lattice chain. This formulation applies for

feature selection in the context of pattern recognition. The known approaches for this problem are

branch-and-bound algorithms and heuristics that explore partially the search space. Branch-and-bound

algorithms are equivalent to the full search, while heuristics are not. This paper presents a branch-and-

bound algorithm that differs from the others known by exploring the lattice structure and the U-shaped

chain curves of the search space. The main contribution of this paper is the architecture of this

algorithm that is based on the representation and exploration of the search space by new lattice

properties proven here. Several experiments, with well known public data, indicate the superiority of

the proposed method to the sequential floating forward selection (SFFS), which is a popular heuristic

that gives good results in very short computational time. In all experiments, the proposed method got

better or equal results in similar or even smaller computational time.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A combinatorial optimization algorithm chooses the object of
minimum cost over a finite collection of objects, called search
space, according to a given cost function. The simplest architec-
ture for this algorithm, called full search, access each object of the
search space, but it does not work for huge spaces. In this case,
what is possible is to access some objects and choose the one of
minimum cost, based on the observed measures. Heuristics and
branch-and-bound are two families of algorithms of this kind. A
heuristic algorithm does not have formal guaranty of finding the
minimum cost object, while a branch-and-bound algorithm has
mathematical properties that guarantee to find it.

Here, it is studied a combinatorial optimization problem such
that the search space is composed of all subsets of a finite set with
n points (i.e., a search space with 2n objects), organized as a
Boolean lattice, and the cost function has a U-shape in any chain
of the search space or, equivalently, the cost function has a
U-shape in any maximal chain of the search space.
ll rights reserved.
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This structure is found in some applied problems such as
feature selection in pattern recognition Duda et al. [5], Jain et al.
[7] and W-operator window design in mathematical morphology
[8]. In these problems, a minimum subset of features, that is
sufficient to represent the objects, should be chosen from a set of
n features. In W-operator design, the features are points of a finite
rectangle of Z2 called window. The U-shaped functions are formed
by error estimation of the classifiers or of the operators designed
or by some measures, as the entropy, on the corresponding
estimated join distribution. This is a well known phenomenon in
pattern recognition: for a fixed amount of training data, the
increasing number of features considered in the classifier design
induces the reduction of the classifier error by increasing the
separation between classes until the available data become too
small to cover the classifier domain and the consequent increase
of the estimation error induces the increase of the classifier error.
Some known approaches for this problem are heuristics.
A relatively well succeeded heuristic algorithm is the sequential
floating forward selection (SFFS) [11], which gives good results in
relatively small computational time.

There is a myriad of branch-and-bound algorithms in the
literature that are based on monotonicity of the cost-function
[6,10,14,15]. For a detailed review of branch-and-bound algo-
rithms, refer to Somol and Pudil [13]. If the real distribution of the
joint probability between the patterns and their classes
were known, larger dimensionality would imply in smaller
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dx.doi.org/10.1016/j.patcog.2009.08.018
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Fig. 1. A complete Boolean lattice L of degree 4 and the cost function

decomposable in U-shaped curves. X ¼L� f0000;0010;0001;1110;1111g is a

poset obtained from L. A maximal chain in L is emphasized. The element 0111 is

the global minimum element and 0101 is the local minimum element in the

maximal chain.
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classification errors. However, in practice, these distributions are
unknown and should be estimated. A problem with the adoption
of monotonic cost-functions is that they do not take into account
the estimation errors committed when many features are
considered (‘‘curse of dimensionality’’ also known as ‘‘U-curve
problem’’ or ‘‘peaking phenomena’’ [7]).

This paper presents a branch-and-bound algorithm that differs
from the others known by exploring the lattice structure and the
U-shaped chain curves of the search space.

Some experiments were performed to compare the SFFS to the
U-curve approach. Results obtained from applications such as
W-operator window design, genetic network architecture identi-
fication and eight UCI repository data sets show encouraging
results, since the U-curve algorithm beats (i.e., finds a node with
smaller cost than the one found by SFFS) the SFFS results in
smaller computational time for 27 out of 38 data sets tested. For
all data sets, the U-curve algorithm gives a result equal or better
than SFFS, since the first covers the complete search space.

Though the results obtained with the application of the
method developed to pattern recognition problems are exciting,
the great contribution of this paper is the discovery of some lattice
algebra properties that lead to a new data structure for the search
space representation, that is particularly adequate for updates
after up-down lattice interval cuts (i.e., cuts by couples of intervals
[0,X] and [X,W]). Classical tree based search space representations
do not have this property. For example, if the Depth First Search
were adopted to represent the Boolean lattice only cuts in one
direction could be performed.

Following this Introduction, Section 2 presents the formaliza-
tion of the problem studied. Section 3 describes structurally the
branch-and-bound algorithm designed. Section 4 presents the
mathematical properties that support the algorithm steps. Section
5 presents some experimental results comparing U-curve to SFFS.
Finally, Conclusion discusses the contributions of this paper and
proposes some next steps of this research.
2. The Boolean U-curve optimization problem

Let W be a finite subset, PðWÞ be the collection of all subsets of
W, D be the usual inclusion relation on sets and, jWj denote the
cardinality of W. The search space is composed by 2jW j objects
organized in a Boolean lattice.

The partially ordered set ðPðWÞ;DÞ is a complete Boolean
lattice of degree jWj such that: the smallest and largest elements
are, respectively, | and W; the sum and product are, respectively,
the usual union and intersection on sets and the complement of a
set X in PðWÞ is its complement in relation to W, denoted by Xc.

Subsets of W will be represented by strings of zeros and ones,
with 0 meaning that the point does not belong to the subset and 1
meaning that it does. For example, if W ¼ fð�1;0Þ; ð0;0Þ; ðþ1;0Þg,
the subset fð�1;0Þ; ð0;0Þg will be represented by 110. In an abuse
of language, X ¼ 110 means that X is the set represented by 110.

A chain A is a collection fA1;A2; . . . ;AkgDXDPðWÞ such that
A1DA2D � � �DAk. A chain MDX is maximal in X if there is no
other chain CDX such that C contains properly M.

Let c be a cost function defined from PðWÞ to R. We say that c

is decomposable in U-shaped curves if, for every maximal chain
MDPðWÞ, the restriction of c to M is a U-shaped curve, i.e., for
every A;X;BAM, ADXDB) maxðcðAÞ; cðBÞÞZcðXÞ.

Fig. 1 shows a complete Boolean lattice L of degree 4 with a
cost function c decomposable in U-shaped curves. In this figure, it
is emphasized a maximal chain in L and its cost function. Fig. 2
presents the curve of the same cost function restricted to some
maximal chains in L and in XDL. Note the U-shape of the curves
in Fig. 2.
Our problem is to find the element (or elements) of minimum
cost in a Boolean lattice of degree jWj. The full search in this space
is an exponential problem, since this space is composed by 2jWj

elements. Thus, for moderately large jWj, the full search becomes
unfeasible.
3. The U-curve algorithm

The U-shaped format of the restriction of the cost function to
any maximal chain is the key to develop a branch-and-bound
algorithm, the U-curve algorithm, to deal with the hard combina-
torial problem of finding subsets of minimum cost.

Let A and B be elements of the Boolean lattice L. An interval

½A;B� of L is the subset of L given by ½A;B� ¼ fXAL : ADXDBg. The
elements A and B are called, respectively, the left and right
extremities of ½A;B�. Intervals are very important for characterizing
decompositions in Boolean lattices [2,4].

Let R be an element of L. In this paper, intervals of the type
½|;R� and ½R;W� are called, respectively, lower and upper intervals.
The right extremity of a lower interval and the left extremity of an
upper interval are called, respectively, lower and upper restric-

tions. Let RL and RU denote, respectively, collections of lower and
upper intervals. The search space will be the poset XðRL;RUÞ

obtained by eliminating the collections of lower and upper
restrictions from L, i.e., X ðRL;RUÞ ¼L� [f½|;R� : RARLg�

[f½R;W� : RARUg. In cases in which only the lower or the upper
intervals are eliminated, the resulting search space is denoted,
respectively, by XðRLÞ and X ðRUÞ and given, respectively, by
XðRLÞ ¼L� [f½|;R� : RARLg and X ðRUÞ ¼L� [f½R;W� : RARUg.

The search space is explored by an iterative algorithm that, at
each iteration, explores a small subset of XðRL;RUÞ, computes a
local minimum, updates the list of minimum elements found and
extends both restriction sets, eliminating the region just explored.
The algorithm is initiated with three empty lists: minimum
elements, lower and upper restrictions. It is executed until the
whole space is explored, i.e., until XðRL;RUÞ becomes empty. The
subset of XðRL;RUÞ eliminated at each iteration is defined from
the exploration of a chain, which may be done in down-up or up-
down direction. Algorithm 1 describes this process. The direction
selection procedure (line 5) can use a random or an adaptative
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Fig. 2. The four possible representation of the cost function c restricted to some maximal chains in L (a) and in XDL (b)–(d) of Fig. 1.
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method. The random method states a static probability to select
the down-up or up-down direction. The adaptative method
calculates a new probability to each direction giving more
probability to down-up direction if most of the local minima is
closest to the bottom of the lattice and up-down otherwise.

Algorithm 1. U-curve-algorithm()
1: M
( |

2: R
L ( |

3: R
U ( |

4: w
hile X ðRL;RUÞa| do

5: d
irection ( Select-Direction()

6: if
 direction is UP then

7:
 D
own-Up-Direction(RL;RU)

8: e
lse

9:
 U
p-Down-Direction(RL;RU)

10: e
nd if

11: e
nd while
Fig. 3. A schematic representation of a step of the algorithm, the detached areas

represent the elements contained in a lower and upper restrictions.
An element C of the poset XDL is called a minimal element of
X , if there is no other element C0 of X with C 0 � C. In Fig. 1, the
minimal elements of X ðRLÞ are: 1000, 0100 and 0011. If the down-
up direction is chosen, the Down-Up-Direction procedure is
performed (Algorithm 2):
�
 Minimal-Element procedure calculates a minimal element B of
the poset XðRLÞ. Only the lower restriction set is used to
calculate the minimal element B. An element B is said to be
covered by the lower restriction set RL, if (RARL : BDR, and B

is said to be covered by the upper restriction set RU , if
(RARU : RDB. When the calculated B is covered by an upper
restriction, it is discarded, i.e., the lower restriction set is
updated with B and a new iteration begins (lines 1–5).

�
 The down-up direction chain exploration procedure begins

with a minimal element B and flows by random selection of
upper adjacent elements from the current poset X ðRL;RUÞ

until it finds the U-curve condition, i.e., the last element
selected (B) has cost bigger than the previous one (M) (lines 7–
11).

�
 At this point, the element M is the minimum element of the

chain explored, A and B are, respectively, the lower and upper
adjacent elements of M (i.e., A�M� B and, by construction,
cðAÞrcðMÞrCðBÞ). It can be proved that any element C of
XðRL;RUÞ, with C � A, has cost bigger than A and, any element
D of X ðRL;RUÞ, with B�D, has cost bigger than B. By using this
property, the lower and upper restrictions can be updated,
respectively, by A and B (lines 12–17). Fig. 3 shows a schematic
representation of the first iteration of the algorithm and the
elements contained in the intervals ½|;A¼ 1 . . .1010 . . .0� and
½B¼ 1 . . .11110 . . .0;W�. The result list can be updated with M

(line 18), i.e., M will be included in the result list if it has cost
lower than the best m elements found in the search till the
current step.

�
 In order to prevent visiting the element M more than once, a

recursive procedure called minimum exhausting procedure is
performed (line 19).

Algorithm 2. Down-Up-Direction(ElementSet RL, ElementSet
RU)
1: B
(Minimal� ElementðRLÞ
2: i
f B is covered by RU then

3:
 U
pdate-Lower-Restriction(B;RL)

4:
 r
eturn

5: e
nd if

6: M
( null



ARTICLE IN PRESS

M. Ris et al. / Pattern Recognition 43 (2010) 557–568560
7: r
epeat

8: A
( M
9: M
( B
10: B
(Select� Upper� AdjacentðM;RL;RUÞ
11: u
ntil cðBÞ4cðMÞ or B¼ null

12: i
f Aanull

13:
 U
pdate-Lower-Restriction(A;RL)

14: e
nd if

15: i
f Banull then

16:
 U
pdate-Upper-Restriction(B;RU)

17: e
nd if

18: U
pdate-Results(M)

19: M
inimum-Exhausting(M;RL;RU)
An element is called a minimum exhausted element in L if all its
adjacent elements (upper and lower) have cost bigger than it. This
definition can be extended to the poset XðRL;RUÞ, i.e., all its
adjacent elements (upper and lower) in XðRL;RUÞ have cost
bigger than it. In Fig. 1 we can see that the elements 1010, 1001
and 0111 are minimum exhausted elements in XðRL;RUÞ, but
1001 is not a minimum exhausted element in L. In this paper, the
term minimum exhausted will be applied always referring to a
poset XðRL;RUÞ.

Algorithm 3. Minimum-Exhausting(Element M, ElementSet RL,
ElementSet RU)
1: P
ush M to S
lower and upper restriction sets. In Fig. 4D t
is a minimum exhausted element (gray colo
2: w
hile S is not empty do it is removed from stack. In Fig. 4E the elem

3:
 T
 ( TopðSÞ the new interval ½|;000111� and ½000111;W

4:
 M
inimumExhausted( true

5:
 fo
r all A adjacent of T in XðRL;RUÞ and A=2S do

black color. At this point, 010011 is a minimu
color) in XðR ;R Þ and it is removed from sta
6:
 if
 cðAÞrcðTÞ then
L U

H all the elements are removed from stack

7:
 P
ush A to S removed by the new restrictions are turned i

8:
 M
inimumExhausted( false

9:
 e
lse

4H shows all the elements removed from
exhausted process.
10:
 if
 A is upper adjacent of T then The procedures to calculate minimal and

11:
 U
pdate-Upper-Restriction(A;RU) and the procedure to update lower and upper

12:
 e
lse be discussed in the next section.

13:
 U
pdate-Lower-Restriction(A;RL)

14:
 e
nd if

15:
 e
nd if 4. Mathematical foundations

16:
 e
nd for

17:
 if
 MinimumExhausted then This section introduces mathematical fo

18:
 P
op T from S modules of the algorithm.

19:
 U
pdate-Results(T)

20:
 U
pdate-Lower-Restriction(T;RL)

21:
 U
pdate-Upper-Restriction(T;RU) 4.1. Minimal and maximal construction proced
22:
 e
nd if

23: e
nd while Each iteration of the algorithm requires
24: r
eturn minimal element in XðRLÞ or a maximal elem
The minimum exhausting procedure (Algorithm 3) is a recursive
process that visit all the adjacent elements of a given element M

and turn all of them into minimum exhausted elements in the
resulting poset X ðRL;RUÞ. It uses a stack S to perform the
recursive process. S is initialized by pushing M to it and the
process is performed while S is not empty (lines 2–22). At each
iteration, the algorithm processes the top element T of S: all the
adjacent elements (upper and down) of T in XðRL;RUÞ and not in
S are checked. If the cost of an adjacent element A is lower (or
equal) than the cost of T then A is pushed to S. If the cost of A is
bigger than the cost of T then one of the restriction sets can be
updated with A, lower restriction set if A is lower adjacent of T and
upper restriction set if A is upper adjacent of T (lines 5–16). If T is a
minimum exhausted element in X ðRL;RUÞ, i.e., there is no
adjacent element A in X ðRL;RUÞ with cost lower (or equal) than
T, then T is removed from S and, also, the restriction sets and the
result list are updated with T (lines 19–21). At the end of this
procedure all the elements processed are minimum-exhausted
elements in X ðRL;RUÞ.

Fig. 4 shows a graphical representation of the minimum
exhausting process. Fig. 4A shows a chain construction process
in up direction, the chain has its edges emphasized. The
element M¼ 010101 (orange-colored) has the minimum cost
over the chain. The elements in black are the elements
eliminated from the search space by the restrictions obtained
by the lower and upper adjacent elements of the local minimum
M. The stack begins with the element M. Fig. 4B shows the first
iteration of the minimum exhausting process. The arrows in red
and the elements in red indicate the adjacent elements of M

(top of the stack) that have cost lower (or equal) than it. These
elements 010001 and 010111 are pushed to the stack. The
adjacent elements of M with cost bigger than it can update the
restriction sets, i.e., the lower adjacent element 000101 updates
the lower restriction set and the upper adjacent element
000101 updates the upper restriction set. Fig. 4C shows the
second iteration: the adjacent elements 010011 and 000111
with cost lower (or equal) than the new top element 010111 are
pushed to the stack and the other adjacent elements 010110 and
011111 with cost bigger than 010111 update, respectively, the

he element 000111
r) in X ðRL;RUÞ and
ents eliminated by
� are turned into

m exhausted (gray
ck. From Figs. 4F to
and the elements

nto black color. Fig.
a single minimum

maximal elements
restriction sets will
undations of some

ure

the calculation of a
ent in X ðRUÞ. It is

presented here a simple solution for that. The next theorem is the
key for this solution.

Theorem 1. For every AAX ðRLÞ,

AAXðRLÞ 3 A \ Rc a|; 8RARL:

Proof. See the Appendix section.

Algorithm 4 implements the minimal construction procedure. It
builds a minimal element C of the poset XðRLÞ. The process begins
with C ¼ ð1 . . .1|fflfflffl{zfflfflffl}

n

Þ and S¼ ð1 . . .1|fflfflffl{zfflfflffl}
n

Þ and executes a n-loop (lines 3–

16) trying to remove components from C. At each step, a

component k; kAf1; . . . ;ng is chosen exclusively from S (S
prevents multi-selecting). If the element C0 resulted from C by
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Fig. 4. Representation of the minimum exhausting process.
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removing the component k is contained in XðRLÞ then C is
updated with C0 (lines 7–15).

Algorithm 4. Minimal-Element(ElementSet RL)
1:
 C ( 1 . . .1|fflfflffl{zfflfflffl}
n

2:
 S( 1 . . .1|fflfflffl{zfflfflffl}
n

3:
 while Sa0 . . .0|fflfflffl{zfflfflffl}
n

do
4:
 k( random index inf1; . . . ;ng where S½k� ¼ 1

5:
 S½k� ( 0

6:
 C0 ( C\k
7:
 RemoveElement( true

8:
 for all R in RL do

9:
 if Rc \ C0 ¼ | then

10:
 RemoveElement( false
11:
 end if

12:
 end for

13:
 if RemoveElement then

14:
 C ( C0
15:
 end if

16:
 end while

17:
 return C
The minimal element calculated is equal to 1 . . .1|fflfflffl{zfflfflffl}
n

when

RL ¼ f1 . . .1|fflfflffl{zfflfflffl}
n

g. At this point, the poset XðRL;RUÞ is empty and the

algorithm stops in the next iteration.
The next theorem proves the correctness of Algorithm 4.
Theorem 2. The element C of XðRLÞ returned by the minimal

construction process (Algorithm 4) is a minimal element in X ðRLÞ.
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Fig. 5. Illustration of error curve oscillation and alternative way.
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Proof. See the Appendix section.

The process to calculate a maximal element in X ðRUÞ is dual to
the one to calculate a minimal, i.e., it begins with C ¼ 0 . . .0|fflfflffl{zfflfflffl}

n

and, at

each step, when the complement C0c of the resulting C0 has not
empty intersection to all the elements of RU , adds a component k

to C.

4.2. Lower and upper restrictions update

The restriction sets RL and RU represent the search space.
Thus, they are updated after each new search by the following
rule: an element A is added to the lower (or upper) restriction set
if all elements of ½|;A� (or ½A;W �) have costs bigger or equal to A.

The next theorem establishes the U-curve condition that
permits to stop the chain construction process and to update
the restriction sets.

Theorem 3. Let C0; . . . ;Ck�1;Ck be the chain constructed by

Algorithm 2 (or its dual version). Let c be the cost function from L
to R decomposable in U-shaped curves and cðCkÞ4cðCk�1Þ, then

8AAL; CkDA) cðAÞZcðCkÞ:

Proof. See the Appendix section.

By a similar proof to the one of Theorem 3, it can be proved that
all the elements in L contained in Ck�2 have also cost bigger or
equal to it. Fig. 3 shows the chain obtained by the chain
construction process and the resulted poset. The elements
detached have always cost bigger than the elements
Ck ¼ ð1 . . .11110 . . .0Þ or Ck�2 ¼ ð1 . . .1010 . . .0Þ.

Algorithm 5 describes the update process of the lower
restriction set by an element A. If A is already covered by RL,
i.e., there exists an element of RL that contains A then the process
stops (lines 1–3). Otherwise, all the elements in RL contained in A

are removed from RL and A is added to RL (lines 4–9). This
procedure may diminish the cardinality of the restriction set, but
does not diminish the cardinality of the resulting poset X ðRLÞ,
since the removed restrictions are contained in A.

Algorithm 5. Update-Lower-Restriction(Element A, ElementSet
RL)
1:
 if there exists R from RL where ADR then

2:
 return

3:
 end if

4:
 for all R in RL do

5:
 if RDA then
6:
 RL ¼RL\fRg
7:
 end if

8:
 end for

9:
 RL ¼RL [ fAg
10:
 return
The upper restriction list updating procedure is dual to the
lower one, i.e., in this case we look for elements contained in A

instead of elements that contain A.
4.3. Minimum exhausting procedure

The computation of the cost function in general is heavy.
Thus, it is desirable that each element be visited (and its cost
computed) a single time. A way of preventing this reprocessing is
to apply the minimum exhausting procedure. This procedure is a
recursive function (Algorithm 3). It uses a stack S to process
recursively all the neighborhood of a given element M contained
in the poset X ðRL;RUÞ. At each recursion, it visits the upper and
lower adjacent elements of T, the top of S, in XðRL;RUÞ and not in
S. The adjacent elements with cost bigger than the cost of T are
elements satisfying the U-curve condition, so they can update
the restriction sets and, consequently, be removed from the
search space. The adjacent elements with cost lower or equal to T

are pushed to S to be processed in later iterations. Note that
elements are not reprocessed during the exhausting procedure,
since this procedure checks if a new element explored is in an
interval or in S, before computing its cost. If T is a minimum
exhausted element in X ðRL;RUÞ then T is removed from S. After
the whole procedure is finished, all elements processed are out of
the resulting poset XðRL;RUÞ, so they will not be reprocessed in
the next iterations. The fact that an element cannot be
reprocessed along the procedure implies that the cardinality of
XðRL;RUÞ is an upper limit for the procedure number of steps. In
search spaces that are lattices with high degree, this procedure
can have to process a huge number of elements and some
heuristics should be necessary. For example, to stop the search
for adjacent elements smaller than a minimum after some badly
succeeded trials.

The minimum exhausting procedure gives another interesting
property to the U-curve algorithm. If the cost function on maximal
chains are U-shaped curves with oscillations, as illustrated in
Fig. 5A, the U-curve algorithm may lose a local minimum element.
Note that, in this case, the local minimum element after the
oscillation has cost smaller than the cost of one before. However,
this minimum is not lost if there is another chain, with a true U-
shaped cost function, containing both local minimum elements.
Fig. 5B shows an alternative chain (chain in red) that reaches the
true minimum element of the chain (element in black). Note that
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the first local minimum (element in yellow) is contained in both
chains. The true minimum, reached by the alternative chain, is
obtained exactly by the exhausting of the first minimum found.
Fig. 6. Boolean lattice with dimension 5 used to illustrate the behavior of each

compared feature selection technique. Its costs are designed in such way that most

of the chains respect the U-shape property and a small number of chains present

oscillations.

Fig. 7. Execution of the SFFS algorithm on the Boolean lattice of Fig. 6. The bold arrows

to the discarded edges to compose the selected pathway. There were 18 computed ele
Hence, the exhausting procedure permits to relax the class of
problems approached by the U-curve algorithm.

4.4. Toy example to compare U-curve, SFFS and original branch-and-

bound algorithms

The purpose of this section is to illustrate the advantages of the
U-curve algorithm over the other two feature selection techniques
mentioned here (SFFS and original branch-and-bound) by show-
ing the simulation of these methods over a small example. Fig. 6
contains a dimension 5 lattice with costs associated to the
elements. Such costs are defined in such way that most of the
chains from the element 00000 to 11111 respect the U-shaped cost
property, while a small set of the chains present oscillations.

Starting with the classical SFFS algorithm, its application to the
Boolean lattice of Fig. 6 leads to a sequence of steps shown in Fig.
7. In each step of the algorithm, it analyses the costs of the
neighborhood of the current element in order to take the decision
of moving forward or backward. It is a greedy algorithm in the
sense that the direction taken in each iteration is based on the
minimum cost found in the considered neighborhood. Because of
its greedy nature, such method may not reach the optimal
solution. In fact, for the Boolean lattice of Fig. 6, it does not return
the optimal solution as can be seen in Fig. 7. In this sequence of
indicate the chain that the algorithm went through. The slashed arrows correspond

ments in this example.
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Fig. 8. Execution of the original branch-and-bound algorithm on the Boolean lattice of Fig. 6 (first four iterations shown). The bold edges indicate the chains that the

algorithm went through. All elements of the lattice were calculated in this example.
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slides, the red elements are those belonging to the selected chain.
The discarded elements are in black. The green element is the
current minimum cost element achieved and the yellow element
in slide (e) is the element returned by the algorithm. The red
circles in slide (e) correspond to the computed elements.

Fig. 8 shows the first four iterations along with the final state of
the original branch-and-bound algorithm for the lattice of Fig. 6.
The original branch-and-bound algorithm behaves similarly to the
depth-first-search (DFS) in graphs, except for the fact that the
branch-and-bound cuts all the elements above the minimum
element of the current chain (upward cut). In this particular case,
the performance of the branch-and-bound is not better than
exhaustive search, since it finishes by calculating all the elements
of the lattice. In the sequence of slides present in Fig. 8, the orange
elements correspond to the current elements in the stack, the
black elements are discarded elements, the green element is the
current minimum, and the yellow element is the returned
element. The red circles in slide (e) correspond to the computed
elements.

Lastly, the U-curve algorithm execution on the example of Fig.
6 is illustrated in Fig. 9. The key point of the algorithm is the
minimum exhausting procedure, which starts by looking at the
neighborhood of the minimum element of a chain in order to
search for other elements that improve the cost. If such elements
are found, they are stacked and the same procedure is applied
recursively to the stacked elements. Differently from the branch-
and-bound algorithm, in the U-curve algorithm the cuts can be in
both directions (upward or downward) depending on the location
of the element to be discarded with relation to the stacked
element (respectively above or below). This procedure tries to
avoid local minima and at the same time to discard as many
elements as possible, avoiding unnecessary computing of a subset
of elements. In this example, 10 elements were discarded without
need of computing them. Although it needs to calculate a few
more elements than SFFS does, the U-curve finishes by returning
the optimal solution. In the sequence of slides given in Fig. 9, the
red elements are those calculated in the current chain, the orange
elements are stacked for the application of the minimum
exhausting procedure, the black elements are discarded, the
green and yellow elements are the current minimum and the
returned elements, respectively. The red circles in slide (e)
correspond to the computed elements.
5. Experimental results

In this section, some results of applications of U-curve
algorithm to feature selection are given and compared to SFFS
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Fig. 9. Execution of the U-curve algorithm on the Boolean lattice of Fig. 6. The bold edges indicate the pathways that the algorithm went through. The red arrows

correspond to the paths that originated elements stacked for the application of the minimum exhausting procedure. There were 22 computed elements in this example. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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[11]. For this study several data sets were used: W-operator
window design [8], architecture identification in genetic networks
and several data sets from the UCI Machine Learning Repository
[1]. In all cases, it was attributed the value 3 for the parameter d of
SFFS. This parameter is a stop criterion of SFFS. Usually, 0odr3
in order to avoid that the algorithm stops at the first moment that
it reaches the desired dimension. In this way, it performs more
feature inclusion and deletion before returning the subset with
the desired dimension, alleviating the nesting effect. The value
d¼ 3 used as default here is the same default value adopted by the
original algorithm implementation [11].

All data sets used and the binary program with some
documentation can be found at the supplementary material web
page (http://www.vision.ime.usp.br/�davidjr/ucurve).
5.1. Cost function adopted: penalized mean conditional entropy

The information theory was originated from Shannons works
[12] and can be employed on feature selection problems [5].
Shannon’s entropy H is a measure of randomness of a random
variable Y given by

HðYÞ ¼ �
X
yAY

PðyÞlogPðyÞ ð1Þ
in which P is the probability distribution function and, by
convention, 0 � log0¼ 0.

The conditional entropy is given by the following equation:

HðY jX¼ xÞ ¼ �
X
yAY

PðyjX¼ xÞlogPðyjX¼ xÞ ð2Þ

in which X is a feature vector and PðY jX¼ xÞ is the conditional
probability of Y given the observation of an instance xAX. Finally,
the mean conditional entropy of Y given all the possible instances
xAX is given by

E½HðY jXÞ� ¼
X
xAX

PðxÞHðY jxÞ: ð3Þ

Lower values of H yield better feature subspaces (i.e., the lower
H, the larger is the information gained about Y by observing X).

In practice, HðYÞ and HðY jXÞ are estimated. A way to embed the
error estimation, committed by using feature vectors with large
dimensions and insufficient number of samples, is to attribute a
high entropy (i.e., penalize) to the rarely observed instances. The
penalization adopted here consists in changing the conditional
probability distribution of the instances that present just a unique
observation to uniform distribution (i.e., the highest entropy). This
makes sense because if an instance x has only 1 observation, the
value of Y is fully determined (i.e., HðY jX¼ xÞ ¼ 0), but the
confidence about the real distribution of PðY jX¼ xÞ is very low.

http://www.vision.ime.usp.br/&sim;davidjr/ucurve
http://www.vision.ime.usp.br/&sim;davidjr/ucurve
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Table 1
Comparison between SFFS and U-curve results for the W-operator window design.

Test Winner Computed nodes Time (s)

SFFS UC UCC SFFS UC UCC

1 EQUAL 358 73 373 8 2 393

2 EQUAL 333 31 154 7 1 392

3 EQUAL 417 17 137 10 1 393

4 UC 435 58 5,965 9 1 541

5 UC 357 101 223 7 3 385

6 UC 384 66 345 9 2 399

7 EQUAL 302 111 266 6 4 392
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Adopting this penalization, the estimation of the mean condi-
tional entropy becomes

Ê½HðY jXÞ� ¼
N

t
þ

X

xAX:P̂ ðxÞ41=t

P̂ðxÞĤðY jxÞ ð4Þ

in which t is the number of training samples and N is the number
of instances with PðxÞ ¼ 1=t (i.e., just one observation). In this
formula, it is assumed that the logarithm base is the number of
possible classes jYj, thus, normalizing the entropy values to the
interval ½0;1�. This cost function exhibits U-shaped curves, since,
for a sufficiently large dimension, the number of instances with a
single observation starts to increase, increasing the penalization
and, consequently, increasing the cost function value (i.e., next
features included do not give enough information to compensate
the error estimation).

5.2. Data sets description

5.2.1. W-operator window design

The W-operator window design problem consists in looking for
subsets of a size n window for which the designed operator has the
lowest estimation error (i.e., the transformed images generated by
the operator are as similar as possible of the expected images). The
training samples were obtained from the images presented in [8]. It
is composed by 20 files with 18,432 samples each. There are 16
features assuming binary values and two classes.

5.2.2. Biological classification

The biological classification problem studied is the problem of
estimating a subset of predictor genes for a specific target gene
from a time-course microarray experiment. The data set used for
the tests is the one presented in paper [9]. They are normalized
and quantized in three levels using the same method described in
Barrera et al. [3]. The subset of predictors is obtained from a set of
27 genes. Thus, there are 27 features assuming three distinct
values and three possible classes. It is composed by 10 files with
15 samples each.

5.2.3. UCI Machine Learning Repository

UCI Machine Learning Repository data sets considered are:
pendigits, votes, ionosphere, dorothea_filtered, dexter_filtered, spam-

base, sonar and madelon. For all data sets, the feature values were
normalized by subtracting them from their respective means and
dividing them by their respective standard deviations. After that,
all values were binarized (i.e., associated to 0, if the normalized
value is non-positive, and to 1, otherwise). Except for dorothea_-
filtered and dexter_filtered, all features were taken into account.
The dorothea_filtered and dexter_filtered are files post-processed
from dorothea and dexter data sets, respectively. In the dorothea

and dexter data sets, most features display null value for almost
every sample. So, dorothea_filtered considered only the features
with 100 or more non-null values, while dexter_filtered considered
the features with 50 or more non-null values.

A description of each data set is presented in the following list:

8 UC 1217 158 13,963 21 2 591

9 UC 330 31 274 8 1 385

10 EQUAL 406 113 825 10 4 408
�

11 EQUAL 329 70 544 7 2 387
pendigits: composed by 7494 samples, 16 binary features and
10 classes;
12 EQUAL 336 17 17 8 0.5 0.5
�

13 EQUAL 310 26 26 8 1 384
votes: composed by 435 samples, 16 ternary features and 2
classes;
14 UC 328 67 67 8 4 421

15 EQUAL 425 66 671 8 1 391
�
16 UC 333 31 151 8 1 377
ionosphere: composed by 351 samples, 34 binary features and 2
classes;
17 EQUAL 1257 659 11,253 31 16 717
�

18 UC 336 39 218 7 1 385
dorothea_filtered: composed by 800 samples, 38 binary
features and 2 classes;
19 EQUAL 296 32 137 6 2 379

�

20 EQUAL 323 31 151 8 2 376

dexter_filtered: composed by 300 samples, 48 binary features
and 2 classes;
�
 spambase: composed by 4601 samples, 57 binary features and
2 classes;

�
 sonar: composed by 208 samples, 60 binary features and 2

classes;

�
 madelon: composed by 2000 samples, 500 binary features and

2 classes.
5.3. Results

The feature selection problem may have cost functions with
chains that present oscillations and there is no theoretical
guaranty of the existence of alternative chains to achieve the
local minima lost because of the oscillations. However, these cases
were tested experimentally and in all observed cases the
minimum exhausting procedure could find the local minimum
elements using alternative chains. We have examined 100,000
random curves in all data sets studied. For example, in the W-
operator window design almost 24,000 curves (24%) contains
oscillatory parts and in the biological classifier design almost
15,000 curves (15%) contain oscillatory parts. For all these
oscillatory curves and also for those found in the UCI data sets,
the minimum exhausting procedure got the local minimum by
alternative chains.

The results of the U-curve algorithm are divided into two sets:
(i) until it beats the SFFS result (UC); (ii) until the search space is
completely processed (UCC). The U-curve algorithm is stochastic
and at each test it can reach the best result in different processing
time. So, the U-curve was processed 5 times for each test and the
quantitative results presented are means of values gotten in these
five processes. The machine used for the tests was an AMD Turion
64 with 2 Gb of RAM.

In the following, each of the three experiments performed is
summarized by a table and all these tables have the same
structure. The first column presents the winner of the comparison
of SFFS with UC. The other columns present the cost in terms of
processed nodes and computational time of SFFS, UC and UCC.

Table 1 shows the results for the W-operator window design
experiment. Twenty tests were performed using the available
training samples. UC beats SFFS in 8 of the 20 tests and reaches
the same result in the remaining ones. In these last cases, both
reach the global minimum element. In all cases, UC processes a
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Table 2
Comparison between SFFS and U-curve results for the biological classification

design.

Test Winner Computed nodes Time (s)

SFFS UC UCC SFFS UC UCC

1 EQUAL 135 777 9964 0.5 0.6 3.1

2 UC 135 9252 30,724 0.5 2.1 11.2

3 UC 135 1037 9410 0.5 0.6 3.1

4 UC 164 786 9276 0.5 0.6 3.1

5 UC 281 247 6126 0.5 0.6 1.5

6 EQUAL 135 2675 11,031 0.5 0.7 7.3

7 EQUAL 135 998 10,836 0.5 0.6 6.9

8 UC 135 463 5381 0.5 0.5 1.5

9 UC 135 246 4226 0.5 0.5 1.5

10 UC 191 474 8930 0.5 0.5 2.9

Table 3
Comparison between SFFS results and U-curve algorithm for the UCI Machine

Learning Repository data sets.

Test Winner Computed nodes Time (s)

SFFS UC UCC SFFS UC UCC

Pendigits (16) EQUAL 358 124 1292 5 1 19

Votes (16) EQUAL 128 81 12,670 0.03 0.02 87

Ionosphere (34) UC 4782 1139 NA 1 0.25 NA

dorothea_filtered

(37)

UC 7004 799 NA 10 1 NA

dexter_filtered

(48)

UC 8071 596 NA 3 1 NA

Spambase (57) UC 24,265 1608 NA 441 21 NA

Sonar (60) UC 540 784 NA 0.09 0.10 NA

Madelon (500) UC 66,403 159,745 NA 1000 3008 NA
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smaller number of nodes, in a smaller time, than SFFS. The
complete search (UCC) frequently needs to process more nodes
(17/20), taking more time (19/20), than SFFS.

Table 2 shows the results for the biological classifier design
experiment. Ten tests were performed using different target
genes. In these examples, the complete search space is quite big
(227 nodes). SFFS reaches the best element, equalling UC, only 3/10
times. The processing of the whole space (UCC) improved the
result of UC in 7/10 times. UC processed many more nodes than
SFFS, but their computational times are very similar. This happens
because these experiments involve small number of samples and,
therefore, the computational time spent to process a node is very
small. The pre-processing overhead is the major responsible for
the time consuming in this case.

Table 3 shows the results of eight tests using public data sets.
For each test, the value in parenthesis is the number of features (n)
in the data set. For tests with high number of features, the results
for the complete search (UCC) are not available. We can see that
UC obtained better results than SFFS in 6/8 of the tests and equal
results in two tests with small number of features. In these two
cases, SFFS reaches the best result but UC reaches them faster,
processing less nodes.

These results show that UC is more efficient than SFFS for low
order problems, obtaining the same results with less processing.
For high order problems, UC is more accurate, but in some cases it
process more nodes and takes more time.

6. Conclusion

This paper introduces a new combinatorial problem, the
Boolean U-curve optimization problem, and presents a stochastic
branch-and-bound solution for it, the U-curve algorithm. This
algorithm gives the optimal elements of a cost function decom-
posable in U-shaped chains that may even be oscillatory in a given
sense. This model permits to describe the feature selection problem
in the context of pattern recognition. Thus, the U-curve algorithm
constitutes a new tool to approach feature selection problems.

The U-curve algorithm explores the domain and cost function
particular structures. The Boolean nature of the domain permits to
represent the search space by a collection of upper and lower
restrictions. At each iteration, a beginning of chain node is
computed from the search space restrictions. The current explored
chain is constructed from this node by choosing upper or lower
adjacent nodes. The choice of a beginning of chain and of an
adjacent node usually has several options and one of them is taken
randomly. The cost function and domain structure permit to make
cuts in the search space, when a local minimum is found in a chain.
After a local minimum is found, all local minimum nodes
connected to it are computed, by the minimum exhausting
procedure, and the corresponding cuts, by up-down intervals,
executed. The adjacency and connectivity relations adopted are the
ones of the search space Hesse diagram that is a graph in which the
connectivity is induced by the partial order relation. The minimum
exhausting procedure avoids that a node be visited more than once
and generalizes the algorithm to cost functions decomposable in
some class of U-shaped oscillatory chain functions. The procedures
of the U-curve algorithm are supported by formal results.

In fact, the U-curve optimization technique constitutes a new
framework to study a family of optimization problems. The
restrictions representation and the intervals cut, based on Boolean
lattice properties, constitutes a new optimization structure for
combinatorial problems, with properties not found in conven-
tional tree representations.

The U-curve was applied to practical problems and compared to
SFFS. The experiments involved window operator design, genetic
network identification and six public data sets obtained from the
UCI repository. In all experiments, the results of the U-curve
algorithm were equal or better than those obtained from SFFS in
precision and, in many cases, even in performance. The results of
the U-curve algorithm considered for comparison are the mean of
several executions for the same input data, since it is a stochastic
algorithm that may have different performances at each run.

The efficiency of the U-curve algorithm depends on the relative
position of the local minima on the search space. The algorithm is
more efficient when the local minima are near the search space
extremities. The worst cases are the ones in which the local
minima are near the middle of the lattice.

The results obtained until now are encouraging, but the
present version of the U-curve algorithm is not a fast solution
for high dimension problems with many local minima in the
center of the search space lattice. The efficient addressing of these
problems in the U-curve optimization approach opens a number
of subjects for future researches such as: to develop additional
cuts to the branch-and-bound formulation; to design and
estimate distributions for the random parameters used in the
choice of beginning nodes or adjacent paths in the construction of
a chain, with the goal of reaching earlier to the best nodes; to
build parallelized versions of the algorithm; and others.
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Appendix
Theorem 1. For every AAX ðRLÞ,

AAXðRLÞ 3 A \ Rc a|; 8RARL:

Proof.

AAXðRLÞ3AAL

�
[
f½|;R�

: RARLg3A=2
[
f½|;R�

: RARLg3A=2½|;R�; 8RARL3AJR; 8RARL3A
\ Rc a|; 8RARL &

Theorem 2. The element C of XðRLÞ returned by the minimal

construction process (Algorithm 4) is a minimal element in X ðRLÞ.

Proof. By looking into the steps of the minimal construction
procedure:
�
 Lines 7–15 guarantee that at any step of the procedure the
resulted C is contained in XðRLÞ, i.e., it is updated only when
the resulted C0 satisfies the condition shown in Theorem 1.

�
 Let C1; . . . ;Cn be the sequence of resulting elements at each

step i (i¼ 1; . . . ;n) and C0 ¼ 1 . . .1|fflfflffl{zfflfflffl}
n

be the initial element. As an

index k is chosen to be removed from Ci�1 (lines 4–6) at each
step i, it implies that CnDCn�1D � � �DC0.

�
 Proving that the resulting element Cn is minimal in XðRLÞ is

equivalent of proving that 8lACn;Cn\flg=2X ðRLÞ.

�
 Let k¼ l; lACn and i be the step of the procedure when the

index l is chosen to be removed from Ci�1. CnDCi and lACn

imply that lACi, i.e., l cannot be removed from Ci�1 at the end
of step i. This is avoided by the algorithm (lines 8–12), when
there exists an element RARL with Rc \ ðCi�1\flgÞ ¼ |. As
Cn\flgDCi�1\flg, then Rc \ ðCn\flgÞ ¼ | and, by Theorem 1,
Cn\flg=2XðRLÞ. This implies that Cn is a minimal element in
XðRLÞ. &

Theorem 3. Let C0; . . . ;Ck�1;Ck be the chain constructed by

Algorithm 2 (or its dual version). Let c be the cost function from L
to R decomposable in U-shaped curves and cðCkÞ4cðCk�1Þ. It is true

that

8AAL; CkDA) cðAÞZcðCkÞ:

Proof. Suppose that (BAL;CkDB and cðBÞocðCkÞ. It contradicts
the hypothesis that c is a function decomposable in U-shaped
curves, since Ck�1DCkDB, but maxðcðCk�1Þ; cðBÞÞ is either cðCk�1Þ

ocðCkÞ or cðBÞocðCkÞ, contradicting maxðcðCk�1Þ; cðBÞÞ4cðCkÞ. &
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