CHAPTER1

Scatterplots and Regression

Regression is the study of dependence. It is used to answer questions such as Does
changing class size affect success of students? Can we predict the time of the next
eruption of Old Faithful Geyser from the length of the most recent eruption? Do
changes in diet result in changes in cholesterol level, and if so, do the results depend
on other characteristics such as age, sex, and amount of exercise? Do countries with
higher per person income have lower birth rates than countries with lower income?
Regression analysis is a central part of many research projects. In most of this book,
we study the important instance of regression methodology called linear regression.
These methods are the most commonly used in regression, and virtually all other
regression methods build upon an understanding of how linear regression works.

As with most statistical analyses, the goal of regression is to summarize observed
data as simply, usefully, and elegantly as possible. In some problems, a theory may
be available that specifies how the response varies as the values of the predictors
change. In other problems, a theory may be lacking, and we need to use the data to
help us decide on how to proceed. In either case, an essential first step in regression
analysis is to draw appropriate graphs of the data.

In this chapter, we discuss the fundamental graphical tool for looking at regres-
sion data, a two-dimensional scatterplot. In regression problems with one predictor
and one response, the scatterplot of the response versus the predictor is the starting
point for regression analysis. In problems with many predictors, several simple
graphs will be required at the beginning of an analysis. A scatterplot matrix is a
convenient way to organize looking at many scatterplots at once. We will look at
several examples to introduce the main tools for looking at scatterplots and scat-
terplot matrices and extracting information from them. We will also introduce the
notation that will be used throughout the rest of the book.

1.1 SCATTERPLOTS

We begin with a regression problem with one predictor, which we will generi-
cally call X and one response variable, which we will call Y. Data consists of

Applied Linear Regression, Third Edition, by Sanford Weisberg
ISBN 0-471-66379-4 Copyright © 2005 John Wiley & Sons, Inc.



2 SCATTERPLOTS AND REGRESSION

values (x;, y;),i =1,...,n, of (X,Y) observed on each of n units or cases. In
any particular problem, both X and Y will have other names such as Temperature
or Concentration that are more descriptive of the data that is to be analyzed. The
goal of regression is to understand how the values of Y change as X is varied
over its range of possible values. A first look at how Y changes as X is varied is
available from a scatterplot.

Inheritance of Height

One of the first uses of regression was to study inheritance of traits from generation
to generation. During the period 1893-1898, E. S. Pearson organized the collection
of n = 1375 heights of mothers in the United Kingdom under the age of 65 and
one of their adult daughters over the age of 18. Pearson and Lee (1903) published
the data, and we shall use these data to examine inheritance. The data are given in
the data file heights. txt!.

Our interest is in inheritance from the mother to the daughter, so we view the
mother’s height, called Mheight, as the predictor variable and the daughter’s height,
Dheight, as the response variable. Do taller mothers tend to have taller daughters?
Do shorter mothers tend to have shorter daughters?

A scatterplot of Dheight versus Mheight helps us answer these questions. The
scatterplot is a graph of each of the n points with the response Dheight on the
vertical axis and predictor Mheight on the horizontal axis. This plot is shown in
Figure 1.1. For regression problems with one predictor X and a response Y, we
call the scatterplot of Y versus X a summary graph.

Here are some important characteristics of Figure 1.1:

1. The range of heights appears to be about the same for mothers and for daugh-
ters. Because of this, we draw the plot so that the lengths of the horizontal
and vertical axes are the same, and the scales are the same. If all mothers and
daughters had exactly the same height, then all the points would fall exactly
on a 45° line. Some computer programs for drawing a scatterplot are not
smart enough to figure out that the lengths of the axes should be the same,
so you might need to resize the plot or to draw it several times.

2. The original data that went into this scatterplot was rounded so each of the
heights was given to the nearest inch. If we were to plot the original data,
we would have substantial overplotting with many points at exactly the same
location. This is undesirable because we will not know if one point represents
one case or many cases, and this can be very misleading. The easiest solution
is to use jittering, in which a small uniform random number is added to each
value. In Figure 1.1, we used a uniform random number on the range from
—0.5 to +0.5, so the jittered values would round to the numbers given in the
original source.

3. One important function of the scatterplot is to decide if we might reasonably
assume that the response on the vertical axis is independent of the predictor

ISee Appendix A.1 for instructions for getting data files from the Internet.
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FIG. 1.1 Scatterplot of mothers’ and daughters’ heights in the Pearson and Lee data. The original data
have been jittered to avoid overplotting, but if rounded to the nearest inch would return the original
data provided by Pearson and Lee.

on the horizontal axis. This is clearly not the case here since as we move
across Figure 1.1 from left to right, the scatter of points is different for each
value of the predictor. What we mean by this is shown in Figure 1.2, in which
we show only points corresponding to mother—daughter pairs with Mheight
rounding to either 58, 64 or 68 inches. We see that within each of these three
strips or slices, even though the number of points is different within each
slice, (a) the mean of Dheight is increasing from left to right, and (b) the
vertical variability in Dheight seems to be more or less the same for each of
the fixed values of Mheight.

4. The scatter of points in the graph appears to be more or less elliptically
shaped, with the axis of the ellipse tilted upward. We will see in Section 4.3
that summary graphs that look like this one suggest use of the simple linear
regression model that will be discussed in Chapter 2.

5. Scatterplots are also important for finding separated points, which are either
points with values on the horizontal axis that are well separated from the
other points or points with values on the vertical axis that, given the value
on the horizontal axis, are either much too large or too small. In terms of
this example, this would mean looking for very tall or short mothers or,
alternatively, for daughters who are very tall or short, given the height of
their mother.
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FIG. 1.2 Scatterplot showing only pairs with mother’s height that rounds to 58, 64 or 68 inches.

These two types of separated points have different names and roles in a
regression problem. Extreme values on the left and right of the horizontal
axis are points that are likely to be important in fitting regression models
and are called leverage points. The separated points on the vertical axis, here
unusually tall or short daughters give their mother’s height, are potentially
outliers, cases that are somehow different from the others in the data.
While the data in Figure 1.1 do include a few tall and a few short mothers
and a few tall and short daughters, given the height of the mothers, none
appears worthy of special treatment, mostly because in a sample size this
large we expect to see some fairly unusual mother—daughter pairs.

We will continue with this example later.

Forbes’ Data

In an 1857 article, a Scottish physicist named James D. Forbes discussed a series of
experiments that he had done concerning the relationship between atmospheric pres-
sure and the boiling point of water. He knew that altitude could be determined from
atmospheric pressure, measured with a barometer, with lower pressures correspond-
ing to higher altitudes. In the middle of the nineteenth century, barometers were
fragile instruments, and Forbes wondered if a simpler measurement of the boiling
point of water could substitute for a direct reading of barometric pressure. Forbes
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FIG. 1.3 Forbes data. (a) Pressure versus Temp; (b) Residuals versus Temp.

collected data in the Alps and in Scotland. He measured at each location pressure
in inches of mercury with a barometer and boiling point in degrees Fahrenheit
using a thermometer. Boiling point measurements were adjusted for the difference
between the ambient air temperature when he took the measurements and a standard
temperature. The data for n = 17 locales are reproduced in the file forbes. txt.

The scatterplot of Pressure versus Temp is shown in Figure 1.3a. The gen-
eral appearance of this plot is very different from the summary graph for the
heights data. First, the sample size is only 17, as compared to over 1300 for the
heights data. Second, apart from one point, all the points fall almost exactly on a
smooth curve. This means that the variability in pressure for a given temperature
is extremely small.

The points in Figure 1.3a appear to fall very close to the straight line shown
on the plot, and so we might be encouraged to think that the mean of pressure
given temperature could be modelled by a straight line. Look closely at the graph,
and you will see that there is a small systematic error with the straight line: apart
from the one point that does not fit at all, the points in the middle of the graph
fall below the line, and those at the highest and lowest temperatures fall above the
line. This is much easier to see in Figure 1.3b, which is obtained by removing the
linear trend from Figure 1.3a, so the plotted points on the vertical axis are given
for each value of Temp by

Residual = Pressure — point on the line

This allows us to gain resolution in the plot since the range on the vertical axis in
Figure 1.3a is about 10 inches of mercury while the range in Figure 1.3b is about
0.8 inches of mercury. To get the same resolution in Figure 1.3a, we would need
a graph that is 10/0.8 = 12.5 as big as Figure 1.3b. Again ignoring the one point
that clearly does not match the others, the curvature in the plot is clearly visible in
Figure 1.3b.
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FIG. 1.4 (a) Scatterplot of Forbes’ data. The line shown is the oLs line for the regression of
log(Pressure) on Temp. (b) Residuals versus Temp.

While there is nothing at all wrong with curvature, the methods we will be
studying in this book work best when the plot can be summarized by a straight
line. Sometimes we can get a straight line by transforming one or both of the plotted
quantities. Forbes had a physical theory that suggested that log(Pressure) is linearly
related to Temp. Forbes (1857) contains what may be the first published summary
graph corresponding to his physical model. His figure is redrawn in Figure 1.4.
Following Forbes, we use base ten common logs in this example, although in
most of the examples in this book we will use base-two logarithms. The choice of
base has no material effect on the appearance of the graph or on fitted regression
models, but interpretation of parameters can depend on the choice of base, and
using base-two often leads to a simpler interpretation for parameters.

The key feature of Figure 1.4a is that apart from one point the data appear to
fall very close to the straight line shown on the figure, and the residual plot in
Figure 1.4b confirms that the deviations from the straight line are not systematic
the way they were in Figure 1.3b. All this is evidence that the straight line is a
reasonable summary of these data.

Length at Age for Smallmouth Bass

The smallmouth bass is a favorite game fish in inland lakes. Many smallmouth bass
populations are managed through stocking, fishing regulations, and other means,
with a goal to maintain a healthy population.

One tool in the study of fish populations is to understand the growth pattern of
fish such as the dependence of a measure of size like fish length on age of the fish.
Managers could compare these relationships between different populations with
dissimilar management plans to learn how management impacts fish growth.

Figure 1.5 displays the Length at capture in mm versus Age at capture for n =
439 small mouth bass measured in West Bearskin Lake in Northeastern Minnesota
in 1991. Only fish of age seven or less are included in this graph. The data were
provided by the Minnesota Department of Natural Resources and are given in the
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FIG. 1.5 Length (mm) versus Age for West Bearskin Lake smallmouth bass. The solid line shown
was estimated using ordinary least squares or oLs. The dashed line joins the average observed length
at each age.

file wblake.txt. Fish scales have annular rings like trees, and these can be
counted to determine the age of a fish. These data are cross-sectional, meaning
that all the observations were taken at the same time. In a longitudinal study, the
same fish would be measured each year, possibly requiring many years of taking
measurements. The data file gives the Length in mm, Age in years, and the Scale
radius, also in mm.

The appearance of this graph is different from the summary plots shown for last
two examples. The predictor Age can only take on integer values corresponding to
the number of annular rings on the scale, so we are really plotting seven distinct
populations of fish. As might be expected, length generally increases with age, but
the longest fish at age-one fish exceeds the length of the shortest age-four fish,
so knowing the age of a fish will not allow us to predict its length exactly; see
Problem 2.5.

Predicting the Weather

Can early season snowfall from September 1 until December 31 predict snowfall
in the remainder of the year, from January 1 to June 30? Figure 1.6, using data
from the data file ftcollinssnow. txt, gives a plot of Late season snowfall
from January 1 to June 30 versus Early season snowfall for the period September
1 to December 31 of the previous year, both measured in inches at Ft. Collins,
Colorado?. If Late is related to Early, the relationship is considerably weaker than

2The data are from the public domain source http://www.ulysses.atmos.colostate.edu.
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FIG. 1.6 Plot of snowfall for 93 years from 1900 to 1992 in inches. The solid horizontal line is drawn
at the average late season snowfall. The dashed line is the best fitting (ordinary least squares) line of
arbitrary slope.

in the previous examples, and the graph suggests that early winter snowfall and
late winter snowfall may be completely unrelated, or uncorrelated. Interest in this
regression problem will therefore be in testing the hypothesis that the two variables
are uncorrelated versus the alternative that they are not uncorrelated, essentially
comparing the fit of the two lines shown in Figure 1.6. Fitting models will be
helpful here.

Turkey Growth

This example is from an experiment on the growth of turkeys (Noll, Weibel, Cook,
and Witmer, 1984). Pens of turkeys were grown with an identical diet, except
that each pen was supplemented with a Dose of the amino acid methionine as a
percentage of the total diet of the birds. The methionine was provided using either
a standard source or one of two experimental sources. The response is average
weight gain in grams of all the turkeys in the pen.

Figure 1.7 provides a summary graph based on the data in the file
turkey. txt. Except at Dose = 0, each point in the graph is the average response
of five pens of turkeys; at Dose = 0, there were ten pens of turkeys. Because aver-
ages are plotted, the graph does not display the variation between pens treated alike.
At each value of Dose > 0, there are three points shown, with different symbols
corresponding to the three sources of methionine, so the variation between points
at a given Dose is really the variation between sources. At Dose = 0, the point has
been arbitrarily labelled with the symbol for the first group, since Dose = 0 is the
same treatment for all sources.

For now, ignore the three sources and examine Figure 1.7 in the way we have
been examining the other summary graphs in this chapter. Weight gain seems
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FIG. 1.7 Weight gain versus Dose of methionine for turkeys. The three symbols for the points refer
to three different sources of methionine.

to increase with increasing Dose, but the increase does not appear to be linear,
meaning that a straight line does not seem to be a reasonable representation of
the average dependence of the response on the predictor. This leads to study of
mean functions.

1.2 MEAN FUNCTIONS

Imagine a generic summary plot of ¥ versus X. Our interest centers on how the
distribution of Y changes as X is varied. One important aspect of this distribution
is the mean function, which we define by

E(Y|X = x) = a function that depends on the value of x (1.1)

We read the left side of this equation as “the expected value of the response when
the predictor is fixed at the value X = x;” if the notation “E( )” for expectations
and “Var( )” for variances is unfamiliar, please read Appendix A.2. The right side
of (1.1) depends on the problem. For example, in the heights data in Example 1.1,
we might believe that

E(Dheight|Mheight = x) = Bo + B1x (1.2)

that is, the mean function is a straight line. This particular mean function has two
parameters, an intercept By and a slope §;. If we knew the values of the Ss, then
the mean function would be completely specified, but usually the 8s need to be
estimated from data.

Figure 1.8 shows two possibilities for Bs in the straight-line mean function (1.2)
for the heights data. For the dashed line, 8y = 0 and B; = 1. This mean function
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FIG. 1.8 The heights data. The dashed line is for E(Dheight|Mheight) = Mheight, and the solid line
is estimated by oLs.

would suggest that daughters have the same height as their mothers on average.
The second line is estimated using ordinary least squares, or OLS, the estimation
method that will be described in the next chapter. The oLs line has slope less
than one, meaning that tall mothers tend to have daughters who are taller than
average because the slope is positive but shorter than themselves because the slope
is less than one. Similarly, short mothers tend to have short daughters but taller
than themselves. This is perhaps a surprising result and is the origin of the term
regression, since extreme values in one generation tend to revert or regress toward
the population mean in the next generation.

Two lines are shown in Figure 1.5 for the smallmouth bass data. The dashed
line joins the average length at each age. It provides an estimate of the mean
function E(Length|Age) without actually specifying any functional form for the
mean function. We will call this a nonparametric estimated mean function; some-
times we will call it a smoother. The solid line is the oLS estimated straight line
(1.1) for the mean function. Perhaps surprisingly, the straight line and the dashed
lines that join the within-age means appear to agree very closely, and we might
be encouraged to use the straight-line mean function to describe these data. This
would mean that the increase in length per year is the same for all ages. We cannot
expect this to be true if we were to include older-aged fish because eventually the
growth rate must slow down. For the range of ages here, the approximation seems
to be adequate.

For the Ft. Collins weather data, we might expect the straight-line mean function
(1.1) to be appropriate but with 81 = 0. If the slope is zero, then the mean function
is parallel to the horizontal axis, as shown in Figure 1.6. We will eventually test
for independence of Early and Late by testing the hypothesis that §; = 0 against
the alternative hypothesis that 8 # 0.
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Not all summary graphs will have a straight-line mean function. In Forbes’
data, to achieve linearity we have replaced the measured value of Pressure by
log(Pressure). Transformation of variables will be a key tool in extending the
usefulness of linear regression models. In the turkey data and other growth models,
a nonlinear mean function might be more appropriate, such as

E(Y|Dose = x) = fo + B[l — exp(—p2x)] (1.3)

The Bs in (1.3) have a useful interpretation, and they can be used to summarize the
experiment. When Dose = 0, E(Y |Dose = 0) = By, so Bo is the baseline growth
without supplementation. Assuming 8, > 0, when the Dose is large, exp(—B2Dose)
is small, and so E(Y|Dose) approaches By + B for large Dose. We think of By + B
as the limit to growth with this additive. The rate parameter 8, determines how
quickly maximum growth is achieved. This three-parameter mean function will be
considered in Chapter 11.

1.3 VARIANCE FUNCTIONS

Another characteristic of the distribution of the response given the predictor is
the variance function, defined by the symbol Var(Y|X = x) and in words as the
variance of the response distribution given that the predictor is fixed at X = x. For
example, in Figure 1.2 we can see that the variance function for Dheight|Mheight
is approximately the same for each of the three values of Mheight shown in the
graph. In the smallmouth bass data in Figure 1.5, an assumption that the variance
is constant across the plot is plausible, even if it is not certain (see Problem 1.1). In
the turkey data, we cannot say much about the variance function from the summary
plot because we have plotted treatment means rather than the actual pen values, so
the graph does not display the information about the variability between pens that
have a fixed value of Dose.

A frequent assumption in fitting linear regression models is that the variance
function is the same for every value of x. This is usually written as

Var(Y|X = x) = 02 (1.4)

where o2 (read “sigma squared”) is a generally unknown positive constant. We will
encounter later in this book other problems with complicated variance functions.

1.4 SUMMARY GRAPH

In all the examples except the snowfall data, there is a clear dependence of the
response on the predictor. In the snowfall example, there might be no dependence
at all. The turkey growth example is different from the others because the average
value of the response seems to change nonlinearly with the value of the predictor
on the horizontal axis.
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TABLE 1.1 Four Hypothetical Data Sets. The Data Are Given in the File
anscombe. txt

X Y] Y> Y3 X7 Yy
10 8.04 9.14 7.46 8 6.580
8 6.95 8.14 6.77 8 5.760
13 7.58 8.74 12.74 8 7.710
9 8.81 8.77 7.11 8 8.840
11 8.33 9.26 7.81 8 8.470
14 9.96 8.1 8.84 8 7.040
6 7.24 6.13 6.08 8 5.250
4 4.26 3.1 5.39 19 12.500
12 10.84 9.13 8.15 8 5.560
7 4.82 7.26 6.42 8 7.910
5 5.68 4.74 5.73 8 6.890

The scatterplots for these examples are all typical of graphs one might see in
problems with one response and one predictor. Examination of the summary graph
is a first step in exploring the relationships these graphs portray.

Anscombe (1973) provided the artificial data given in Table 1.1 that consists
of 11 pairs of points (x;, y;), to which the simple linear regression mean function
E(y|x) = Bo + Bix is fit. Each data set leads to an identical summary analysis
with the same estimated slope, intercept, and other summary statistics, but the
visual impression of each of the graphs is very different. The first example in
Figure 1.9a is as one might expect to observe if the simple linear regression model
were appropriate. The graph of the second data set given in Figure 1.9b suggests
that the analysis based on simple linear regression is incorrect and that a smooth
curve, perhaps a quadratic polynomial, could be fit to the data with little remaining
variability. Figure 1.9c suggests that the prescription of simple regression may be
correct for most of the data, but one of the cases is too far away from the fitted
regression line. This is called the outlier problem. Possibly the case that does not
match the others should be deleted from the data set, and the regression should be
refit from the remaining ten cases. This will lead to a different fitted line. Without
a context for the data, we cannot judge one line “correct” and the other “incorrect”.
The final set graphed in Figure 1.9d is different from the other three in that there
is not enough information to make a judgment concerning the mean function. If
the eighth case were deleted, we could not even estimate a slope. We must distrust
an analysis that is so heavily dependent upon a single case.

1.5 TOOLS FOR LOOKING AT SCATTERPLOTS

Because looking at scatterplots is so important to fitting regression models, we
establish some common vocabulary for describing the information in them and
some tools to help us extract the information they contain.
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FIG. 1.9 Four hypothetical data sets (from Anscombe, 1973).

The summary graph is of the response Y versus the predictor X. The mean
function for the graph is defined by (1.1), and it characterizes how Y changes on
the average as the value of X is varied. We may have a parametric model for the
mean function and will use data to estimate the parameters. The variance function
also characterizes the graph, and in many problems we will assume at least at first
that the variance function is constant. The scatterplot also will highlight separated
points that may be of special interest because they do not fit the trend determined
by the majority of the points.

A null plot has constant mean function, constant variance function and no sep-
arated points. The scatterplot for the snowfall data appears to be a null plot.

1.5.1 Size

To extract all the available information from a scatterplot, we may need to interact
with it by changing scales, by resizing, or by removing linear trends. An example
of this is given in Problem 1.2.
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1.5.2 Transformations

In some problems, either or both of ¥ and X can be replaced by transformations so
the summary graph has desirable properties. Most of the time, we will use power
transformations, replacing, for example, X by X* for some number A. Because
logarithmic transformations are so frequently used, we will interpret A = 0 as cor-
responding to a log transform. In this book, we will generally use logs to the base
two, but if your computer program does not permit the use of base-two logarithms,
any other base, such as base-ten or natural logarithms, is equivalent.

1.5.3 Smoothers for the Mean Function

In the smallmouth bass data in Figure 1.5, we computed an estimate of
E(Length|Age) using a simple nonparametric smoother obtained by averaging the
repeated observations at each value of Age. Smoothers can also be defined when
we do not have repeated observations at values of the predictor by averaging the
observed data for all values of X close to, but not necessarily equal to, x. The
literature on using smoothers to estimate mean functions has exploded in recent
years, with good fairly elementary treatments given by Hirdle (1990), Simonoff
(1996), Bowman and Azzalini (1997), and Green and Silverman (1994). Although
these authors discuss nonparametric regression as an end in itself, we will gen-
erally use smoothers as plot enhancements to help us understand the information
available in a scatterplot and to help calibrate the fit of a parametric mean function
to a scatterplot.

For example, Figure 1.10 repeats Figure 1.1, this time adding the estimated
straight-line mean function and smoother called a loess smooth (Cleveland, 1979).
Roughly speaking, the loess smooth estimates E(Y|X = x) at the point x by fitting

Dheight

I I I I
55 60 65 70
Mheight

FIG. 1.10 Heights data with the oLs line and a loess smooth with span = 0.10.
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a straight line to a fraction of the points closest to x; we used the fraction of 0.20
in this figure because the sample size is so large, but it is more usual to set the
fraction to about 2/3. The smoother is obtained by joining the estimated values of
E(Y|X = x) for many values of x. The loess smoother and the straight line agree
almost perfectly for Mheight close to average, but they agree less well for larger
values of Mheight where there is much less data. Smoothers tend to be less reliable
at the edges of the plot. We briefly discuss the /oess smoother in Appendix A.5,
but this material is dependent on the results in Chapters 2—4.

1.6 SCATTERPLOT MATRICES

With one potential predictor, a scatterplot provides a summary of the regression
relationship between the response and the potential predictor. With many potential
predictors, we need to look at many scatterplots. A scatterplot matrix is a convenient
way to organize these plots.

Fuel Consumption

The goal of this example is to understand how fuel consumption varies over the
50 United States and the District of Columbia, and, in particular, to understand the
effect on fuel consumption of state gasoline tax. Table 1.2 describes the variables
to be used in this example; the data are given in the file fuel2001.txt. The
data were collected by the US Federal Highway Administration.

Both Drivers and FuelC are state totals, so these will be larger in states with
more people and smaller in less populous states. Income is computed per person.
To make all these comparable and to attempt to eliminate the effect of size of the
state, we compute rates Dlic = Drivers/Pop and Fuel = FuelC/Pop. Additionally,
we replace Miles by its (base-two) logarithm before doing any further analysis.
Justification for replacing Miles with log(Miles) is deferred to Problem 7.7.

TABLE 1.2 Variables in the Fuel Consumption Data®

Drivers Number of licensed drivers in the state

FuelC Gasoline sold for road use, thousands of gallons

Income Per person personal income for the year 2000, in thousands of dollars
Miles Miles of Federal-aid highway miles in the state

Pop 2001 population age 16 and over

Tax Gasoline state tax rate, cents per gallon

State State name

Fuel 1000 x Fuelc/Pop

Dlic 1000 x Drivers/Pop

log(Miles) Base-two logarithm of Miles

Source: “Highway Statistics 2001,” http://www.thwa.dot.gov/ohim/hs01/index.htm.

@ All data are for 2001, unless otherwise noted. The last three variables do not appear in the data file
but are computed from the previous variables, as described in the text.
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FIG. 1.11 Scatterplot matrix for the fuel data.

The scatterplot matrix for the fuel data is shown in Figure 1.11. Except for the
diagonal, a scatterplot matrix is a 2D array of scatterplots. The variable names on
the diagonal label the axes. In Figure 1.11, the variable log(Miles) appears on the
horizontal axis of the all the plots in the fourth column from the left and on the
vertical axis of all the plots in the fourth row from the top>.

Each plot in a scatterplot matrix is relevant to a particular one-predictor regres-
sion of the variable on the vertical axis, given the variable on the horizontal axis.
For example, the plot of Fuel versus Tax in the last plot in the first column of the
scatterplot matrix is relevant for the regression of Fuel on Tax ; this is the first plot
in the last row of Figure 1.11. We can interpret this plot as we would a scatterplot
for simple regression. We get the overall impression that Fuel decreases on the
average as Tax increases, but there is lot of variation. We can make similar quali-
tative judgments about the each of the regressions of Fuel on the other variables.
The overall impression is that Fuel is at best weakly related to each of the variables
in the scatterplot matrix.

3The scatterplot matrix program used to draw Figure 1.11, which is the pairs function in R, has the
diagonal running from the top left to the lower right. Other programs, such as the splom function in
R, has the diagonal from lower-left to upper-right. There seems to be no strong reason to prefer one
over the other.
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Does this help us understand how Fuel is related to all four predictors
simultaneously? The marginal relationships between the response and each of the
variables are not sufficient to understand the joint relationship between the response
and the predictors. The interrelationships among the predictors are also important.
The pairwise relationships between the predictors can be viewed in the remain-
ing cells of the scatterplot matrix. In Figure 1.11, the relationships between all
pairs of predictors appear to be very weak, suggesting that for this problem the
marginal plots including Fuel are quite informative about the multiple regression
problem. General considerations for other scatterplot matrices will be developed in
later chapters.

PROBLEMS

1.1. Smallmouth bass data Compute the means and the variances for each of the
eight subpopulations in the smallmouth bass data. Draw a graph of average
length versus Age and compare to Figure 1.5. Draw a graph of the stan-
dard deviations versus age. If the variance function is constant, then the
plot of standard deviation versus Age should be a null plot. Summarize the
information.

1.2. Mitchell data The data shown in Figure 1.12 give average soil temperature
in degrees C at 20 cm depth in Mitchell, Nebraska, for 17 years beginning
January 1976, plotted versus the month number. The data were collected by
K. Hubbard and provided by O. Burnside.

1.2.1. Summarize the information in the graph about the dependence of soil
temperature on month number.
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FIG. 1.12 Monthly soil temperature data.
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1.3.

1.4.

1.5.

SCATTERPLOTS AND REGRESSION

1.2.2. The data used to draw Figure 1.12 are in the file Mitchell.txt.
Redraw the graph, but this time make the length of the horizontal axis
at least four times the length of the vertical axis. Repeat Problem 1.2.1.

United Nations The data in the file UN1 . txt contains PPgdp, the 2001 gross
national product per person in US dollars, and Fertility, the birth rate per 1000
females in the population in the year 2000. The data are for 193 localities,
mostly UN member countries, but also other areas such as Hong Kong that are
not independent countries; the third variable on the file called Locality gives
the name of the locality. The data were collected from http://unstats.un.org/
unsd/demographic. In this problem, we will study the conditional distribution
of Fertility given PPgdp.

1.3.1. Identify the predictor and the response.

1.3.2. Draw the scatterplot of Fertility on the vertical axis versus PPgdp on
the horizontal axis and summarize the information in this graph. Does
a straight-line mean function seem to be a plausible for a summary of
this graph?

1.3.3. Draw the scatterplot of log(Fertility) versus log(PPgdp), using logs to
the base two. Does the simple linear regression model seem plausible
for a summary of this graph?

Old Faithful The data in the data file oldfaith.txt gives information
about eruptions of Old Faithful Geyser during October 1980. Variables are
the Duration in seconds of the current eruption, and the Interval, the time
in minutes to the next eruption. The data were collected by volunteers and
were provided by R. Hutchinson. Apart from missing data for the period from
midnight to 6 AM, this is a complete record of eruptions for that month.

Old Faithful Geyser is an important tourist attraction, with up to several
thousand people watching it erupt on pleasant summer days. The park ser-
vice uses data like these to obtain a prediction equation for the time to the
next eruption.

Draw the relevant summary graph for predicting interval from duration,
and summarize your results.

Water run-off in the Sierras Can Southern California’s water supply in
future years be predicted from past data? One factor affecting water availability
is stream run-off. If run-off could be predicted, engineers, planners and policy
makers could do their jobs more efficiently. The data in the file water. txt
contains 43 years’ worth of precipitation measurements taken at six sites in
the Sierra Nevada mountains (labelled APMAM, APSAB, APSLAKE, OPBPC,
OPRC, and OPSLAKE), and stream run-off volume at a site near Bishop,
California, labelled BSAAM. The data are from the UCLA Statistics WWW
server.

Draw the scatterplot matrix for these data and summarize the information
available from these plots.



