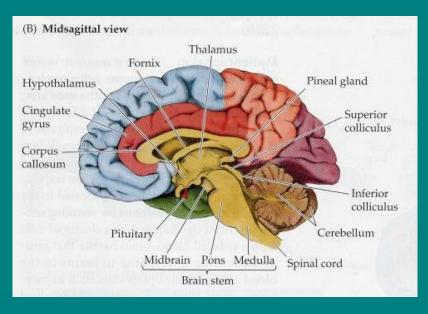
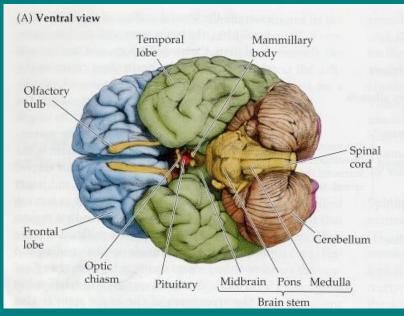
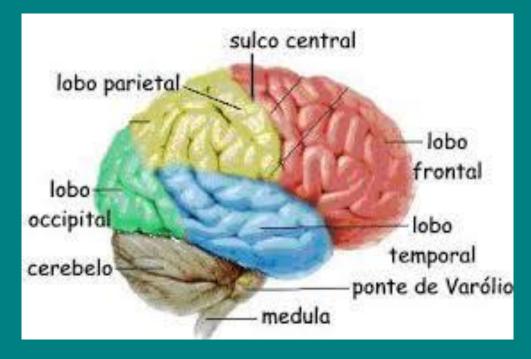

Transtornos psiquiátricos e doenças neurodegenerativas- bases fisiopatológicas para elaboração de planos dietoterápicos

Prof. Assoc. Sandra Maria Lima Ribeiro e-mail: smlribeiro@usp.br

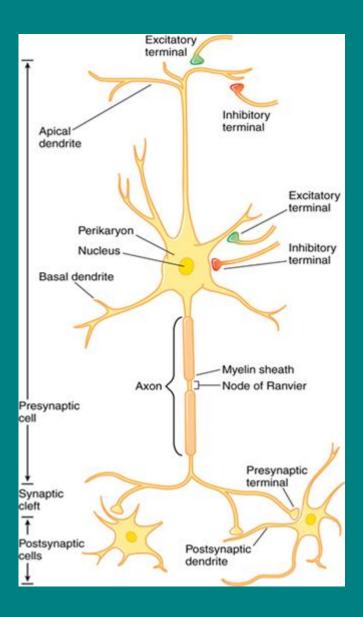

Sumário

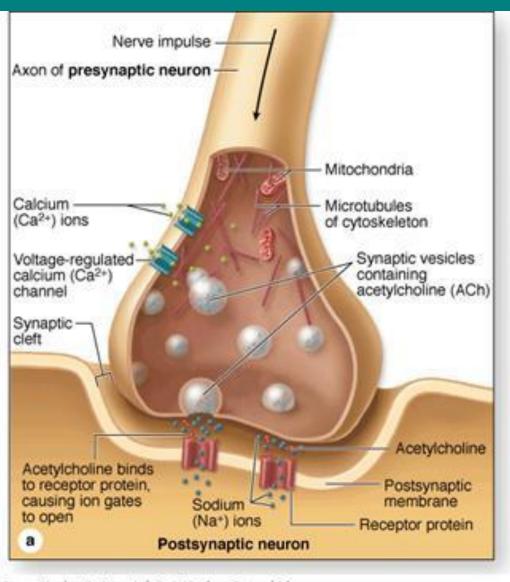

- Esquema geral do sistema nervoso central
- Neurotransmissores- definição e funções
- Microglia- definição e funções
- Nutrientes importantes em todos os transtornos e doenças neurodegenerativas
- Condutas dietéticas em alguns dos transtornos


Esquema geral do SNC

Córtex cerebral

Sistema límbico- parte do cérebro envolvida na cognição e emoção

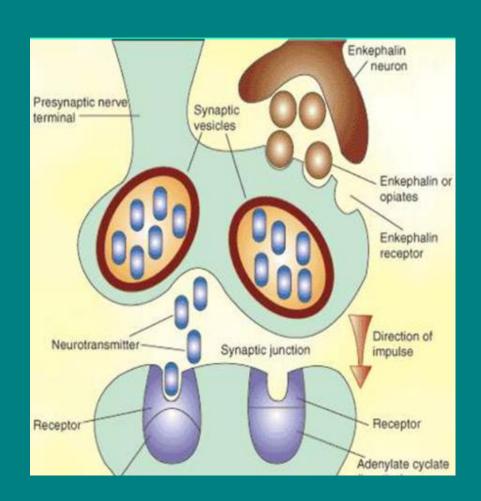



Estresse ambiental e/ou elevação de citocinas pró-inflamatórias

Hipotálamo- CRF
Hipófise- ACTH
Adrenais- cortisol

Eixo hipófise-hipotálamo ou hipotálamo-pituitária

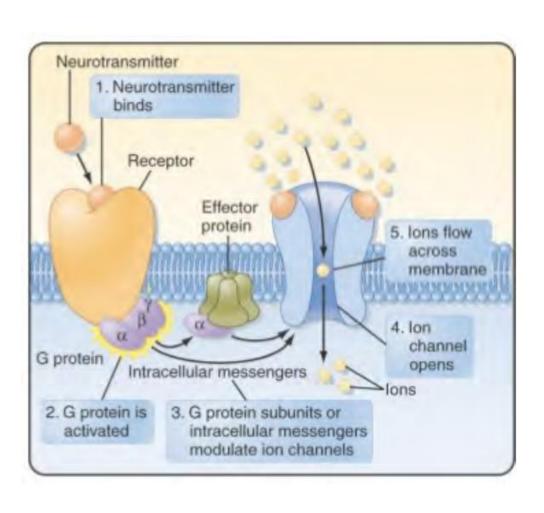
Neurônio e Sinapse


Source: Mescher AL: Junqueira's Basic Histology: Text and Atlas, 12th Edition: http://www.accessmedicine.com

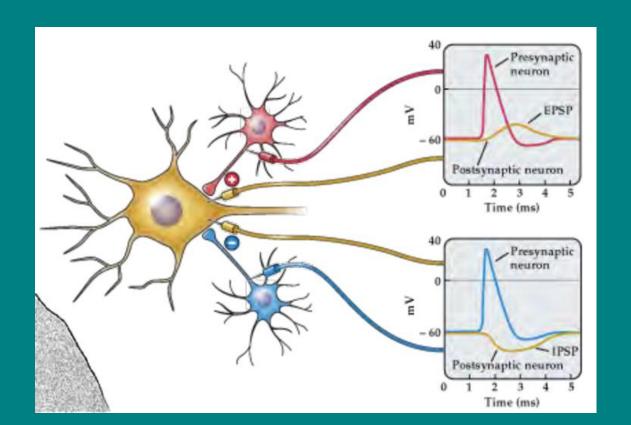
Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Neurotransmissores

- Substâncias químicas no neurônio pré-sináptico que seguem na fenda sináptica e transmitem o impulso nervoso
- Estruturas químicas diferentes
- Cada um deles se liga a receptores específicos no dendrito da célula receptora
- Influenciam o neurônio "receptor" (pós-sináptico)
- Ação- recaptação do NT pelo neurônio pré- sináptico (mecanismos dependentes de receptor)


Tipos de receptores de NT

Ionotropic: NT binds to the ion channel


Tipos de receptores de NT

Metabotropic: NT binding opens ion channels

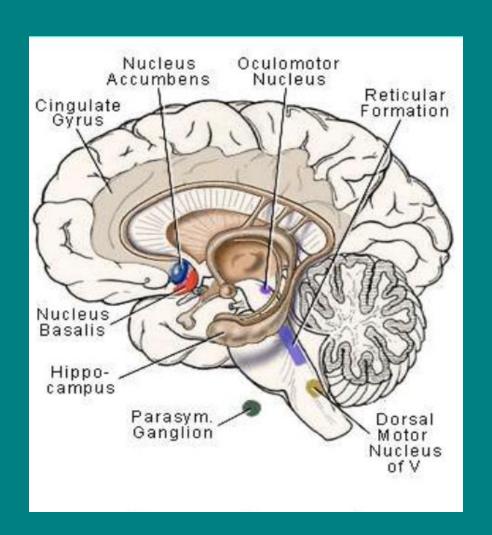
Neurotransmissores

- Alguns têm função excitatória e causam o disparo na transmissão
- Alguns agem como inibidores e portanto evitam o disparo
- Os neurônios recebem ambos os estímulos, e o resultado é o balanço entre eles

Neurotransmissores

- Envolvidos nos mais diferentes processos, desde a contração muscular até as respostas emocionais
- Excesso ou redução de NT= associados a transtornos psiquiátricos
 - Depressão
 - Esquizofrenia

Categorias de neurotransmissores


- Aminoácidos
 - Glutamato (Glu)
 - GABA
- Aminas biogênicas
 - Aminas quartenárias
 - Acetilcolina (Ach)
 - Monoaminas
 - Catecolaminas
 - Dopamina (DA)
 - Norepinephrina (NE)
 - Indolaminas
 - Serotonina (5-HT)
- Neuropeptídeos
 - Peptideos Opióides
 - Encefalinas
 - Endorfinas
 - Dinorfinas
- Outros (como lipídeos, nucleosídeos)

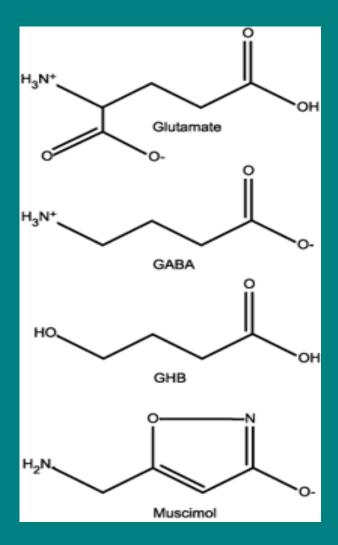
Acetilcolina

- Primeiro NT identificado
- Excitatório- disparo nas sinapses entre nervos e entre músculos envolvidos no movimento voluntário
- Controle da contração muscular
- Principal NT do SN parassimpático (por exemplo, batimento cardíaco, digestão, secreção de saliva)
- Envolvido também no controle do sono (REM)

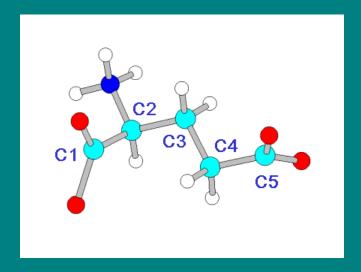
Acetilcolina

- Vias colinérgicas-Prevalentes no hipocampo
 - Envolvida na formação da memória- níveis reduzidoscomprometimento da memória
- Doença de Alzheimerdano severo à sintese e ação de Ach (perda de cerca de 90% com a doença)

Acetilcolina


Remoção Síntese Acetil CoA CoA Ach Colina Colina **ACh** acetiltransferase(ChAT)

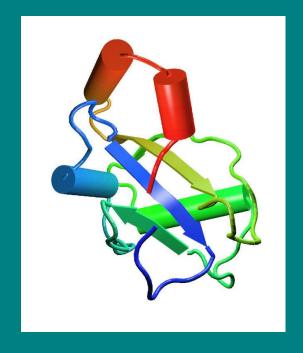
- 2 tipos de receptores
 - Nicotínico (ionotropico)
 - Muscarinico (metabotropico)


GABA e Glutamato

 Estruturalmente muito similares

Glutamato

- Principal neurotransmissor excitatório
- Síntese- subproduto do metabolism celular
- Removido por recaptação
- Neurotóxico em altas concentrações
- 4 tipos de receptores
 - NMDAAMPAKainato
 - mGluR Metabotropico



GABA (Ácido Gama Aminobutirico)

- Principal NT inibitório
- Biosíntese: glicose (transaminação)-glutamina-GABA

Glu Acido glutâmico descarboxilase (GAD) and B6

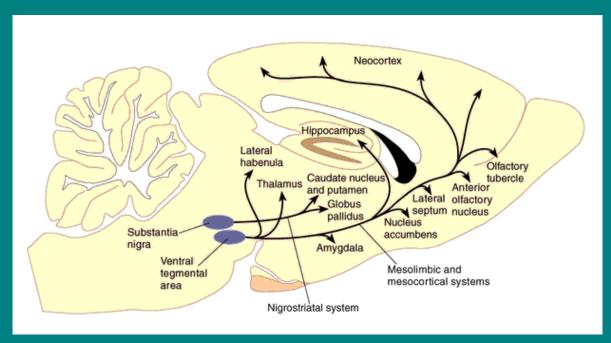
- 2 tipos de receptores
 - GABA_A GABA_C (ionotropicos)
 - GABA_B (metabotropico)

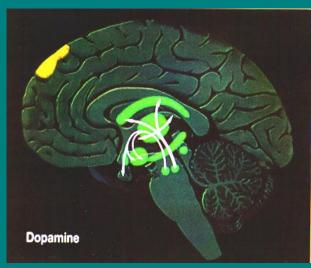
GABA

 Níveis Muito baixo- associado com transtornos de ansiedade

Vallium- elevam o efeito do GABA.

Dopamina


- Efeitos de motivação/recompensa
- Biosíntese

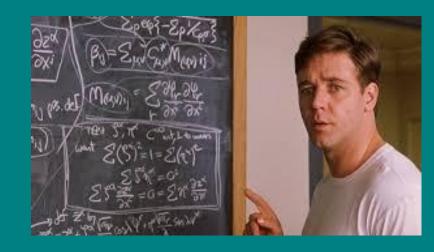


- Excitatório e inibidor
- Dopamina- recaptação por transportador (DAT)
- 5 tipos de receptores (D1–D5, todos metabotrópicos)

Vias da dopamina

- Substância negra- movimento motor
- Mesolímbica- reforço e vícios
- Mesocortical (cortex pré-frontal) memória de trabalho
- Trato Tuberoinfundibular (hipotálamo → hipófise (regulação neuroendócrina)

Níveis de dopamina

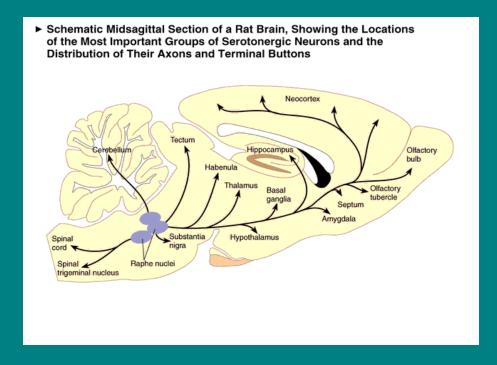

Baixos- Doença de Parkinson Perda de controle do movimento muscular

Elevados - Esquizofrenia

Quantidade aumentada de receptores no sistema límbico

Utilização acima do normal da dopamina disponível no cérebro

Alucinações e transtornos do pensamento e das emoções


Serotonina

- Efeitos comportamentais excitatórios e inibitórios
- Biosíntese

- Pelo menos 14 receptores, todos metabotrópicos e póssinapticos, exceto:
 - 5-HT_{1A,B,D} (autoreceptores) no SNC
 - 5-HT₃ (inibidor, ionotrópico) intestino

Principais vias da 5-HT

- Núcleo Dorsal de Raphe → cortex, zona estriada
- Núcleo Medial Raphe -> cortex, hipocampo

Serotonina

 A maior parte da serotonina corporal é encontrada no intestino.

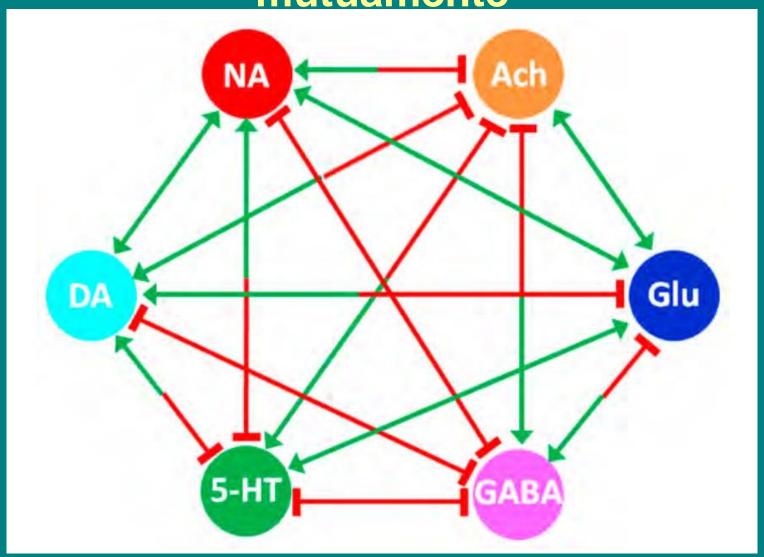
 Portanto, o CNS tem menos que 10% da serotonina do corpo- porém com funções extremamente importantes

Serotonina

 Quantidades adequadas estabilizam o homor e controlam o balanço entre impulsos excitatórios e inibitórios

Baixos níveis de Serotonina

- Aumento do apetite por carboidratos
- Transtornos do sono
- Depressão e outros problemas emocionais
- Enxaquecas
- Síndrome do colon irritável
- Fibromialgia
- Disfunção imunológica

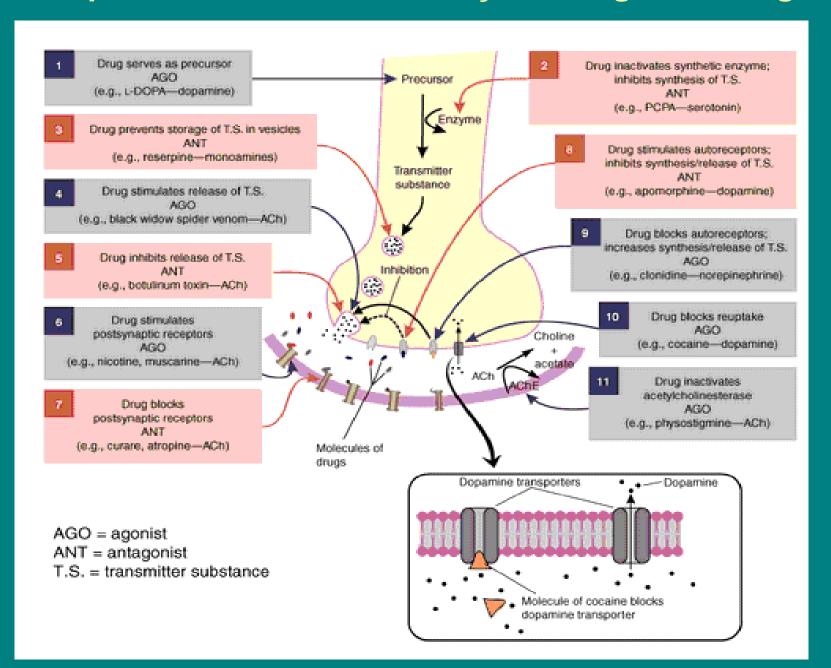

NT peptídeos opioides- beta-Endorfinas

- NT Inibidores
- Controle da dor, disposição, bem estar, sistema imune, sono, etc.
- Produzido
 naturalmente no
 cérebro
- Similar a drogas como morfina e heroína

 Receptores distribuidos por todo o cérebro, especialmente nas áreas límbicas

Importante- Os NT se influenciam mutuamente

Substâncias (por exemplo, drogas) que afetam os neurotransmissores


Antagonistas

 Substâncias químicas que bloqueiam ou reduzem a ação de outro NT (ação oposta ao NT)

Agonistas

 Mimetizam ou aumentam os efeitos dos NT nos receptores da célula receptora, aumentando ou diminuindo a atividade celular, dependendo do efeito original do NT em questão (inibidor ou excitatório)

Exemplos de mecanismos de ação de algumas drogas

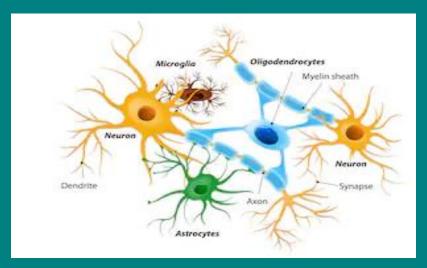
Aminas cerebrais e algumas doenças- base para o desenvolvimento de fármacos

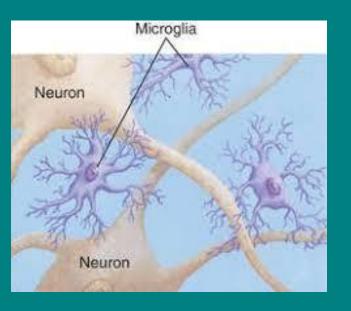
- Teoria da depressão e aminas biogênicas- inibidores da recaptação de serotonina
- Teoria dopaminérgica da esquizofrenia- controladores dos níveis de dopamina
- Envolvimento dopaminérgico da Doença de Parkinsonreposição de dopamina (L-DOPA)
- Acetilcolina e doença de Alzheimer- inibidores da colinesterase

Estilo de vida e NT

- Exercício- exemplos de ação
 - Atenua a depleção de dopamina
 - Aumenta níveis de serotonina
 - Estímulo à produção de beta-endorfinas
- Ambiente enriquecido
 - Supraregulação de genes associados à ação dos NT
- Dieta- diferentes modulações-exemplos
 - Dieta elevada e gordura e baixa em CHO- depleção de serotonina e redução da sinalização de dopamina
 - Dieta baixa em proteína e alta em carboidrato por longo temporedução da densidade de receptores dopaminérgicos

O que pode modificar os níveis de NT?




Hipótese de neuroinflamação e relação com a inflamação sistêmica e de baixo grau

Microglia- definição e funções

Sinaptogênese

Nêurogênese

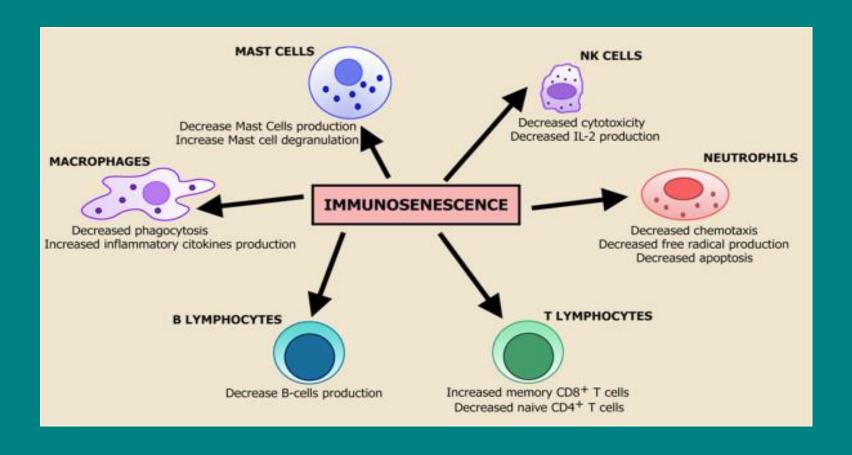
Remoção de resíduos

Microglia e inflamação

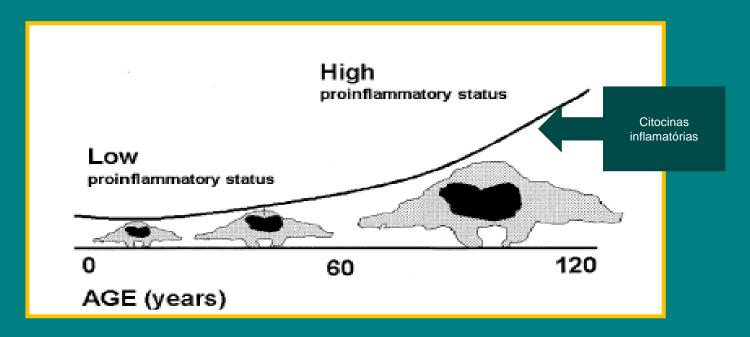
- Estado inflamatório leve e constante= alerta
- Desequilíbrios- aumento do estado inflamatório
- Redução ou desbalanço das funções da microglia
- Relação com a inflamação sistêmica de baixo grau
 - O que causa a inflamação sistêmica?

Inflamação sistêmica: relação com a neuroinflamação

1. SISTEMA IMUNE Imunosenescência/ Inflammaging

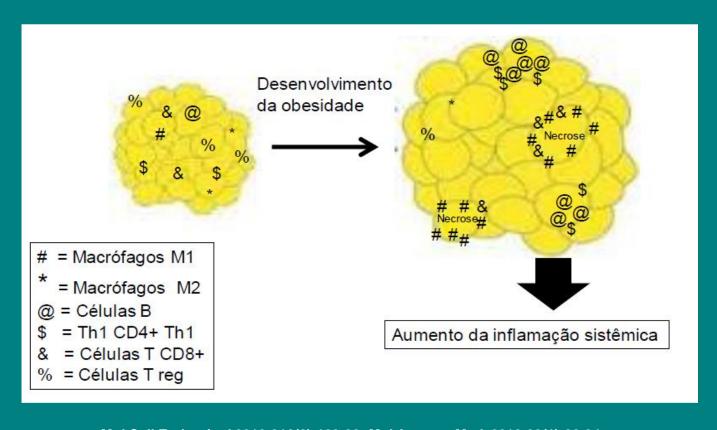

2. TECIDO
ADIPOSO
Agregação de
células
imunológicas no
tecido adiposo

3. INTESTINO


Alterações na microbiota intestinal Reflexos na permeabilidade intestinal Entrada na circulação de fragmentos bacterianos Inflamação

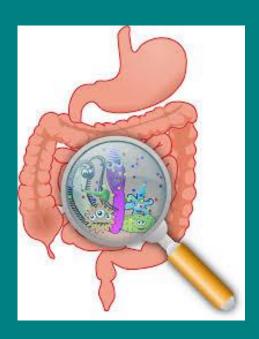
- 1. SISTEMA IMUNE
- 2. TECIDO ADIPOSO
- 3. INTESTINO

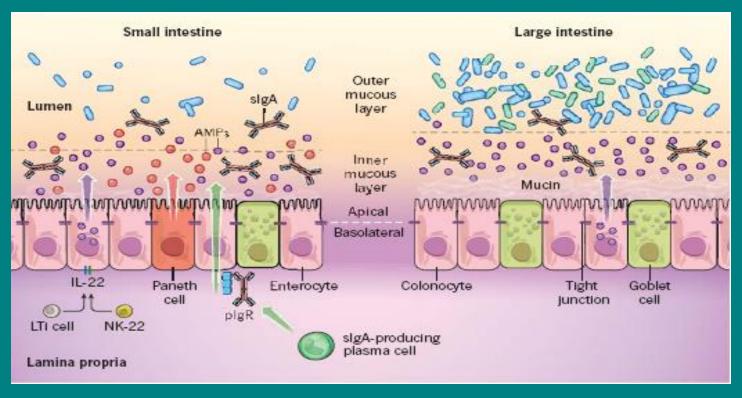
1. A complexidade da imunosenescência


Inflammaging: inflamação + aging

- √ Envelhecimento: aumento do status pró-inflamatório
- ✓ Estimulação crônica dos macrófagos
- √ "Macroph-aging", Inflamm-aging

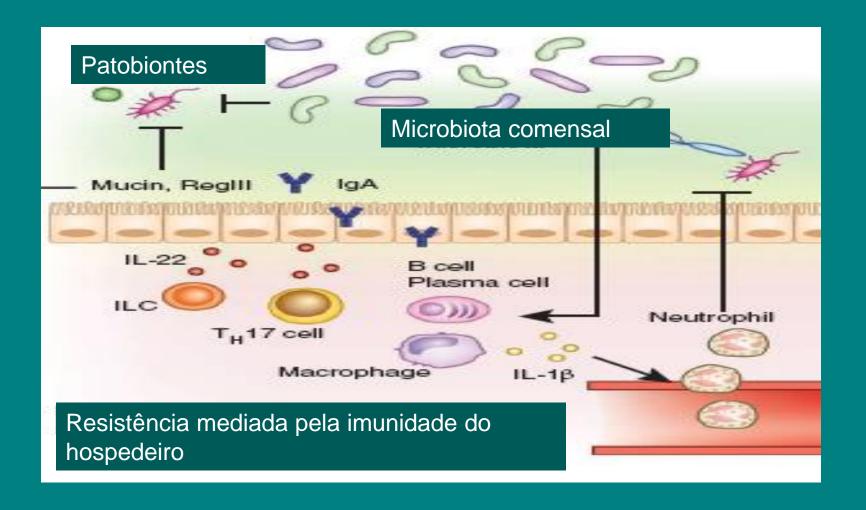
- 1. SISTEMA IMUNE
 - TECIDO ADIPOSO
- 3. INTESTINO


2. Potencial inflamatório do tecido adiposo


Mol Cell Endocrinol 2010;316(2):129-39; Mol Aspects Med. 2012;33(1):26-34.

- 1. SISTEMA IMUNE
- 2. TECIDO ADIPOSO
- 3 INTESTINC

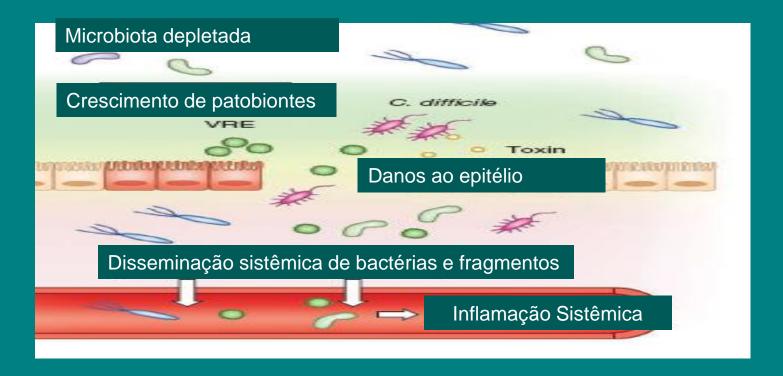
3. A contribuição do intestino na inflamação sistêmica

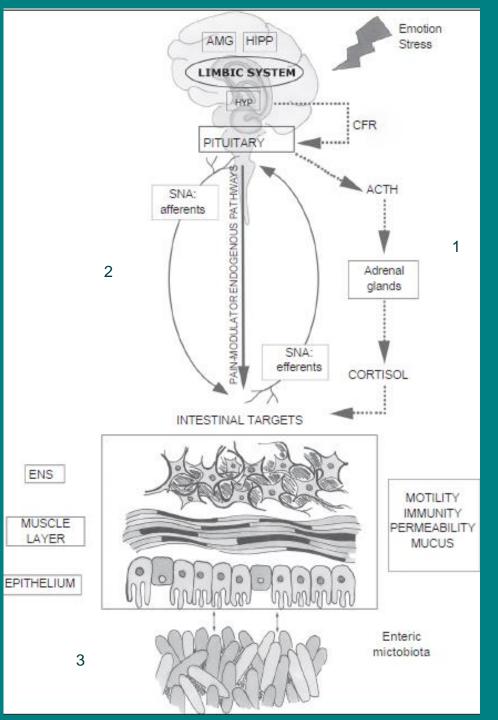


Intestino: sistema complexo que inclui: células (incluindo células do sistema imune), nutrientes e microbiota

Belkaid & Naike Nature Immunol 2013; 14(7): 646-653

Microbiota (e função de barreira) saudável


Alteração da microbiota e inflamação sistêmica

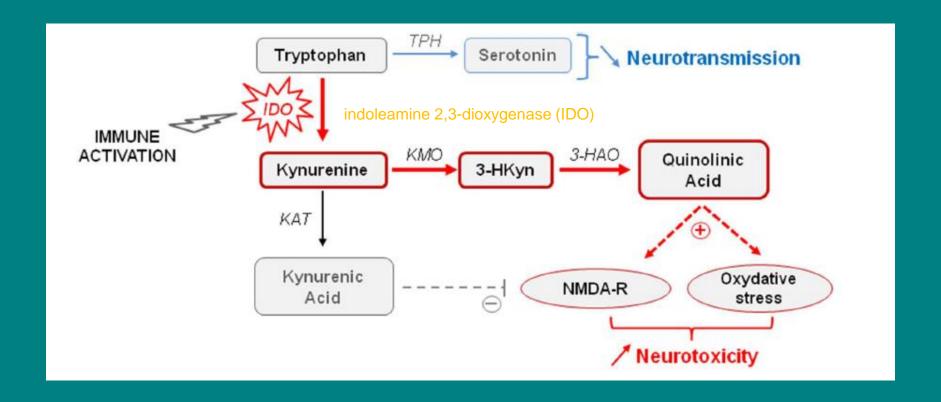

Dieta

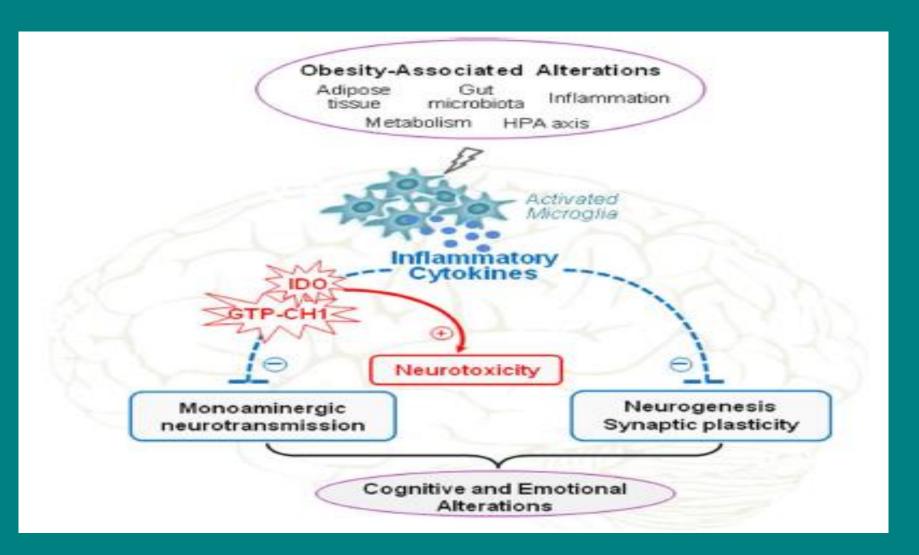
Sedentarismo

Envelhecimento

Outros (doenças, medicamentos, etc)

Eixo intestino cérebro


Fatores ambientais (emoção e outros estresses)- ativação do HPA


- -1)Ativação do HPA- estimula a liberação de fator de liberação de corticotrofina (CRF) pelo hipotálamo (HYP)
- -CRF- estimula a liberação de hormônio adrenocorticotrófico (ACTH) pela glândula pituitária
- -ACTH- estimula a liberação de cortisol pelas glândulas adrenais
- 2) Comunicação entre intestino (sistema nervoso entérico, camada muscular, e mucosa) e CNS por vias autonômicas aferentes e eferentes- Modulação da motilidade, imunidade, permeabilidade e secreção de muco
- 3) Papel bidirecional da microbiotapapel na neuroinflamação

Carabotti et al, 2015

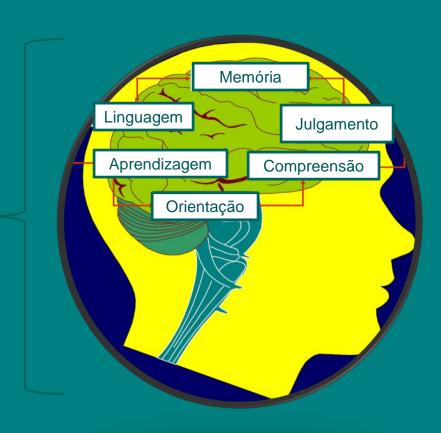
Neuroinflamação e síntese de neurotransmissores

O desbalanço na neuroinflamação altera a síntese de neurotransmissores

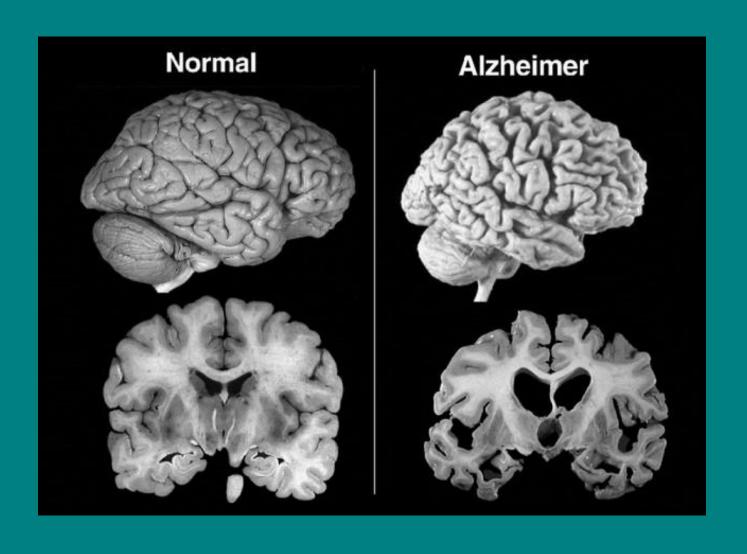
Castanon N, Luheshi G, Layé S. Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Frontiers in Neuroscience 2015; 9- Artigo 229

Alguns aspectos de doenças mentais e neurodegenerativasenfoque no cuidado nutricional

Doenças neurodegenerativas

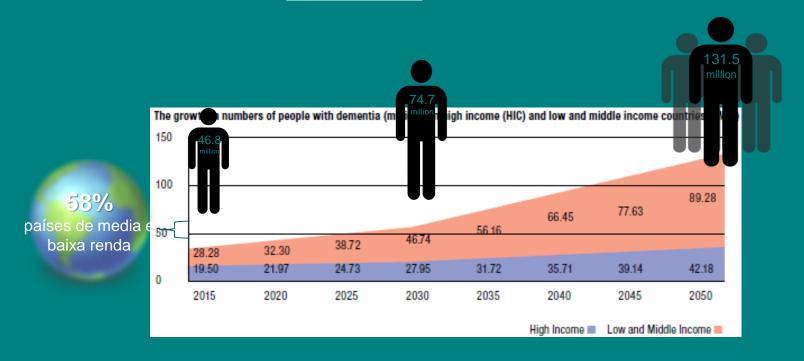

- Demências
- Doença de Alzheimer
- Demência Vascular
- Doença de Parkinson
- Esclerose Múltipla

DEMÊNCIAS


Sindromes crônicas e progressivas no cérebro

Deterioração intelectual e cognitiva

Doença de Alzheimer (DA) 50 a 75% dos casos

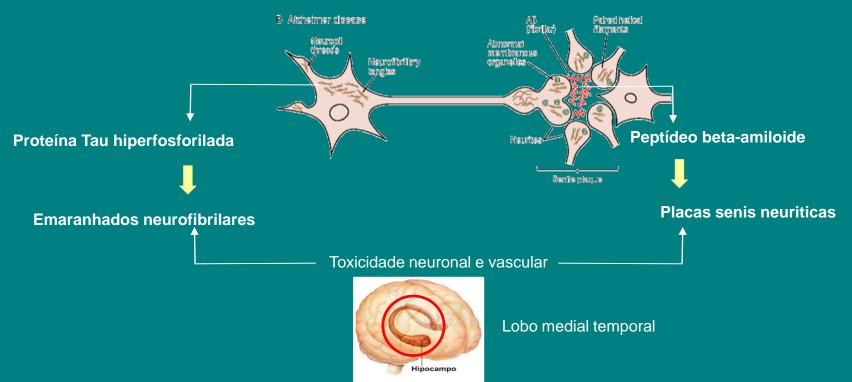


Doença de Alzheimer

Doença de Alzheimer- Dados epidemiológicos

- Delphi Consensus Study 2005 Prevalência 24,3 milhões, Incidência 4,6 milhões
- Global Burden of Disease 2010 Prevalência 35,6 milhões, Incidência 7,7 milhões
- ADI 2015 Prevalência 46,8 milhões, Incidência 9.9 milhões

Doença de Alzheimer- Dados epidemiológicos


Entre os nove países com maior prevalência

Quinto país com maior prevalência

Doença de Alzheimer- Aspectos Fisiopatológicos

Perda neuronal e sináptica progressiva

Doença de Alzheimer

Fatores de Risco

- Idade;
- Histórico familiar;
- Baixa escolaridade;
- Lesões cerebrais.

Peso corporal na meia idade e risco de DA

 Muito baixo peso= aumento do risco em cinco vezes (CI= 0,9-33,7; p<0,01); OR=7,9

Peso elevado= aumento do risco em 9
 vezes (Cl= 2,4-37,3, p<0,001); OR=12,6

Obesidade e DA

- Controvérsias na literatura
- Obesidade na meia idade (40-50 anos) mostra associação com demências
 - Dados mais evidentes na demência vascular
 - Obesidade na meia idade= parece estar mais associada à função executiva e testes de velocidade do processamento (=comprometimento vascular; DA= memória episódica)

Obesidade e DA

 Obesidade nas idades mais avançadas parece até ser protetor (críticas quanto aos instrumentos utilizados!)

 Nem todos os estudos controlam as mesmas variáveis (comorbidades, aspectos educacionais, etc)= controvérsia!

Variáveis associadas à obesidade

- Inflamação sistêmica
- Comorbidades, principalmente resistência à insulina
- Obesidade Central (prodrômico da DA)

 Estudo em cérebros humanos: autópsia comparando obesos sem DA (n=12) e não obesos sem DA (n=10) e DA controles (n=3) - maior indicação de beta amiloide no hipocampo, APP e TAU fosforilada nos obesos (Mrak, 2009).

Perda de peso e DA- hipóteses

Fatores Primários

- Transtornos cognitivos, comportamentais e motores
- Atrofia do lobo medial temporal
- Disfunções do olfato e paladar

Fatores Secundários

- Efeitos colaterais de medicamentos
- Fatores sociais
- Comorbidades

Esquecimentos de comer Recusa ao alimento Aumento do gasto energético Incapacidade de realizar tarefas complexas (compra e preparo do alimento) Perda do apetite

Perda de peso/Desnutrição e DA

- Perda de peso ocorre entre 20-45% dos pacientes com DA (Besser et al, 2014; Gillette-Guyionet et al, 2000; Guérin et al, 2005; White et al, 1996; Wolf-Klein et al, 1992)
- Risco de desnutrição- 14 a 80% (Droogsma et al, 2013; Gilioz et al, 2009; Guérin et al, 2005; Nourhashemi et al, 2005; Ousset et al, 2008; Saragat et al, 2012; Scheltens 2009; Spaccavento et al, 2009; Vellas et al, 2005)
- Desnutrição 0 a 9% (Droogsma et al, 2013; Guérin et al, 2005; Saragat et al, 2012; Scheltens 2009)
 - Maior proporção na era pré-inibidores da colinesterase (Gillette-Guyonett et al, 2006)

Existem 3 fases na Doença de Alzheimer com aproximadamente 2 a 3 anos cada

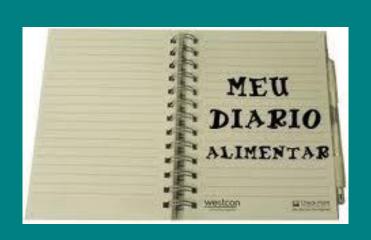
Fase primária.

Fase secundária.

Fase terciária.

1ª Fase da DA – Primária, inicial ou leve

- Distrações
- Esquecimentos frequentes
- Dificuldade em lembrar nomes/palavras
- Dificuldade em aprender novas informações
- Desorientação em espaços não familiares
- Redução nas atividades sociais dentro e fora de casa.



Fase leve- Alzheimer

- Sintomas relacionados a envelhecimento normal são mais evidentes (perda da sensibilidade gustativa, perda do limiar de sede)
 - Uso de ervas e especiarias
 - Participação do idoso na preparação do alimento, mesmo que timidamente
 - Estimular permanentemente o consumo de água e líquido
- A alimentação como exercício cognitivo: utilização do diário alimentar

O diário alimentar como treino cognitivo

 Exercícios de memória com a utilização do diário alimentar

Educação nutricional como espaço de treino cognitivo e social

 O ato social de comer e preservação/ estimulação da memória/estabelecimento de redes sociais

Santos GD, Ribeiro SML. Aspectos afetivos relacionados ao comportamento alime ntar dos idosos frequentadores de um centro de convivência. Rev. Bras. Geriatr. Gerontol 2011; 14: 319-328,

2ª Fase da DA – Intermediária ou secundária

- Perda das habilidades cognitivas
- Perda mais pronunciada da memória
- Deterioração das habilidades verbais
- Diminuição do conteúdo e da variação da fala
- Aumento de transtornos comportamentais
- Possível surgimento de fenômenos psicóticos.

Fase moderada

 O idoso esquece que já realizou as refeições

- Importância de se realizar várias refeições pequenas durante o dia
- Importância (difícil) de manter as refeições juntamente com a família
- Maior incidência de disfagias: atenção à consistência, uso de espessantes.
- Aromatização da água ajuda na ingestão (folhas de hortelã, cascas de frutas)
- Maior queixa quanto a texturas

3ª Fase da DA – Terciária ou Avançada

- Transtornos na fala- de monossilábica a total desaparecimento
- Sintomas psicóticos transitórios
- Perda do controle da bexiga e do intestino;
- Alterações importantes na marcha e movimentos involuntários.

Fase avançada

- Apatia, perda cognitiva absoluta
- Risco grade de broncoaspiração e asfixia
- Incapacidade de se alimentar sozinho
- Esquecimento da finalidade dos talheres
- Não sabe o que fazer com o alimento na boca
- Disfagias

Fase avançada

- Dieta pastosa
- Líquidos com espessantes ou engrossados
- Necessidade de suplementos hipercalóricos
- Possível necessidade de suporte nutricional por sonda enteral, gastrostomia ou ileostomia.

Tratamento Farmacológicoinibidores da acetil-colinesterase

- Donepezila
- Rivastigmina
- Galantamina

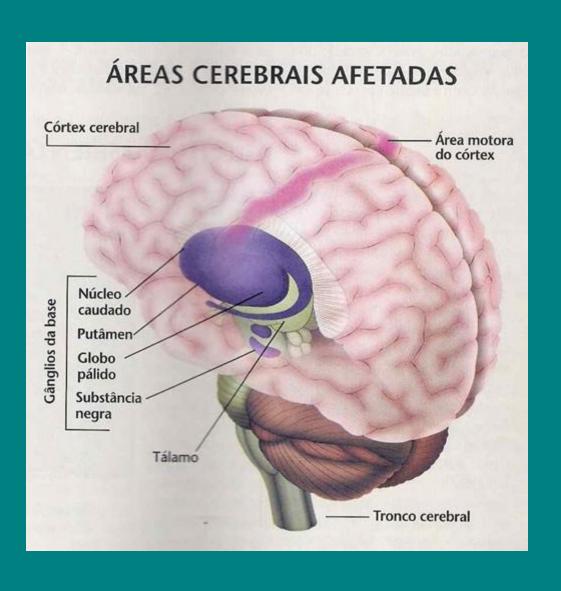
Demência vascular

Doença de Parkinson

Distúrbio neurológico degenerativo primário idiopático

Afeta o sistema motor do indivíduo

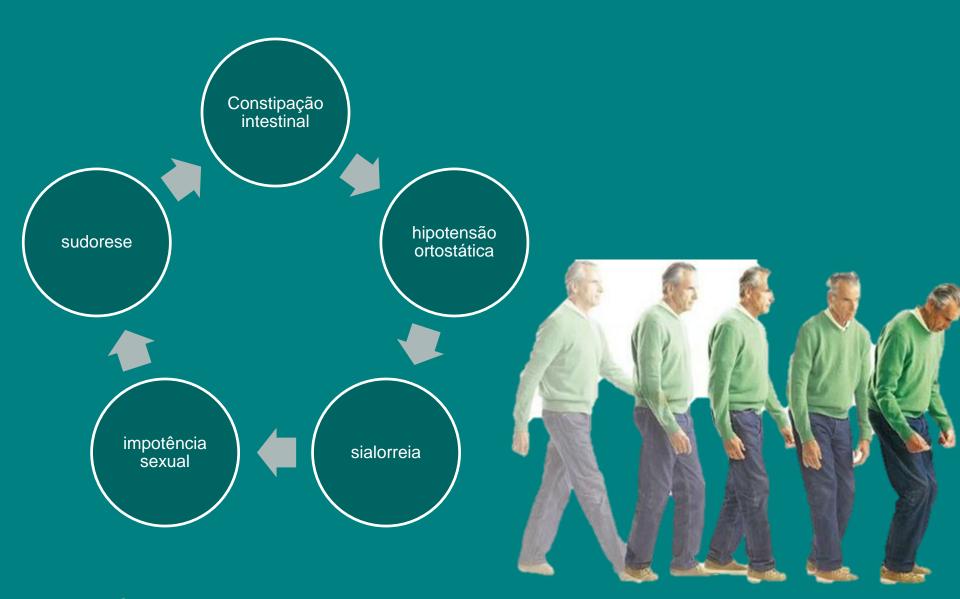
Ocorre a perda de neurônios (que produzem principalmente dopamina) da área compacta da substância negra


Deterioração da transmissão dos movimentos musculares

Doença de Parkinson

Doença de Parkinson

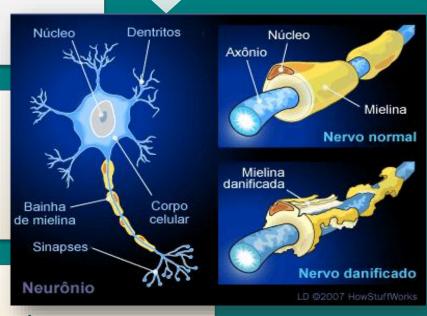
 Segunda doença neurodegenerativa mais comum em todo o mundo. Ocorrem alterações funcionais dos sistemas dopaminérgico, noradrenérgico, serotoninérgico e colinérgico.


Werneck, A.L.S, 2010.

Quadro clínico (geralmente mais evidentes com cerca de 80% de redução na dopamina)

Em muitos casos o paciente desenvolve disfagia, começa a salivar e está em risco de sufocação e aspiração.

Disautonomia



- Medicamentos antiparkinsonianos A levodopa é convertida em dopamina nos gânglios da base, produzindo alívio dos sintomas.
- ➤ Terapia anticolinérgica São efetivos no controle do tremor e rigidez, podem ser utilizados em combinação com a levodopa e se contrapõem à ação do neutrotransmissor acetilcolina.

Esclerose Múltipla

Doença inflamatória crônica, desmielinizante, autoimune que afeta o SNC

> Degradação da bainha de mielina Responsável pela proteção das células nervosas do cérebro e da medula espinhal

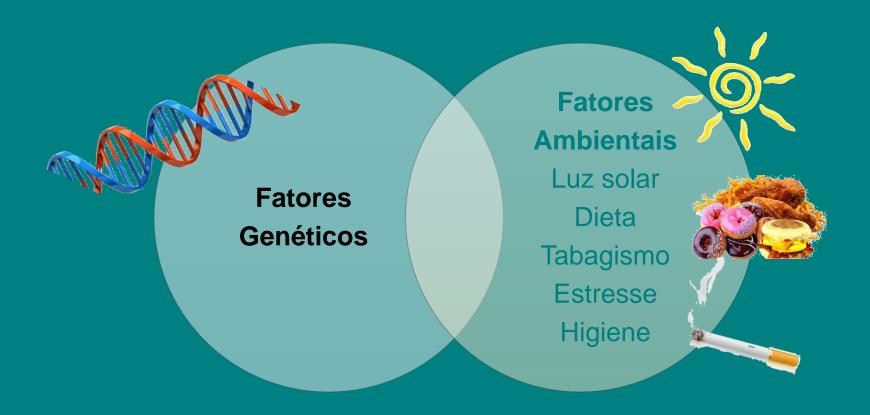
Causa mais importante de doença do SNC em adultos jovens

Esclerose Múltipla

Sistema Imune

Linfócitos Thelp pró inflamatórios (TH1 e TH17) Antígenos proteicos e lipídicos da bainha de mielina

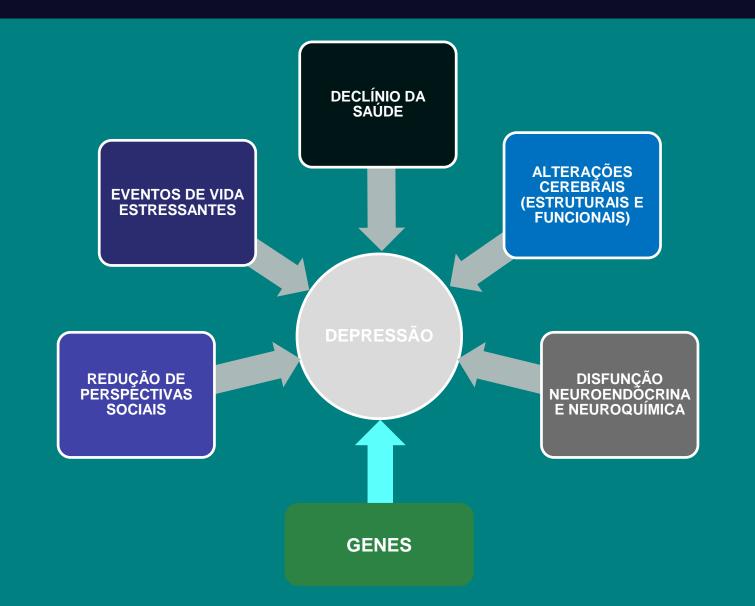
Formação de tecido fibroso



Comprometimento da transmissão dos impulsos nervosos pelo neurônios

Sintomas conforme local da lesão

EBERS, 2008; HOHLFELD, 2010.


Etiologia da doença

KIM et al., 2009; RAMAGOPALAN et al., 2010; ABNEURO, 2012; CARVALHO et al., 2014.

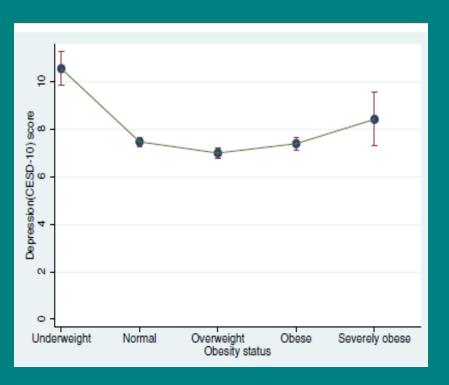
Morbidade depressiva- alguns aspectos

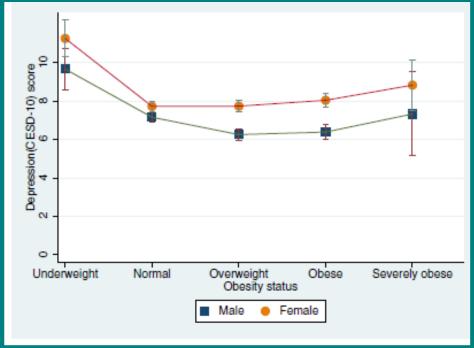
DEPRESSÃO -PROCESSO MULTI-FATORIAL

As 10 maiores causas de sobrecarga de doença no mundo: 2004 -2030

2004	As % of total	Rank	Rank	As % of total	2030 Disease or injury		
Disease or injury	DALYs	naiir		DALYs			
Lower respiratory infections	6.2	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6.2	Unipolar depressive disorders		
Diarrhoeal diseases	4.8	2	2	5.5	Ischaemic heart disease		
Unipolar depressive disorders	4.3	3	7 3	4.9	Road traffic accidents		
lschaemic heart disease	4.1	4	4	4.3	Cerebrovascular disease		
HIV/AIDS	3.8	5	5	3.8	COPD		
Cerebrovascular disease	3.1	6	A 6	3.2	Lower respiratory infections		
Prematurity and low birth weight	2.9	7	1 7	7 2.9	Hearing loss, adult onset		
Birth asphyxia and birth trauma	2.7	8	× × × 8	3 2.7	Refractive errors		
Road traffic accidents	2.7	9		2.5	HIV/AIDS		
Neonatal infections and other ^a	2.7	10	10	2.3	Diabetes mellitus		
COPD	2.0	13	11	I 1.9	Neonatal infections and other		
Refractive errors	1.8	14	12	2 1.9	Prematurity and low birth weight		
Hearing loss, adult onset	1.8	15	15	1.9	Birth asphyxia and birth trauma		
Diabetes mellitus	1.3	19	18	3 1.6	Diarrhoeal diseases		

Etiologia baseada na neurobiologia


- Hipótese monaminérgica : mudanças na concentração de monoaminas (5-HT, noradrenalina e dopamina)
- As monoaminas estimulam a expressão genética de NEUROTROFINAS, como o FATOR NEUROTRÓPICO DERIVADO DO CÉREBRO (BDNF), necessárias para a função e a sobrevivência dos neurônios do SNC


Neuroinflamação e morbidade depressiva

- Tratamento "localizado" parece não ser totalmente eficiente
- Estudos atuais propondo tratamento sistêmico
- Foco na inflamação
- Perspectiva para o papel da nutrição

Estado nutricional Depressão e Peso corporal

Korean Longitudinal Study of Aging (KLoSA). 7672 adultos entre 50 e 102 anos IMC e CES-D (versão coreana)

Noh et al. Body mass index and depressive symptoms in middle aged and older adults. BMC Public Health 2015; 15:310

Relação entre peso (adiposidade) excessivo e sintomas depressivos/depressão: Caminhos mais prováveis

- Inflamação sistêmica
- Comorbidades, principalmente resistência à insulina

Relação entre peso (adiposidade) excessivo e sintomas depressivos/depressão: resultados controversos

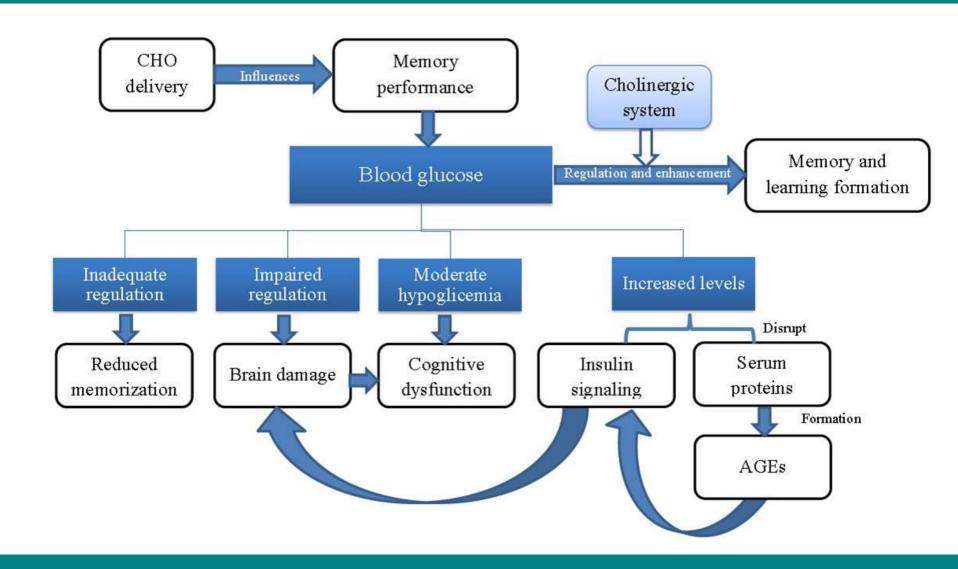
 Estudo na China- 1965 indivíduos- relação inversa entre sintomas depressivos e gordura abdominal (Wong et al, 2011)

 EUA (Pittsburgh)- 1372 indivíduos de baixas condições econômicas- associação positiva entre sintomas depressivos e IMC (Florez et al, 2015)

Perda de peso/Desnutrição e depressão

ANSAN Geriatric Study- Japão- 836 idososdepressão associada com baixa massa corporal e sarcopenia (Kim et al, 2011).

Brasil, Londrina- 267 idosos. Associação entre risco nutricional e sintomas depressivos (Cabrera et al, 2007)


Baixo peso Sarcopenia Fragilidade

Condições econômicas e sociais Anorexia da idade Ingestão insuficiente de alimentos

Nutrientes e cérebro- aspectos a serem considerados em todos os transtornos cerebrais

O metabolismo cerebral é fortemente dependente do correto fornecimento de macro e micronutrientes

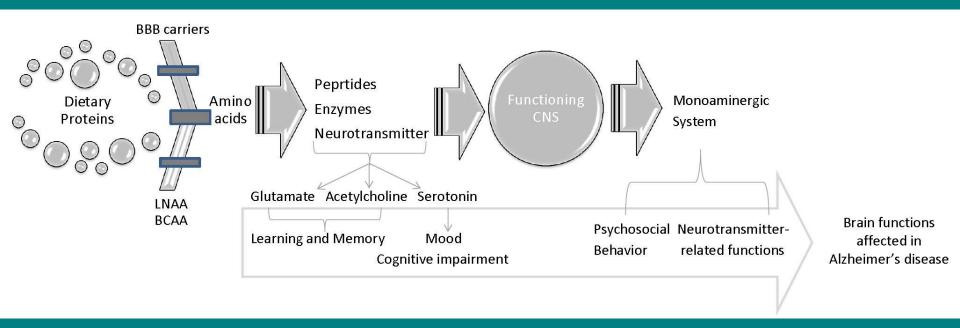
Carboidratos e Cérebro

Carboidratos e índice glicêmico x depressão

- Women's health initiative (n= 87618 e 69954 no follow-up), mulheres pós menopausa
- Avaliação : QFA e Escala de depressão

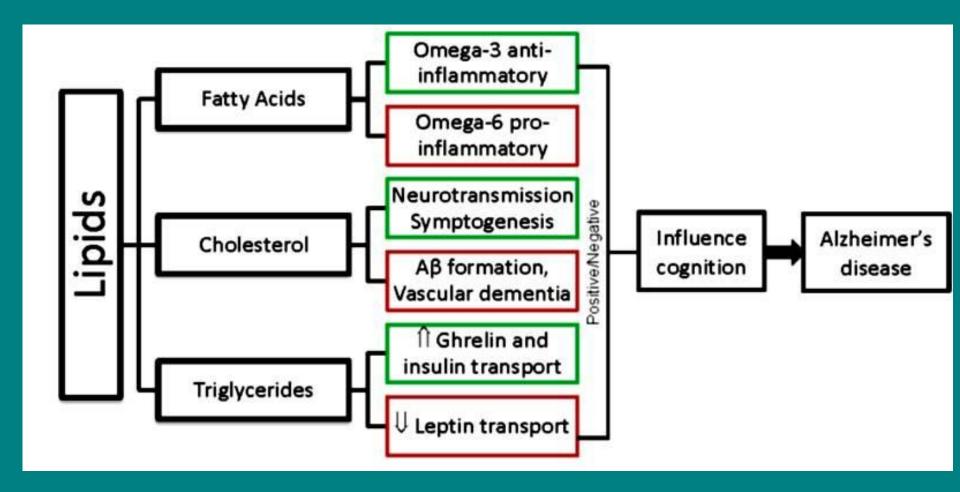
 Uma das questões investigadas: relação entre o índice glicêmico e carga glicêmica da dieta a presença de sintomas depressivos

Gangwisch JE, Hale L, Garcia L et al, High glycemic index diet as a risk factor for depression: analyses from the Women's Health Initiative. Am J Clin Nutr 2015; 102: 454-63


Baseline characteristics by dietary GI quintile and incidence of depression 3 y later¹

				Dietary GI quintile				Incident depression 3 y later		
Baseline characteristics	n	First (low)	Second	Third	Fourth	Fifth (high)	p^2	Yes	No	P^2
Total n	69,954	13,990	13,991	13,991	13,991	13,991		4643	65,311	
Depression, n	4643	807	849	876	988	1123	< 0.0001			
Median GI		47.0	49.8	51.7	53.5	56.3				

^{*}Ajuste por alguns tipos de alimentos fonte de diferentes tipos de carboidrato- o Quinto quintil foi mais significativo quando o consumo foi de açúcares de adição, e sacarose.


Gangwisch JE, Hale L, Garcia L et al, High glycemic index diet as a risk factor for depression: analyses from the Women's Health Initiative. Am J Clin Nutr 2015; 102: 454-63

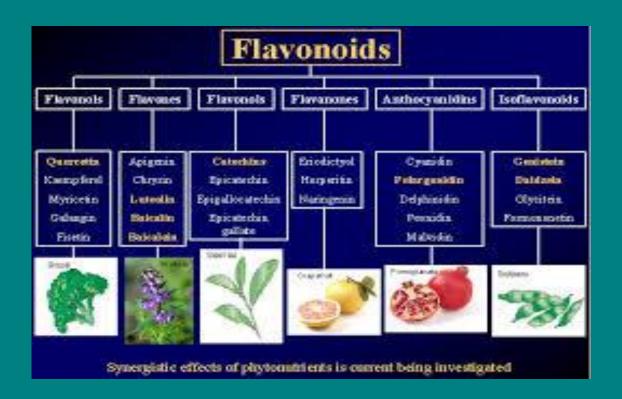
Proteínas, aminoácidos e Cérebro

Fonte: Munóz-Fernandez SS & Ribeiro SML. Nutrition and Alzheimer's Diseases. Clinicis in Geriatric Medicine 2018. In press.

Lipídeos e Cérebro

Nutrientes Antioxidantes

Espécies reativas oxidadas


Abundante no cérebro com DA

Demanda não suprida pelos sistemas antioxidantes

Danos a proteínas, lipídeos e DNA

Contribuição importante para a neurodegeneração

Flavonóides

Neuroproteção

Melhora da função neuronal

FLAVONOIDES Ação além de antioxidante

Indução da neurogênese

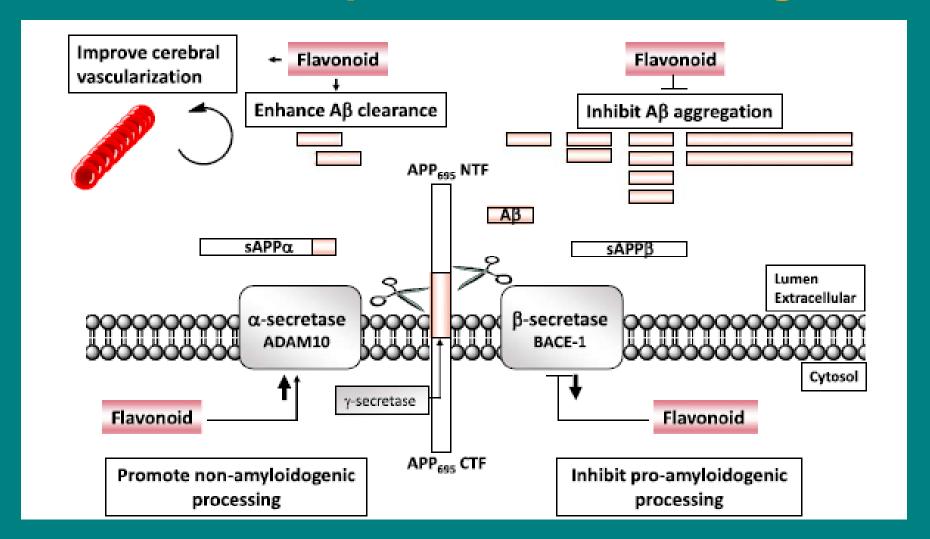
Estímulo à regeneração neuronal

Flavonoides- ações

Algumas vias são inibidas

- Neuroinflamação
 - Redução da produção de óxido nítrico e de citocinas inflamatórias
- Viabilidade neuronal
 - Inibição da apoptose
 - Sobrevivência dos neurônios

PREVENÇÃO DA NEURODEGENERAÇÃO

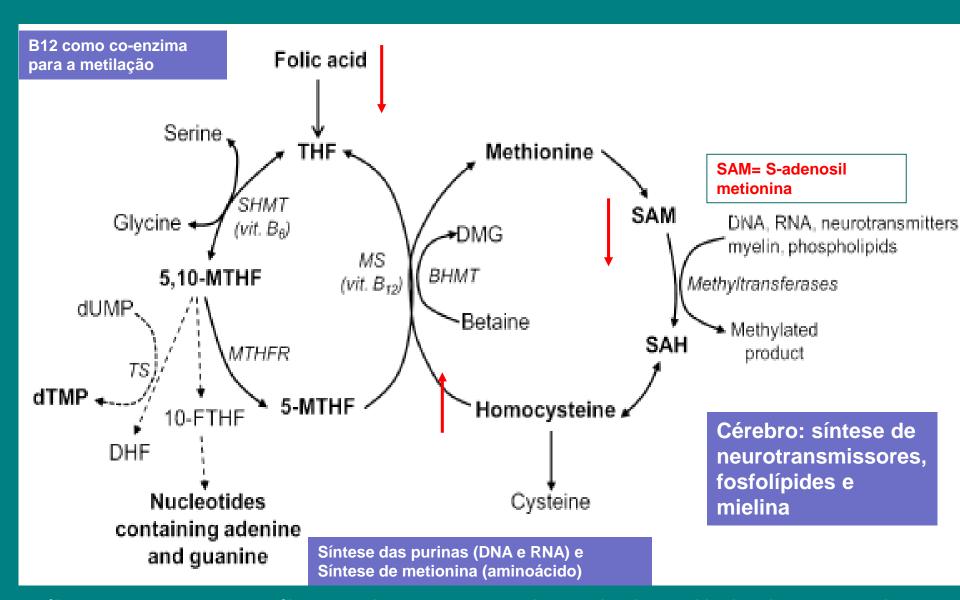


Algumas vias são ativadas

- Morfologia Neuronal
 - Comunicação entre neurônios
 - Plasticidade Sináptica
- Efeitos vasculares
 - Aumento do fluxo sanguíneo
 - Angiogênese
 - Crescimento de novas células nervosas

MELHORA DA MEMÓRIA E DA COGNIÇÃO

Flavonóides e processo amiloidogênico


B12: Fígado, Ostras, Carne de vaca, ovos, Leite e derivados, Peixes (100g de Truta tem 40%, 100g de Salmão tem 50%, 100g de atum tem 15%), cereais enriquecidos

Vitaminas: complexo B

Ácido Fólico (Folacina): carnes, levedura, vegetais folhosos de cor verde-escuro, legumes e grãos integrais

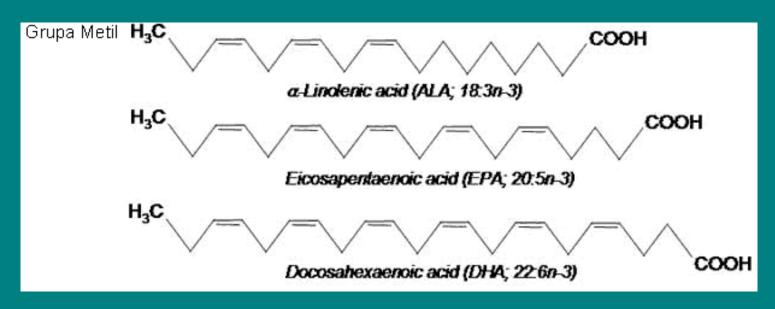
B6: fígado e carne vermelha, grãos integrais, batatas, vegetais verdes e milho

Vitaminas do complexo B e cérebro: B6, B12 e ácido fólico: participação do "metabolismo de um carbono"

Araújo JR, Martel F, Borges N, Araújo JM, Keating E. Folates and aging: role in mild cognitive impairment, dementia and depression. Ageing Research Reviews 2015; 22:9-19;

Vitaminas do complexo B e desordens cerebrais

Diminuição da S-adenosilmetionina (SAM)


- Neurotransmissores (ex.: catecolaminas)
- Fosfolípides (membranas celulares)
- Mielina
- Controle de níveis de Bamilóide
- Etapas de fosforilação da proteína TAU

Acúmulo de Homocisteína (Hys)

- Neurotoxidade da Hys
- Vasotoxidade
- Idosos e elevação da Hys: gastrite atrófica, antiácidos, alteração dos receptores para transporte de folato e B12 na barreira hematocefálica
- Níveis elevados de Hys em adultos: riscos de doenças arteriais e cerebrais.

Ácidos graxos do tipo ômega-3 (W-3)

Possíveis relações com sintomas depressivos 1. W-3 e neurotransmissão

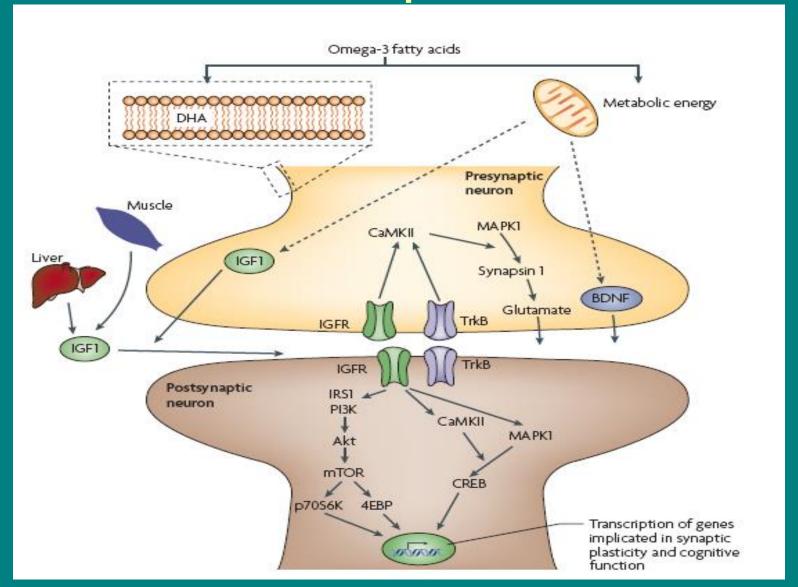
 Relação entre concentração de W-3 e densidade de receptores de serotonina 2 (5HT-2) e dopamina 2(D2).

 Correlação entre ácido 5-hidroxi-indoleacético (5-HIAA), marcador do turnover de serotonina, e W-3 no plasma

Fontes: Hibbeln JR. Lancet 1998; 351:1213; Delion et al. J Nutr 1994; 124:2466; Chalon et al Lipids 2001; 36: 937; Berg et al Mol Pharmacol 1996; 50:1017

Possíveis relações com sintomas depressivos 2. W-3 como anti-inflamatório e anti-oxidante

Microglia Ativada


- Regulação da expressão de espécies oxidadas
- CONTRIBUIÇÃO PARA A PATOGÊNESE NEUROPSIQUIÁTRICA

Aumento da expressão de enzimas antioxidantes

- W3 como desencadeador desse aumento
- MELHORA DO
 ESTRESSE OXIDATIVO;
 MECANISMO
 ANTIDEPRESSIVO

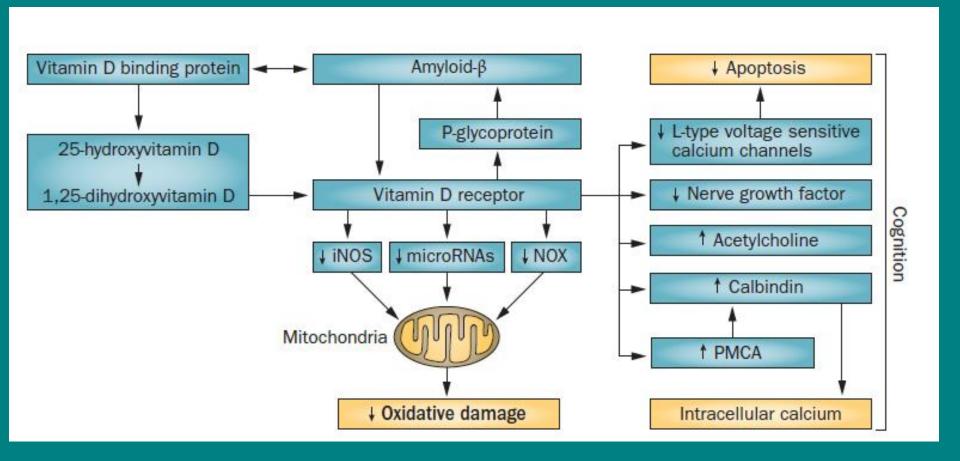
Fontes: Su KP. Biomedicine 2012; 2:68-74; Lu et al Neuropsychopharmacology 2010; 35: 2238-2248

Possíveis relações com sintomas depressivos 3. W-3 e neuroplasticidade

Esclerose Múltipla Fatores Nutricionais

AG ω -3

Metabolizados em compostos ativos: resolvinas, protectinas, maresinas


Resolução do processo inflamatório

Esclerose Múltipla Fatores Nutricionais

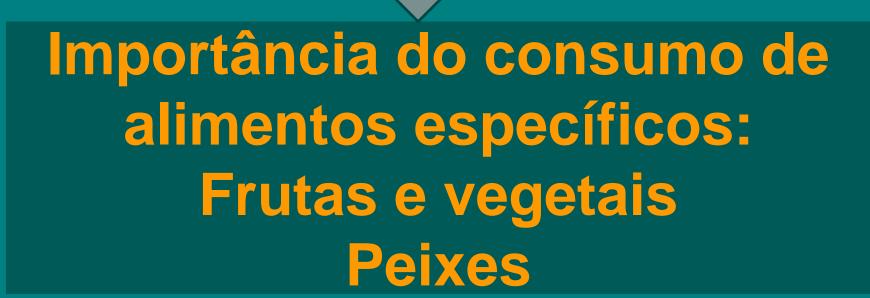
Eicosapentaenoico (EPA) Docosaexaenoico (DHA)

- Atenuaram a resposta inflamatória das células da microglia
- Diminuição da concentração de NO e TNF-α
- Melhorou a fagocitose na bainha de mielina e reduziu a desmielinização

Vitamina D

Estudos populacionais: tendência de uma curva U

Substâncias moduladoras da microbiota (e permeabilidade) intestinal



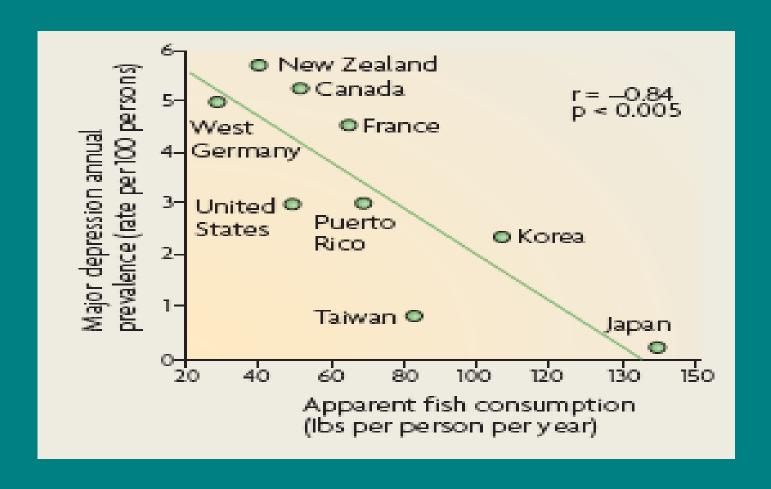
Esquema geral- nutrientes e Cérebro

Antioxidantes, flavonóides, vitaminas do complexo B

Revisão sistemática e meta análise

21 estudos incluídos

Frutas, vegetais, peixes e grãos



Associados à redução do risco de depressão

Lay JS, Hiles S, Bisquera A, Hure AJ, McEvoy M, Attia J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am J Clin Nutr 2014; 99: 181-197

Consumo contemporâneo de peixes e prevalência anual de depressão maior

Gomez-Pinilla F. Brain-foods: the effects of nutrients on brain function. *Nature Rev Neurosc.* 2008; 9:568-578

Peixes, frutas, verduras, etc

Importância da investigação de padrões alimentares-Mediterrâneo

Inúmeros estudos associando padrão mediterrâneo e transtornos mentais

- DM e Alzheimer
- DM e diferentes tipos de demência, principalmente a vascular
- DM e transtornos depressivos
- DM e transtornos psicóticos

Obrigada! smlribeiro@usp.br