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Abstract 

Sequential search methods characterized by a dynamically changing number of features included or eliminated at each step, 
henceforth "floating" methods, are presented. They are shown to give very good results and to be computationally more effective 
than the branch and bound method. 
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1. Introduction 

The main goal of feature selection is to select a sub- 
set of d features from the given set of D measure- 
ments, d<  D, without significantly degrading the per- 
formance of the recognition system. Assuming that a 
suitable criterion function has been chosen to evalu- 
ate the effectiveness of feature subsets, feature selec- 
tion is reduced to a search problem that detects an 
optimal feature subset based on the selected mea- 
sure. Therefore, some computationally feasible pro- 
cedures designed to avoid the exhaustive search are 
essential even though the feature set obtained may be 
suboptimal. 

For the above reason, the question of the trade-off 
between the optimality and efficiency of algorithms 
for feature selection is recognized, and the main- 
stream of research on feature selection has thus been 
directed toward suboptimal search methods. 
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With the feature set search algorithms discussed in 
this paper the best feature set is constructed by add- 
ing to and/or  removing from the current feature set, 
a small number of measurements at a time until the 
required feature set, Xd, of cardinality d is obtained. 
More specifically, to form the best set of d features, 
the starting point of the search can be either an empty 
set, Xo, which is then successively built up or the 
starting point can be the complete set of measure- 
ments, Y, in which superfluous measurements are 
successively eliminated. The former approach is re- 
ferred to as the "bottom up" search while the latter is 
known as the "top down" method. 

A feature selection technique using the divergence 
distance as the criterion function and the sequential 
backward selection (SBS) method as the search al- 
gorithm was introduced already by Marill and Green 
(1963) and its "bottom up" counterpart known as 
sequential forward selection (SFS) by Whitney 
(1971). Both these methods are generally subopti- 
mal and suffer from the so-called "nesting effect". It 
means that in the case of the "top down" search the 
discarded features cannot be re-selected while in the 
case of the "bottom up" search the features once se- 
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lected cannot be later discarded. The result is that the 
methods are only suboptimal. 

An attempt to prevent the nesting of feature sub- 
sets was first put forward by Michael and Lin (1973) 
in the context of Whitney's sequential forward selec- 
tion. The idea was later refined and developed into 
the Plus-/-Minus-r (l-r)  search method (also subop- 
timal) (Stearns, 1976). The main drawback of this 
method is that there is no theoretical way of predict- 
ing the values of l and r to achieve the best feature 
set. The search in this direction was concluded by in- 
troducing the generalization of SBS, SFS, and (l-r)  
algorithms proposed by Kittler ( 1978 ). 

A computationally very appealing method was 
proposed by Backer and Schipper (1977). The 
method involves only the computation of individual 
and pairwise merits of features. It employs a search 
in the sequential forward selection manner and it is 
known as the M a x - M i n  algorithm. However, the re- 
suits achieved with this method are invariably rather 
unsatisfactory. A comparative study of various fea- 
ture selection algorithms made in Kittler (1978) in- 
dicates that the Max-Min method gives the poorest 
results. The results confirm that it is not possible to 
select a set of features in a high-dimensional space 
based on two-dimensional information measures 
without a substantial information loss (Cover and 
Van Compenhount, 1977). In addition to this, how- 
ever there are other detrimental factors which are in- 
herent to the Max-Min method itself, as shown by 
Pudil et al. (1993a). 

A real breakthrough in optimal set search came in 
1977 with the introduction of the branch and  bound  
algorithm which was proposed by Narendra and Fu- 
kunaga (1977). The optimality of the results in this 
method, however, is constrained by the fact that 
monotonic parametric distance measures (e.g. Bhat- 
tacharyya distance, divergence) must be used as the 
criterion function, i.e., the monotonicity condition 
must be satisfied. The branch and bound algorithm 
often makes practicable problems for which the ex- 
haustive search would be totally out of the question. 
However, even the branch and bound algorithm be- 
comes impracticable for feature selection problems 
involving more than 30 measurements. 

Since the introduction of the branch and bound 
procedure, the major work on feature selection has 
been directed toward graph search procedures (Ichino 

and Sklansky, 1984). The usefulness of this ap- 
proach is, however, still dependent on the computa- 
tion speed and computer memory. Further work in- 
cludes the use of genetic algorithms for feature 
selection (Siedlecki and Sklansky, 1989) or the pos- 
sibility of applying simulated annealing technique 
(Siedlecki and Sklansky, 1988). However, the opti- 
mality of the selected feature set from either the ge- 
netic algorithm or simulated annealing cannot be 
guaranteed. 

To conclude, despite some progress, the available 
optimisation search techniques are not yet com- 
pletely satisfactory. They are either computationally 
feasible but yield feature subsets which are far from 
optimal, or they yield optimal or almost optimal fea- 
ture subsets but cannot cope with the inherent com- 
putational complexity of feature selection problems 
of realistic size. 

Therefore, the floating search methods of feature 
selection presented in this paper should be consid- 
ered as an alternative intended to overcome the above 
problems. Though neither these methods can guar- 
antee always to provide the best subset of features, 
their performance has been found to be very good 
compared with other search methods and, further- 
more, they are computationally much more efficient 
than the branch and bound method. 

The next section of the paper is devoted to a formal 
description of the floating search methods. Finally, 
the experimental comparison of the performance of 
floating search methods with that of the currently used 
search methods is presented in Section 3. 

2. Sequential forward floating and sequential 
backward floating selection methods 

A simple way to avoid nesting of feature sets is to 
employ either the (l, r) or generalized (l, r) algo- 
rithm which involves successive augmentation and 
depletion processes. Consequently, the resulting di- 
mensionality in respective stages of both algorithms 
is fixed depending on the prespecified values of l and 
r. Unfortunately, there is no theoretical way of pre- 
dicting the values of /and  r to achieve the best feature 
set. Alternatively, instead of fixing these values, we 
can let these values "float", i.e., to keep them flexibly 
changing so as to approximate the optimal solution 
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as much as possible. Consequently, the resulting di- 
mensionality in respective stages of the algorithm is 
not changing monotonously but is actually "floating" 
up and down. 

Because of this "floating" characteristic, the two 
methods designed and implemented in the PREDI- 
TAS software package (Pudil et al., 1991 ) have been 
denoted foating search methods. Although both these 
methods switch between including and excluding 
features, they are based on two different algorithms 
according to the dominant direction of the search. The 
search in the forward direction is referred to as the 
sequential forward floating selection (SFFS), while in 
the opposite direction it will be called the sequential 
backward floating selection. 

2. I. Preliminaries 

Before describing the corresponding algorithms 
formally, the following definitions have to be 
introduced. 

Let Xk = {Xi: 1 ~ i ~< k, x, e Y} be the set of k features 
from the set Y= {y~: 1 ~< i<~D} of D available features. 
The value J(y~) of the feature selection criterion 
function if only the ith feature y~, i = 1,2,..., D, is used 
will be called the individual significance So (yg) of the 
feature. 

The significance Sk_ l (xj) of the feature xj, j=  1, 2, 
.... k, in the set Xk is defined by 

Sk_~ (Xj) = J(Xk) - J(Xk - - X j )  . ( 1 ) 

The significance Sk + l ( fj  ) of the feature fj from the set 
Y - X k  

Y - X k = ~ : i = l , 2 , . . . , D - k ,  f e Y ,  

f Cxt for all xleXk} 

with respect to the set Xk is defined by 

Sk+l ~ )  =J(Xk +£)  - J (Xk) .  (2) 

Remark. For k= 1 the term feature significance in 
the set coincides with the term of individual 
significance. 

We shall say that the feature xj from the set Xk is 
(a) the most significant (best) feature in the set Xk 

if 

Sk_l (x j )=  max Sk_,(xi) 
l <~i<~k 

=~ J ( X k - x j ) =  min J ( X k - x i ) ,  (3) 
l~<i<~k 

(b) the least significant (worst) feature in the set 
Xkif 

Sk-l(Xj)= min Sk_l(xi) 
l <~i<~k 

=, J ( X k - x j ) =  max J ( X k - x , ) .  (4) 
l <~i<~k 

We shall say that the feature fj from the set Y-Xk 
is 

(a) the most significant (best) feature with respect 
to the set Xk if 

S k + l ~ ) =  max Sk+l~)  
l < ~ i ~ D - - k  

=~ J ( X ~ + £ ) =  max J ( X k + f ) ,  (5) 
l <~i<~D--k 

(b) the least significant (worst) feature with re- 
spect to the set Xk if 

S k + l ~ ) =  min Sk+l~)  
l <~i<~D--k 

J (X k +f j )=  min J ( X k + f ) .  (6) 
l < ~ i ~ D - - k  

2.2. The SFFS procedure 

The SFFS is basically a bottom up search proce- 
dure which includes new features by means of apply- 
ing the basic SFS procedure starting from the current 
feature set, followed by a series of successive condi- 
tional exclusion of the worst feature in the newly up- 
dated set provided a further improvement can be 
made to the previous sets. 

The Sequential Forward Floating Selection Algorithm 
Suppose k features have already been selected from 

the complete set of measurements Y= {y~ [ j =  1, 2, ..., 
D) to form set Xk with the corresponding criterion 
function J(Xk). In addition, the values of J(Xi) for 
all preceding subsets of size i= 1, 2, ..., k - 1 ,  are 
known and stored. 

• Step 1 (Inclusion). Using the basic SFS method, 
select feature Xk+l from the set of available measure- 
ments, Y--Xk, to form feature set Xk+~, i.e., the most 
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significant feature xk+l with respect to the set X~ is 
added to Xk. Therefore 

X k +  1 = X k ' ~ - X k +  1 . 

• Step 2 (Conditional exclusion). Find the least 
significant feature in the set Xk+ 1. Ifxk+l is the least 
significant feature in the set Xk+ 1, i.e. 

J ( X k + l - - X k + l ) ~ J ( X k + l - - X j )  , V j = I , 2  .... , k ,  

then set k = k +  1 and return to Step 1, but if xr, 
1 ~< r~< k, is the least significant feature in the set Xk+ 1, 
i.e. 

J(Xk+I --xr) > J ( & )  , 

then exclude xr from Xk+ 1 to form a new feature set 
X~, i.e. 

X t k = X k + l  - - X  r . 

Note that now J(X'k) >J(Xk) .  I f  k=2 ,  then set Xk = 
X~ and J(Xk)  =J(X'k) and return to Step 1, else go 
to Step 3. 

• Step 3 (Continuation o f  conditional exclusion). 
Find the least significant feature xs in the set X~. I f  
J(X'k-xs)<-~J(Xk_l) then set Xk=X'k, J (X~)= 
J(X'~) and return to Step 1. I f J ( X ' k - x ~ ) > J ( X k _ I )  
then exclude Xs from X~, to form a newly reduced set 
X~,_ l, i.e. 

X'k_ t = X'k - x,  . 

Set k = k - 1 .  Now if k=2 ,  then set Xk=X~ and 
J(Xk)  = J ( X ; )  and return to Step 1, else repeat Step 
3. 

The algorithm is initialized by setting k = 0  and 
3(0 = ~, and the SFS method is used until a feature set 
of  cardinality 2 is obtained. Then the algorithm con- 
tinues with Step 1. 

2.3. The SBFS procedure 

The SBFS is a top down search procedure which 
excludes features by means of applying the basic SBS 
procedure starting from the current feature set and 
followed by a series of  successive conditional inclu- 
sions of  the most significant feature from the avail- 
able features if an improvement can be made to the 
previous sets. 

The Sequential Backward Floating Selection 
Algorithm 

Suppose k features have already been removed from 
the complete set of measurements Xo = Yto form fea- 
ture set Xk with the corresponding criterion function 
J(-gk). Futhermore, the values of  all supersets )?i, i=  1, 
2, ..., k -  1, are known and stored. 

• Step 1 (Exclusion). Use the basic SBS method to 
remove feature Xk+ 1 from the current set Xk to form 
a reduced feature set J?k+l, i.e., the least significant 
feature Xk+ 1 is deleted from the set Xk. 

• Step 2 (Conditional inclusion). Find among the 
excluded features the most significant feature with 
respect to the set J?k+ 1. IfXk+ 1 is the most significant 
feature with respect to )?k+ 1, i.e. 

J(Xk+l +Xk+l) >~J(Xk+l +xj), Vj= 1, 2 .... , k ,  

then set k = k +  1 and return to Step 1. I f x ,  1 <~r<~k, 
is the most significant feature with respect to the set 

)(k+ 1, i.e. 

J(Xk+l "~Xr)  > J ( ' ~ k )  , 

then include xr to the set -~k+ 1 to form a new feature 

set .g~, i.e. 

Ark = ' ~ k +  1 " ~ X r .  

Note that now J(X'k) >J(Xk) .  I f  k=2 ,  then set )(k = 
)(;  and J(J(k) =J(X~,) and return to Step 1, else go 
to Step 3. 

• Step 3 (Continuation o f  conditional inclusion). 
Find among the excluded features the most signifi- 

cant feature xs with respect to the set )(~,. I f  J(,g~ + 

Xs) <".J(-'~k-1 ) then set .~; =-~k, J()(~,) =J(-e~k) and 
return to Step 1. I f  J(X'k+Xs)>J(~'k-1)  then in- 
clude xs to the set .~, to form the new enlarged set 
)(~-I ,  i.e. 

-!  -t  
X k _  I = X k ' ~ - X  s , 

Set k = k - 1 .  Now if k=2 ,  then set -~k =-~,  and 
J(-'~k) =J(Y(~,) and return to Step l, else repeat Step 
3. 

The algorithm is initialized by setting k = 0  and 
Xo = Yand the SBS method is used until a feature set 
of cardinality D - 2  is obtained (it means until the 2 
least significant features are excluded). Then the al- 
gorithm continues with Step 1. 
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Unlike the (/, r) and generalized (/, r) algorithms 
in which factors such as the net change in the size of 
the current feature set, and especially the amount of 
computational time, are governed by the values of l 
and r, the SFFS and SBFS methods are not restricted 
by these factors. By means of conditional "floating 
down and up" both the methods are freely allowed to 
correct wrong decisions made in the previous steps 
so as to approximate the optimal solution as much as 
possible. Obviously, this near optimality is achieved 
at the expense of computational time, especially in 
the case of data of greater complexity and dimen- 
sionality. However, as we shall see from the results, 
both the methods are much faster than the branch and 
bound method. 

3. Experimental results and discussion 

The described search methods have been evalu- 
ated by experiments on various types of data. The re- 
sults reported in (Choakjarernwanit, 1991 ) confirm 

that on simple feature selection problems the relative 
performance of the various methods is similar. The 
methods differ only in computational efficiency. In 
order to clearly demonstrate the effectiveness of each 
method, the selection of a feature set from data show- 
ing high statistical dependencies provides a more dis- 
criminative test. Consequently the emphasis herein 
is put on an experiment involving a nondestructive 
testing problem data used in (Kittler, 1978) with 
strong interactions among features. This data con- 
sists of two normally distributed classes in a 20-di- 
mensional space with means #~, i = 1, 2, and an equal 
covariance matrix S. Consequently, it is pertinent to 
use the Mahalanobis distance J~  as a criterion of fea- 
ture set effectiveness. Unfortunately, the comparison 
of the effectiveness of all described search methods 
together is rather difficult. It will, therefore, be done 
separately in smaller groups. Note that all the exper- 
iments were performed on SUN SPARC station 1. 

The results which are partially documented in Figs. 
1 and 2 where the results marked "optimal" have been 
obtained using the branch and bound method can be 
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Fig. 1. Results of  sequential forward and backward search methods. 
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Fig. 2. Results of  the generalized (l, r), branch-and-bound and floating search methods. 

summarized as follows (for more detail see (Pudil et 
al., 1992). 

1. Since the Mahalanobis distance satisfies the 
monotonicity condition, the branch and bound 
method provides the optimal solution. Though it is 
much faster than the exhaustive search, its use for 
feature space of high dimensionality still remains 
prohibitive. This result is consistent with the find- 
ings of Siedlecki and Sklansky (1988). 

2. Individual suboptimal sequential forward meth- 
ods yielded relatively similar results to their back- 
ward counterparts, obviously with the exception of 
the computational time for a given dimensionality 
which depends in both approaches strongly on the 
difference between the cardinalities of the feature sets 
at the initial and final stages of the search process 
respectively. 

3. The "simple" search methods Max-Min, SFS, 
SBS, (+/ ,  - r )  are relatively fast but fail to provide 
optimal results, with the Max-Min method giving the 
worst results. The (+/ ,  - r )  method gives signifi- 

cantly better results than SFS and SBS methods 
(Pudil et al., 1992). 

4. The more sophisticated generalized search 
methods GSFS(I), GSBS(r) and G(+ / ,  - r )  yield 
better results. However, this is at the expense of a 
much longer computation time, especially with in- 
creasing values of parameters l, r. Moreover, there is 
no way to determine the right values of/ ,  r in order 
to acquire the best feature subset of desired 
cardinality. 

5. Both the SFFS and SBFS methods consistently 
yield results comparable to the branch and bound 
method. However, they are computationally much 
faster. Also the comparison of computation time with 
other search methods is very favourable for the float- 
ing search methods. 

4. Conclusion 

The results achieved so far on various sets of data 
demonstrate clearly a great potential of the floating 
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search strategies (Pudil et al., 1992, 1993b). They not 
only provide either the optimal or a close to optimal 
solution, but also require much less computational 
time than the branch and bound method and most 
other currently used suboptimal strategies. 

The computational efficiency allows the use of 
floating search even when the number of original fea- 
tures approaches one-hundred. 

Beside of avoiding the nesting of features, one of 
their distinctive characteristics is that during the 
backtracking process the values of the criterion func- 
tion are always compared only with those related to 
the s a m e  cardinality of the feature subset. Conse- 
quently, a possible decrease of the criterion function 
when a new feature is added is of no concern. Thus, 
as opposed to the branch and bound method, the 
floating search methods are also tolerant to devia- 
tions from monotonic behaviour of the feature selec- 
tion criterion function. 
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