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CHAPTER 2

Multiple Logistic Regression

2.1 INTRODUCTION

In the previous chapter we introduced the logistic regression model in
the univariate context. As in the case of linear regression, the strength
of a modeling technique lies in its ability to model many variables, some
of which may be on different measurement scales. In this chapter we
will generalize the logistic model to the case of more than one inde-
pendent variable. This will be referred to as the “multivariable case.”
Central to the consideration of multiple logistic models will be estima-
tion of the coefficients in the model and testing for their significance.
This will follow along the same lines as the univariate model. An addi-
tional modeling consideration which will be introduced in this chapter is
the use of design variables for modeling discrete, nominal scale inde-
pendent variables. In all cases it will be assumed that there is a prede-
termined collection of variables to be examined. The question of vari-
able selection is dealt with in Chapter 4.

2.2 THE MULTIPLE LOGISTIC REGRESSION MODEL

Consider a collection of p independent variables denoted by the vector
x’=(x1,x2,...,xp). For the moment we will assume that each of these

variables is at least interval scale. Let the conditional probability that the
outcome is present be denoted by P(Y =1/x)=n(x). The logit of the
multiple logistic regression model is given by the equation

g(x)= By +Bix; +Boxy +...+ B,x,, (2.1)

in which case the logistic regression modei is
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Pty

w(x)= 1+e8®

(2.2)

If some of the independent variables are discrete, nominal scale
variables such as race, sex, treatment group, and so forth, it is inappro-
priate to include them in the model as if they were interval scale vari-
ables. The numbers used to represent the various levels of these nomi-
nal scale variables are merely identifiers, and have no numeric signifi-
cance. In this situation the method of choice is to use a collection of
design variables (or dummy variables). Suppose, for example, that one
of the independent variables is race, which has been coded as “white,”
“black” and “other.” In this case, two design variables are necessary.
One possible coding strategy is that when the respondent is “white,” the
two design variables, D; and D,, would both be set equal to zero; when
the respondent is “black,” D; would be set equal to 1 while D, would
still equal 0; when the race of the respondent is “other,” we would use
D,=0and D,=1. Table 2.1 illustrates this coding of the design vari-
ables.

Most logistic regression software will generate design variables, and
some programs have a choice of several different methods. The differ-
ent strategies for creation and interpretation of design variables are dis-
cussed in detail in Chapter 3.

In general, if a nominal scaled variable has k possible values, then
k~1 design variables will be needed. This is true since, unless stated
otherwise, all of our models have a constant term. To illustrate the no-
tation used for design variables in this text, suppose that the j® inde-
pendent variable x; has k; levels. The k;—1 design variables will be

denoted as D, and the coefficients for these design variables will be
denoted as ﬁﬂ,l =12,...,k;—1. Thus, the logit for a model with p vari-

Table 2.1 An Example of the Coding of the Design
Variables for Race, Coded at Three Levels

Design Variable
RACE D, D,
White 0 0
Black 1 0
Other 0 1
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ables and the j™ variable being discrete would be

k-1
g(x)=ﬂ0 +ﬂlx1 tet ZﬁﬂDjl + pxp‘
=1

When discussing the multiple logistic regression model we will, in gen-
eral, suppress the summation and double subscripting needed to indicate
when design variables are being used. The exception to this will be the
discussion of modeling strategies when we need to use the specific value
of the coefficients for any design variables in the model.

2.3 FITTING THE MULTIPLE LOGISTIC
REGRESSION MODEL

Assume that we have a sample of »n independent observations
(x,,y,-), i=1,2,..,n. As in the univariate case, fitting the model requires

that we obtain estimates of the vector B’=(ﬁ0, ﬁ,,...,ﬁp). The method

of estimation used in the multivariable case will be the same as in the
univariate situation — maximum likelihood. The likelihood function is
nearly identical to that given in equation (1.3) with the only change
being that 7(x) is now defined as in equation (2.2). There will be p+1

likelihood equations that are obtained by differentiating the log likeli-
hood function with respect to the p+1 coefficients. The likelihood

equations that result may be expressed as follows:

n

and

for j=12,....p.
As in the univariate model, the solution of the likelihood equations
requires special software that is available in most, if not all, statistical

packages. Let fi denote the solution to these equations. Thus, the fitted
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values for the multiple logistic regression model are 7(x;), the value of

the expression in equation (2.2) computed using [3, and Xx,.

In the previous chapter only a brief mention was made of the
method for estimating the standard errors of the estimated coefficients.
Now that the logistic regression model has been generalized both in
concept and notation to the multivariable case, we consider estimation of
standard errors in more detail.

The method of estimating the variances and covariances of the es-
timated coefficients follows from well-developed theory of maximum
likelihood estimation [see, for example, Rao (1973)]. This theory states
that the estimators are obtained from the matrix of second partial de-
rivatives of the log likelihood function. These partial derivatives have
the following general form

’L(B 2

aﬁ(f ) =2t @3
and

B0, ;""f“f’”"(l z.) 2.4)

for j, 1=0,1,2,..,p where =, denotes 7(x;). Let the (p+1)x(p+1)
matrix containing the negative of the terms given in equations (2.3) and
(2.4) be denoted as KB). This matrix is called the observed information

matrix. The variances and covariances of the estimated coefficients are
obtained from the inverse of this matrix which we denote as

Var(B)=1""(B). Except in very special cases it is not possible to write
down an explicit expression for the elements in this matrix. Hence, we
will use the notation Var(ﬁj) to denote the ;" diagonal element of this
matrix, which is the variance of ,[3]-, and Cov(ﬁj,ﬁ,) to denote an arbi-

trary off-diagonal element, which is the covariance of f)’j and ﬁ,. The
estimators of the variances and covariances, which will be denoted by
Var (ﬁ) are obtained by evaluating Var(B) at ﬁ We will use Var(ﬁj)

and Cé\v(ﬁj,ﬁ,), Jj,i=0,1, 2,..., p to denote the values in this matrix.
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For the most part, we will have occasion to use only the estimated stan-
dard errors of the estimated coefficients, which we will denote as

sE(p;)= [VQr(Bj )]”2 2.5)

for j = 0, 1, 2,..., p. We will use this notation in developing methods
for coefficient testing and confidence interval estimation.
A formulation of the information matrix which will be useful when

discussing model fitting and assessment of fit is i(f}) = X’VX where X is
an n by p+1 matrix containing the data for each subject, and V is an n
by n diagonal matrix with general element 7#;(1-#,). That is, the ma-
trix X is

1oxy x, Xip
X = 1 :le .xz:z :x2])
1 Xal  Xu2 xnp
and the matrix V is
7%1 (1""7%]) O e O
0 i (1-% 0
V= 2( 2)
0
0 0 #,(1-%,)

Before proceeding further we present an example that illustrates the
formulation of a multiple logistic regression model and the estimation
of its coefficients using a subset of the variables from the data for the
low birth weight study described in Section 1.6.2. The code sheet for
the full data set is given in Table 1.6. As discussed in Section 1.6.2, the
goal of this study was to identify risk factors associated with giving birth

to a low birth weight baby (weighing less than 2500 grams). Data were
collected on 189 women, n, =59 of whom had low birth weight babies

and n, =130 of whom had normal birth weight babies. Four variables
thought to be of importance were age, weight of the mother at her last
menstrual period, race, and number of physician visits during the first
trimester of the pregnancy. In this example, the variable race has been
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Table 2.2 Estimated Coefficients for a Multiple Logistic
Regression Model Using the Variables AGE, Weight at Last
Menstrual Period (LWT), RACE, and Number of First
Trimester Physician Visits (FTV) from the Low Birth

Weight Study

Variable Coeff. Std. Err. z P>zl
AGE -0.024 0.0337 -0.71 0.480
LWT -0.014 0.0065 -2.18 0.029
RACE_2 1.004 0.4979 2.02 0.044
RACE_3 0.433 0.3622 1.20 0.232
FTV —0.049 0.1672 -0.30 0.768
Constant 1.295 1.0714 1.21 0.227

Log likelihood = —111.286

recoded using the two design variables in Table 2.1. The results of fit-
ting the logistic regression model to these data are shown in Table 2.2.

In Table 2.2 the estimated coefficients for the two design variables
for race are indicated by RACE_2 and RACE_3. The estimated logit is
given by the following expression:

8(x)=1.295-0.024 x AGE - 0.014 x LWT +1.004 x RACE _2
+0.433x RACE _3-0.049x FTV.

The fitted values are obtained using the estimated logit, §(x).

2.4 TESTING FOR THE SIGNIFICANCE
OF THE MODEL

Once we have fit a particular multiple (multivariable) logistic regression
model, we begin the process of model assessment. As in the univariate
case presented in Chapter 1, the first step in this process is usually to
assess the significance of the variables in the model. The likelihood ra-
tio test for overall significance of the p coefficients for the independent
variables in the model is performed in exactly the same manner as in the
univariate case. The test is based on the statistic G given in equation
(1.12). The only difference is that the fitted values, #, under the model

are based on the vector containing p +1 parameters, B Under the null
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hypothesis that the p “slope” coefficients for the covariates in the
model are equal to zero, the distribution of G will be chi-square with p
degrees-of-freedom.

Consider the fitted model whose estimated coefficients are given in
Table 2.2. For that model, the value of the log likelihood, shown at the
bottom of the table, is L=-111.286. The log likelihood for the con-
stant only model may be obtained by evaluating the numerator of
equation (1.13) or by fitting the constant only model. Either method
yields the log likelihood L=-117.336. Thus the value of the likeli-
hood ratio test is, from equation (1.12), '

G =-2[(-117.336)—(-111.286))] = 12.099

and the p-value for the test is P[ x%(5)> 12.099] =0.034 which is signifi-

cant at the o =0.05 level. We reject the null hypothesis in this case and
conclude that at least one and perhaps all p coefficients are different
from zero, an interpretation analogous to that in multiple linear regres-
sion.

Before concluding that any or all of the coefficients are nonzero,
we may wish to look at the univariate Wald test statistics,

W, =BJ/S,E([§1')'

These are given in the fourth column in Table 2.2. Under the hypothe-
sis that an individual coefficient is zero, these statistics will follow the
standard normal distribution. The p-values are given in the fifth col-
umn of Table 2.2. If we use a level of significance of 0.05, then we
would conclude that the variables LWT and possibly RACE are signifi-
cant, while AGE and FTV are not significant.

If our goal is to obtain the best fitting model while minimizing the
number of parameters, the next logical step is to fit a reduced model
containing only those variables thought to be significant, and compare it
to the full model containing all the variables. The results of fitting the
reduced model are given in Table 2.3.

The difference between the two models is the exclusion of the vari-
ables AGE and FTV from the full model. The likelihood ratio test
comparing these two models is obtained using the definition of G given
in equation (1.12). It will have a distribution that is chi-square with 2
degrees-of-freedom under the hypothesis that the coefficients for the
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Table 2.3 Estimated Coefficients for a Multiple
Logistic Regression Model Using the Variables LWT
and RACE from the Low Birth Weight Study

Variable Coeff. Std. Err. z P>lz)
LWT -0.015 0.0064 -2.36 0.018
RACE_2 1.081 0.4881 2.22 0.027
RACE_3 0.481 0.3567 1.35 0.178
Constant 0.806 0.8452 0.95 0.340

Log likelihood = ~111.630

variables excluded are equal to zero. The value of the test statistic com-
paring the models in Tables 2.2 and 2.3 is

G =-2[(-111.630)-(~111.286)] = 0.688,

which, with 2 degrees-of-freedom, has a p-value of P[ )(2(2)>0.688] =

0.709. Since the p-value is large, exceeding 0.05, we conclude that the
reduced model is as good as the full model. Thus there is no advantage
to including AGE and FTV in the model. However, we must not base
our models entirely on tests of statistical significance. As we will see in
Chapter 5, there are numerous other considerations that will influence
our decision to include or exclude variables from a model.

Whenever a categorical independent variable is included (or ex-
cluded) from a model, all of its design variables should be included (or
excluded); to do otherwise implies that we have recoded the variable.
For example, if we only include design variable D, as defined in Table
2.1, then race is entered into the model as a dichotomous variable coded
as black or not black. If & is the number of levels of a categorical vari-
able, then the contribution to the degrees-of-freedom for the likelihood
ratio test for the exclusion of this variable will be k—1. For example, if
we exclude race from the model, and race is coded at three levels using
the design variables shown in Table 2.1, then there would be 2 degrees-
of-freedom for the test, one for each design variable.

Because of the multiple degrees-of-freedom we must be careful in
our use of the Wald (W) statistics to assess the significance of the coeffi-
cients. For example, if the W statistics for both coefficients exceed 2,
then we could conclude that the design variables are significant. Alter-
natively, if one coefficient has a W statistic of 3.0 and the other a value
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of 0.1, then we cannot be sure about the contribution of the variable to
the model. The estimated coefficients for the variable RACE in Table
2.3 provide a good example. The Wald statistic for the coefficient for
the first design variable is 2.22, and 1.35 for the second. The likelihood
ratio test comparing the model containing LWT and RACE to the one
containing only LWT yields

G =-2[-(114.345) - (-111.630)] = 5.43,

which, with 2 degrees-of-freedom, yields a p-value of 0.066. Strict ad-
herence to the o =0.05 level of significance would justify excluding
RACE from the model. However, RACE is known to be a “clinically
important” variable. In this case the decision to include or exclude
RACE should be made in conjunction with subject matter experts.

In the previous chapter we described, for the univariate model, two
other tests equivalent to the likelihood ratio test for assessing the signifi-
cance of the model, the Wald and Score tests. We will briefly discuss the
multivariable versions of these tests, as their use appears occasionally in
the literature. These tests are available in some software packages. SAS
computes both the likelihood ratio and score tests for a fitted model and
STATA has the capability to perform the Wald test easily. For the most
part we will use likelihood ratio tests in this text. As noted earlier, we
favor the likelihood ratio test as the quantities needed to carry it out
may be obtained from all computer packages.

The multivariable analog of the Wald test is obtained from the fol-

lowing vector—matrix calculation:

W= ﬁ'[vé‘r (ﬁ)rﬁ
=B (X'VX)B,

which will be distributed as chi-square with p+1 degrees-of-freedom
under the hypothesis that each of the p+1 coefficients is equal to zero.

Tests for just the p slope coefficients are obtained by eliminating fJ,
from B and the relevant row (first or last) and column (first or last)
from (X'VX). Since evaluation of this test requires the capability to

perform vector-matrix operations and to obtain f’), there is no gain over
the likelihood ratio test of the significance of the model. Extensions of
the Wald test which can be used to examine functions of the coefficients
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are quite useful and are illustrated in subsequent chapters. In addition, the
modeling approach of Grizzle, Starmer, and Koch (1969), noted earlier,
contains many such examples.

The multivariable analog of the Score test for the significance of the
model is based on the distribution of the p derivatives of L(B) with respect
to B. The computation of this test is of the same order of complication as
the Wald test. To define it in detail would require introduction of addi-
tional notation which would find little use in the remainder of this text.

Thus, we refer the interested reader to Cox and Hinkley (1974) or Dobson
(1990).

2.5 CONFIDENCE INTERVAL ESTIMATION

We discussed confidence interval estimators for the coefficients, logit and
logistic probabilities for the simple logistic regression model in Section
1.4. The methods used for confidence interval estimators for a multiple
variable model are essentially the same.

The endpoints for a 100(1-a)% confidence interval for the coeffi-
cients are obtained from (1.4.1) for slope coefficients and from (1.4.2) for
the constant term. For example, using the fitted model presented in Table
2.3, the 95 percent confidence interval for LWT is

-0.01511.96 X 0.0064 = (-0.028, —0.002).

The interpretation of this interval is that we are 95 percent confident that
the decrease in the log-odds per one pound increase in weight of the
mother is between —0.028 and —-0.002. As we noted in Section 1.4 many

software packages automatically provide confidence intervals for all model
coefficients in the output.

The confidence interval estimator for the logit is a bit more compli-
cated for the multiple variable model than the result presented in (1.19).
The basic idea is the same, only there are now more terms involved in the
summation. It follows from (2.1) that a general expression for the estima-
tor of the logit for a model containing p covariates is

8(x)= o+ Byx, + By, +'“+ﬁpxp' (2.6)

An alternative way to express the estimator of the logit in (2.6) is through
the use of vector notation as g(x)=x’B, where the vector
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f)’ = (ﬁo,ﬁ,, ﬁz,...,ﬁp) denotes the estimator of the p+1 coefficients and

the vector x' = (xo,x], xz,...,xp) represents the constant and a set of values

of the p-covariates in the model, where x, =1.

It follows from (1.18) that an expression for the estimator of the vari-
ance of the estimator of the logit in (2.6) is

Vgr[g’(x)] = zp:szVgr (ﬁj) + i 21’: 2xjka6\v(Bj,[§k). 2.7

j=0 j=0k=j+1

We can express this result much more concisely by using the matrix ex-
pression for the estimator of the variance of the estimator of the coeffi-
cients. From the expression for the observed information matrix, we have
that

var(B)=(x'vX)". (2.8)

It follows from (2.8) that an equivalent expression for the estimator in (2.7)
is

Var [(g(x))] =x'Var (ﬁ)x
=x'(X'VX)'x . (2.9)

Fortunately, all good logistic regression software packages provide the op-
tion for the user to create a new variable containing the estimated values of
(2.9) or the standard error for all subjects in the data set. This feature
eliminates the computational burden associated with the matrix calcula-
tions in (2.9) and allows the user to routinely calculate fitted values and
confidence interval estimates. However it is useful to illustrate the details
of the calculations.

Using the model in Table 2.3, the estimated logit for a 150 pound white
woman is

#(LWT =150, RACE = White) = 0.806 — 0.015x 150 +1.081 x 0 +0.481x 0
= —1.444

and the estimated logistic probability is
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—1.444

e
—=0.191.
[ 47144

7(LWT =150, RACE = White) = 7
st

The interpretation of the fitted value is that the estimated proportion of low
birthweight babies among 150 pound white women is 0.191.

In order to use (2.7) to estimate the variance of this estimated logit we
need to obtain the estimated covariance matrix shown in Table 2.4. Thus
the estimated variance of the logit is

Var|g(LWT =150, RACE = White)] = var([ao) +(150)° x Var{ B )+
(0)* x Vir(B,)+(0)’ xvar(ﬁ3)+2 X150 x cav([so, [3,)
+2xoxcav(fio,[sz]+2><0xcav(ﬁo,fg)+2x150x0xcav([3,,ﬁz)
+2x150><O><Cév(ﬁl,ﬁ3)+2><0x0><C6v([32,ﬁ3)
= 0.7143+(150)* x 0.000041 + 0 x 0.2382 + 0% 0.1272
+2 %150 (=0.0052) +2 x 0 x 0.0226 +2 x 0 X (—0.1035)

+2 %150 x 0 x (—0.000647) + 2 x 150 % 0 x 0.000036
+2x0x0x0.0532=0.0768

and the standard error is S/E[g(LWT= 150, RACE = White)]=0.2771. The
95 percent confidence interval for the estimated logit is

-1.444£1.96x0.2771=(-1.988, —0.901).

The associated confidence interval for the fitted value is (0.120, 0.289).

We defer further discussion and interpretation of the estimated logit, fitted
values and their respective confidence intervals until Chapter 3.

Table 2.4 Estimated Covariance Matrix of the
Estimated Coefficients in Table 2.3

LWT RACE_2 RACE_3 Constant
LWT 0.000041
RACE_2 —-0.000647 0.2382
RACE_3 0.000036 0.0532 0.1272
Constant -0.005211 0.0226 ~0.1035 0.7143
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2.6 OTHER METHODS OF ESTIMATION

In Section 1.5, two alternative methods of estimating the parameters of the
logistic regression model were discussed. These were the methods of non-
iteratively weighted least squares and discriminant function. Each may
also be employed in the multivariable case, though application of the non-
iteratively weighted least squares estimators is limited by the need for
nonzero estimates of 7(x) for most values of x in the data set. With a
large number of independent variables, or even a few continuous variables,
this condition is not likely to hold. The discriminant function estimators do
not have this limitation and may be easily extended to the multivariable
case.

The discriminant function approach to estimation of the logistic coef-
ficients is based on the assumption that the distribution of the independent
variables, given the value of the outcome variable, is multivariate normal.
Two points should be kept in mind: (1) the assumption of multivariate
normality will rarely if ever be satisfied because of the frequent occurrence
of dichotomous independent variables, and (2) the discriminant function
estimators of the coefficients for nonnormally distributed independent vari-
ables, especially dichotomous variables, will be biased away from zero
when the true coefficient is nonzero. For these reasons we, in general, do
not recommend its use. However, these estimators are of some historical
importance as a number of the classic papers in the applied literature, such
as Truett, Cornfield, and Kannel (1967), have used them. These estimators
are easily computed and, in the absence of a logistic regression program,
should be adequate for a preliminary examination of your data. Thus, it
seems worthwhile to include the relevant formulae for their computation.

The assumptions necessary to employ the discriminant function ap-
proach to estimating the logistic regression coefficients state that the con-
ditional distribution of X (the vector of p covariate random variables) given
the outcome variable, Y =y, is multivariate normal with a mean vector that
depends on y, but a covariance matrix that does not. Using notation de-

fined in Section 1.5 we say Xly=j~ N(uj,Zj) where g contains the

means of the p independent variables for the subpopulation defined by
y=j and X is the pX p covariance matrix of these variables. Under these

assumptions, P(Y =11x) = 7(x), where the coefficients are given by:

B, = ln(-z—')— 0.5(1, — M, )' RIS (2.10)
0

and
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B= (1 - 1) X, @2.11)

where 6, = P(Y =1) and 6, =1-6, denote the proportion of the population
with y equal to 1 or 0, respectively. Equations (2.10) and (2.11) are the

multivariable analogs of equations (1.22) and (1.23).
The discriminant function estimators of f, and P are found by sub-

stituting estimators for i, j = 0, 1, Y, and @, into equations (2.10) and

(2.11). The estimators most often used are the maximum likelihood esti-
mators under the multivariate normal model. That is, we let

A

Hi=X;

the mean of x in the subgroup of the sample with y= j, j=0,1.

The estimator of the covariance matrix, Z, is the multivariable exten-
sion of the pooled sample variance given in Section 1.5. This may be rep-
resented as

(”o - 1)S0 + (nl - I)S,

5= (n+n-2)

3

where S;, j=0,1 is the pX p matrix of the usual unbiased estimators of

the variances and covariances computed within the subgroup defined by
y=j,j=0,1.

Because of the bias in the discriminant function estimators when nor-
mality does not hold, they should be used only when logistic regression
software is not available, and then only in preliminary analyses. Any final
analyses should be based on the maximum likelihood estimators of the co-
efficients.

EXERCISES

1. Use the ICU data described in Section 1.6.1 and consider the multiple
logistic regression model of vital status, STA, on age (AGE), cancer
part of the present problem (CAN), CPR prior to ICU admission (CPR),
infection probable at ICU admission (INF), and race (RACE).
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(a) The variable RACE is coded at three levels. Prepare a table show-
ing the coding of the two design variables necessary for including
this variable in a logistic regression model.

(b) Write down the equation for the logistic regression model of STA
on AGE, CAN, CPR, INF, and RACE. Write down the equation
for the logit transformation of this logistic regression model. How
many parameters does this model contain?

(c) Write down an expression for the likelihood and log likelihood for
the logistic regression model in Exercise 1(b). How many likeli-
hood equations are there? Write down an expression for a typical
likelihood equation for this problem.

(d) Using a logistic regression package, obtain the maximum likeli-
hood estimates of the parameters of the logistic regression model
in Exercise 1(b). Using these estimates write down the equation
for the fitted values, that is, the estimated logistic probabilities.

(e) Using the results of the output from the logistic regression package
used in Exercise 1(d), assess the significance of the slope coeffi-
cients for the variables in the model using the likelihood ratio test.
What assumptions are needed for the p-values computed for this
test to be valid? What is the value of the deviance for the fitted
model?

(f) Use the Wald statistics to obtain an approximation to the signifi-
cance of the individual slope coefficients for the variables in the
model. Fit a reduced model that eliminates those variables with
nonsignificant Wald statistics. Assess the joint (conditional) sig-
nificance of the variables excluded from the model. Present the re-
sults of fitting the reduced model in a table.

(g) Using the results from Exercise 1(f), compute 95 percent confi-
dence intervals for all coefficients in the model. Write a sentence
interpreting the confidence intervals for the non-constant covari-
ates.

(h) Obtain the estimated covariance matrix for the final model fit in
Exercise 1(f). Choose a set of values for the covariates in that
model and estimate the logit and logistic probability for a subject
with these characteristics. Compute 95 percent confidence inter-
vals for the logit and estimated logistic probability. Write a sen-
tence or two interpreting the estimated probability and its confi-
dence interval.

2. Use the Prostate Cancer data described in Section 1.6.3 and consider the
multiple logistic regression model of capsule penetration (CAPSULE),
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on AGE, RACE, results of the digital rectal exam (DPROS and
DCAPS), prostate specific antigen (PSA), Gleason score (GLEASON)
and tumor volume (VOL).

(a) The variable DPROS is coded at four levels. Prepare a table
showing the coding of the three design variables necessary for in-
cluding this variable in a logistic regression model.

(b) The variable DCAPS is coded 1 and 2. Can this variable be used in
its original coding or must a design variable be created? Explore
this question by comparing the estimated coefficients obtained
from fitting a model containing DCAPS as originally coded with
those obtained from one using a 0-1 coded design variable,
DCAPSnew = DCAPS -1.

(c) Repeat parts 1(b) — 1(h) of Exercise 1.



