
C H A P T E R 3

Multiple Regression

Multiple linear regression generalizes the simple linear regression model by
allowing for many terms in a mean function rather than just one intercept and
one slope.

3.1 ADDING A TERM TO A SIMPLE LINEAR REGRESSION MODEL

We start with a response Y and the simple linear regression mean function

E(Y |X1 = x1) = β0 + β1x1

Now suppose we have a second variable X2 with which to predict the response.
By adding X2 to the problem, we will get a mean function that depends on both
the value of X1 and the value of X2,

E(Y |X1 = x1, X2 = x2) = β0 + β1x1 + β2x2 (3.1)

The main idea in adding X2 is to explain the part of Y that has not already been
explained by X1.

United Nations Data
We will reconsider the United Nations data discussed in Problem 1.3. To the regres-
sion of log(Fertility), the base-two log fertility rate on log(PPgdp), the base-two
log of the per person gross domestic product, we consider adding Purban, the per-
centage of the population that lives in an urban area. The data in the file UN2.txt
give values for these three variables, as well as the name of the Locality for 193
localities, mostly countries, for which the United Nations provides data.

Figure 3.1 presents several graphical views of these data. Figure 3.1a can
be viewed as a summary graph for the simple regression of log(Fertility) on
log(PPgdp). The fitted mean function using ols is

Ê(log(Fertility)| log(PPgdp)) = 2.703 − 0.153 log(PPgdp)
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FIG. 3.1 United Nations data on 193 localities, mostly nations. (a) log(Fertility) versus log(PPgdp);
(b) log(Fertility) versus Purban; (c) Purban versus log(PPgdp); (d) Added-variable plot for Purban
after log(PPgdp).

with R2 = 0.459, so about 46% of the variability in log(Fertility) is explained
by log(PPgdp). An increase of one unit in log(PPgdp), which corresponds to a
doubling of PPgdp, is estimated to decrease log(Fertility) by 0.153 units.

Similarly, Figure 3.1b is the summary graph for the regression of log(Fertility)
on Purban. This simple regression has fitted mean function

Ê(log(Fertility)|Purban) = 1.750 − 0.013 Purban

with R2 = 0.348, so Purban explains about 35% of the variability in log(Fertility).
An increase of one percent urban implies a change on the average in log(Fertility)
of −0.13.

To get a summary graph of the regression of log(Fertility) on both log(PPgdp)

and Purban would require a three-dimensional plot of these three variables, with
log(PPgdp) on one of the horizontal axes, Purban on the other horizontal axis,
and log(Fertility) on the vertical axis. Although such plots are possible by using
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either perspective or motion to display the third dimension, using them is much
more difficult than using two-dimensional graphics, and their successful use is
not widespread. Cook and Weisberg (1999a) discuss using motion to understand
three-dimensional graphics for regression.

As a partial substitute for looking at the full three-dimensional plot, we add
a third plot to the first two in Figure 3.1, namely, the plot of Purban versus
log(PPgdp) shown in Figure 3.1c. This graph does not include the response, so it
only shows the relationship between the two potential predictors. In this problem,
these two variables are positively correlated, and the mean function for Figure 3.1c
seems to be well approximated by a straight line.

The inference to draw from Figure 3.1c is that to the extent that Purban can
be predicted by log(PPgdp), these two potential predictors are measuring the same
thing, and so the role of these two variables in predicting log(Fertility) will be
overlapping, and they will both, to some extent, be explaining the same variability.

3.1.1 Explaining Variability

Given these graphs, what can be said about the proportion of variability in
log(Fertility) explained by log(PPgdp) and Purban? We can say that the total
explained variation must exceed 46 percent, the larger of the two values explained
by each variable separately, since using both log(PPgdp) and Purban must surely
be at least as informative as using just one of them. The total variation will be
additive, 46% + 35% = 91%, only if the two variables are completely unrelated
and measure different things. The total can be less than the sum if the terms are
related and are at least in part explaining the same variation. Finally, the total can
exceed the sum if the two variables act jointly so that knowing both gives more
information than knowing just one of them. For example, the area of a rectangle
may be only poorly determined by either the length or width alone, but if both are
considered at the same time, area can be determined exactly. It is precisely this
inability to predict the joint relationship from the marginal relationships that makes
multiple regression rich and complicated.

3.1.2 Added-Variable Plots

The unique effect of adding Purban to a mean function that already includes
log(PPgdp) is determined by the relationship between the part of log(Fertility)
that is not explained by log(PPgdp) and the part of Purban that is not explained
by log(PPgdp). The “unexplained parts” are just the residuals from these two
simple regressions, and so we need to examine the scatterplot of the residuals from
the regression of log(Fertility) on log(PPgdp) versus the residuals from the regres-
sion of Purban on log(PPgdp). This plot is shown in Figure 3.1d. Figure 3.1b is
the summary graph for the relationship between log(Fertility) and Purban ignor-
ing log(PPgdp), while Figure 3.1d shows this relationship, but after adjusting for
log(PPgdp). If Figure 3.1d shows a stronger relationship than does Figure 3.1b,
meaning that the points in the plot show less variation about the fitted straight line,
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then the two variables act jointly to explain extra variation, while if the relationship
is weaker, or the plot exhibits more variation, then the total explained variability
is less than the additive amount. The latter seems to be the case here.

If we fit the simple regression mean function to Figure3.1d, the fitted line has
zero intercept, since the averages of the two plotted variables are zero, and the
estimated slope via ols is β̂2 = −0.0035 ≈ −0.004. It turns out that this is exactly
the estimate β̂2 that would be obtained using ols to get the estimates using the
mean function (3.1). Figure 3.1d is called an added-variable plot.

We now have two estimates of the coefficient β2 for Purban:

β̂2 = −0.013 ignoring log(PPgdp)

β̂2 = −0.004 adjusting for log(PPgdp)

While both of these indicate that more urbanization is associated with lower fer-
tility, adjusting for log(PPgdp) suggests that the magnitude of this effect is only
about one-fourth as large as one might think if log(PPgdp) were ignored. In other
problems, slope estimates for the same term but from different mean functions
can be even more wildly different, changing signs, magnitude, and significance.
This naturally complicates the interpretation of fitted models, and also comparing
between studies fit with even slightly different mean functions.

To get the coefficient estimate for log(PPgdp) in the regression of log(Fertility)
on both predictors, we would use the same procedure we used for Purban and
consider the problem of adding log(PPgdp) to a mean function that already includes
Purban. This would require looking at the graph of the residuals from the regression
of log(Fertility) on Purban versus the residuals from the regression of log(PPgdp)

on Purban (see Problem 3.2).

3.2 THE MULTIPLE LINEAR REGRESSION MODEL

The general multiple linear regression model with response Y and terms
X1, . . . , Xp will have the form

E(Y |X) = β0 + β1X1 + · · · + βpXp (3.2)

The symbol X in E(Y |X) means that we are conditioning on all the terms on the
right side of the equation. Similarly, when we are conditioning on specific values
for the predictors x1, . . . , xp that we will collectively call x, we write

E(Y |X = x) = β0 + β1x1 + · · · + βpxp (3.3)

As in Chapter 2, the βs are unknown parameters we need to estimate. Equation
(3.2) is a linear function of the parameters, which is why this is called linear
regression. When p = 1, X has only one element, and we get the simple regression
problem discussed in Chapter 2. When p = 2, the mean function (3.2) corresponds
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FIG. 3.2 A linear regression surface with p = 2 predictors.

to a plane in three dimensions, as shown in Figure 3.2. When p > 2, the fitted
mean function is a hyperplane, the generalization of a p-dimensional plane in a
(p + 1)-dimensional space. We cannot draw a general p-dimensional plane in our
three-dimensional world.

3.3 TERMS AND PREDICTORS

Regression problems start with a collection of potential predictors. Some of these
may be continuous measurements, like the height or weight of an object. Some
may be discrete but ordered, like a doctor’s rating of overall health of a patient on
a nine-point scale. Other potential predictors can be categorical, like eye color or
an indicator of whether a particular unit received a treatment. All these types of
potential predictors can be useful in multiple linear regression.

From the pool of potential predictors, we create a set of terms that are the
X-variables that appear in (3.2). The terms might include:

The intercept The mean function (3.2) can we rewritten as

E(Y |X) = β0X0 + β1X1 + · · · + βpXp

where X0 is a term that is always equal to one. Mean functions without an
intercept would not have this term included.

Predictors The simplest type of term is equal to one of the predictors, for
example, the variable Mheight in the heights data.

Transformations of predictors Sometimes the original predictors need to be
transformed in some way to make (3.2) hold to a reasonable approxima-
tion. This was the case with the UN data just discussed, in which PPgdp was
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used in log scale. The willingness to replace predictors by transformations of
them greatly expands the range of problems that can be summarized with a
linear regression model.

Polynomials Problems with curved mean functions can sometimes be
accommodated in the multiple linear regression model by including poly-
nomial terms in the predictor variables. For example, we might include as
terms both a predictor X1 and its square X2

1 to fit a quadratic polynomial
in that predictor. Complex polynomial surfaces in several predictors can be
useful in some problems1.

Interactions and other combinations of predictors Combining several predictors
is often useful. An example of this is using body mass index, given by height
divided by weight squared, in place of both height and weight, or using a total
test score in place of the separate scores from each of several parts. Products
of predictors called interactions are often included in a mean function along
with the original predictors to allow for joint effects of two or more variables.

Dummy variables and factors A categorical predictor with two or more levels
is called a factor. Factors are included in multiple linear regression using
dummy variables, which are typically terms that have only two values, often
zero and one, indicating which category is present for a particular observation.
We will see in Chapter 6 that a categorical predictor with two categories can
be represented by one dummy variable, while a categorical predictor with
many categories can require several dummy variables.

A regression with say k predictors may combine to give fewer than k terms or
expand to require more than k terms. The distinction between predictors and terms
can be very helpful in thinking about an appropriate mean function to use in a
particular problem, and in using graphs to understand a problem. For example, a
regression with one predictor can always be studied using the 2D scatterplot of the
response versus the predictor, regardless of the number of terms required in the
mean function.

We will use the fuel consumption data introduced in Section 1.6 as the primary
example for the rest of this chapter. As discussed earlier, the goal is to understand
how fuel consumption varies as a function of state characteristics. The variables
are defined in Table 1.2 and are given in the file fuel2001.txt. From the six
initial predictors, we use a set of four combinations to define terms in the regression
mean function.

Basic summary statistics for the relevant variables in the fuel data are given in
Table 3.1, and these begin to give us a bit of a picture of these data. First, there
is quite a bit of variation in Fuel, with values between a minimum of about 626
gallons per year and a maximum of about 843 gallons per year. The gas Tax varies

1This discussion of polynomials might puzzle some readers because in Section 3.2, we said the linear
regression mean function was a hyperplane, but here we have said that it might be curved, seemingly
a contradiction. However, both of these statements are correct. If we fit a mean function like E(Y |X =
x) = β0 + β1x + β2x2, the mean function is a quadratic curve in the plot of the response versus x but
a plane in the three-dimensional plot of the response versus x and x2.
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TABLE 3.1 Summary Statistics for the Fuel Data

Variable N Average Std Dev Minimum Median Maximum
Tax 51 20.155 4.5447 7.5 20. 29.
Dlic 51 903.68 72.858 700.2 909.07 1075.3
Income 51 28.404 4.4516 20.993 27.871 40.64
logMiles 51 15.745 1.4867 10.583 16.268 18.198
Fuel 51 613.13 88.96 317.49 626.02 842.79

from only 7.5 cents per gallon to a high of 29 cents per gallon, so unlike much of
the world gasoline taxes account for only a small part of the cost to consumers of
gasoline. Also of interest is the range of values in Dlic: The number of licensed
drivers per 1000 population over the age of 16 is between about 700 and 1075.
Some states appear to have more licensed drivers than they have population over
age 16. Either these states allow drivers under the age of 16, allow nonresidents to
obtain a driver’s license, or the data are in error. For this example, we will assume
one of the first two reasons.

Of course, these univariate summaries cannot tell us much about how the fuel
consumption depends on the other variables. For this, graphs are very helpful. The
scatterplot matrix for the fuel data is repeated in Figure 3.3. From our previous
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FIG. 3.3 Scatterplot matrix for the fuel data.
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TABLE 3.2 Sample Correlations for the Fuel Data

Sample Correlations
Tax Dlic Income logMiles Fuel

Tax 1.0000 -0.0858 -0.0107 -0.0437 -0.2594
Dlic -0.0858 1.0000 -0.1760 0.0306 0.4685
Income -0.0107 -0.1760 1.0000 -0.2959 -0.4644
logMiles -0.0437 0.0306 -0.2959 1.0000 0.4220
Fuel -0.2594 0.4685 -0.4644 0.4220 1.0000

discussion, Fuel decreases on the average as Tax increases, but there is lot of
variation. We can make similar qualitative judgments about each of the regressions
of Fuel on the other variables. The overall impression is that Fuel is at best weakly
related to each of the variables in the scatterplot matrix, and in turn these variables
are only weakly related to each other.

Does this help us understand how Fuel is related to all four predictors simultane-
ously? We know from the discussion in Section 3.1 that the marginal relationships
between the response and each of the variables is not sufficient to understand the
joint relationship between the response and the terms. The interrelationships among
the terms are also important. The pairwise relationships between the terms can be
viewed in the remaining cells of the scatterplot matrix. In Figure 3.3, the relation-
ships between all pairs of terms appear to be very weak, suggesting that for this
problem the marginal plots including Fuel are quite informative about the multiple
regression problem.

A more traditional, and less informative, summary of the two-variable relation-
ships is the matrix of sample correlations, shown in Table 3.2. In this instance,
the correlation matrix helps to reinforce the relationships we see in the scatter-
plot matrix, with fairly small correlations between the predictors and Fuel, and
essentially no correlation between the predictors themselves.

3.4 ORDINARY LEAST SQUARES

From the initial collection of potential predictors, we have computed a set of
p + 1 terms, including an intercept, X = (X0, X1, . . . , Xp). The mean function
and variance function for multiple linear regression are

E(Y |X) = β0 + β1X1 + · · · + βpXp (3.4)
Var(Y |X) = σ 2

Both the βs and σ 2 are unknown parameters that need to be estimated.

3.4.1 Data and Matrix Notation

Suppose we have observed data for n cases or units, meaning we have a value of Y

and all of the terms for each of the n cases. We have symbols for the response and
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the terms using matrices and vectors; see Appendix A.6 for a brief introduction.
We define

Y =




y1
y2
...

yn


 X =




1 x11 · · · x1p

1 x21 · · · x2p

...
...

...
...

1 xn1 · · · xnp


 (3.5)

so Y is an n × 1 vector and X is an n × (p + 1) matrix. We also define β to be
a (p + 1) × 1 vector of regression coefficients and e to be the n × 1 vector of
statistical errors,

β =




β0
β1
...

βp


 and e =




e1
e2
...

en




The matrix X gives all of the observed values of the terms. The ith row of X will
be defined by the symbol x′

i , which is a (p + 1) × 1 vector for mean functions that
include an intercept. Even though xi is a row of X, we use the convention that all
vectors are column vectors and therefore need to write x′

i to represent a row. An
equation for the mean function evaluated at xi is

E(Y |X = xi ) = x′
iβ

= β0 + β1xi1 + · · · + βpxip (3.6)

In matrix notation, we will write the multiple linear regression model as

Y = Xβ + e (3.7)

The ith row of (3.7) is yi = x′
iβ + ei .

For the fuel data, the first few and the last few rows of the matrix X and the
vector Y are

X =




1 18.00 1031.38 23.471 16.5271
1 8.00 1031.64 30.064 13.7343
1 18.00 908.597 25.578 15.7536
...

...
...

...
...

1 25.65 904.894 21.915 15.1751
1 27.30 882.329 28.232 16.7817
1 14.00 970.753 27.230 14.7362




Y =




690.264
514.279
621.475

...

562.411
581.794
842.792




The terms in X are in the order intercept, Tax, Dlic, Income and finally log(Miles).
The matrix X is 51 × 5 and Y is 51 × 1.
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3.4.2 Variance-Covariance Matrix of e

The 51 × 1 error vector is an unobservable random vector, as in Appendix A.6.
The assumptions concerning the eis given in Chapter 2 are summarized in matrix
form as

E(e) = 0 Var(e) = σ 2In

where Var(e) means the covariance matrix of e, In is the n × n matrix with ones
on the diagonal and zeroes everywhere else, and 0 is a matrix or vector of zeroes
of appropriate size. If we add the assumption of normality, we can write

e ∼ N(0, σ 2In)

3.4.3 Ordinary Least Squares Estimators

The least squares estimate β̂ of β is chosen to minimize the residual sum of squares
function

RSS(β) =
∑

(yi − x′
iβ)2 = (Y − Xβ)′(Y − Xβ) (3.8)

The ols estimates can be found from (3.8) by differentiation in a matrix analog to
the development of Appendix A.3. The ols estimate is given by the formula

β̂ = (X′X)−1X′Y (3.9)

provided that the inverse (X′X)−1 exists. The estimator β̂ depends only on the
sufficient statistics X′X and X′Y, which are matrices of uncorrected sums of squares
and cross-products.

Do not compute the least squares estimates using (3.9)! Uncorrected sums of
squares and cross-products are prone to large rounding error, and so computations
can be highly inaccurate. The preferred computational methods are based on matrix
decompositions as briefly outlined in Appendix A.8. At the very least, computations
should be based on corrected sums of squares and cross-products.

Suppose we define X to be the n × p matrix

X =




(x11 − x1) · · · (x1p − xp)

(x21 − x1) · · · (x2p − xp)
...

...
...

(xn1 − x1) · · · (xnp − xp)




This matrix consists of the original X matrix, but with the first column removed
and the column mean subtracted from each of the remaining columns. Similarly,
Y is the vector with typical elements yi − y. Then

C = 1

n − 1

(
X ′X X ′Y
Y ′X Y ′Y

)
(3.10)
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is the matrix of sample variances and covariances. When p = 1, the matrix C is
given by

C = 1

n − 1

(
SXX SXY
SXY SYY

)

The elements of C are the summary statistics needed for ols computations in simple
linear regression. If we let β∗ be the parameter vector excluding the intercept β0,
then for p ≥ 1,

β̂
∗ = (X ′X )

−1X ′Y

β̂0 = y − β̂
∗′

x

where x is the vector of sample means for all the terms except for the intercept.
Once β̂ is computed, we can define several related quantities. The fitted values

are Ŷ = Xβ̂ and the residuals are ê = Y − Ŷ. The function (3.8) evaluated at β̂ is
the residual sum of squares, or RSS,

RSS = ê′ê = (Y − Xβ̂)′(Y − Xβ̂) (3.11)

3.4.4 Properties of the Estimates

Additional properties of the ols estimates are derived in Appendix A.8 and are only
summarized here. Assuming that E(e) = 0 and Var(e) = σ 2In, then β̂ is unbiased,
E(β̂) = β, and

Var(β̂) = σ 2(X′X)−1 (3.12)

Excluding the intercept term,

Var(β̂
∗
) = σ 2(X ′X )−1 (3.13)

and so (X ′X )−1 is all but the first row and column of (X′X)−1. An estimate of σ 2

is given by

σ̂ 2 = RSS

n − (p + 1)
(3.14)

which is the residual sum of squares divided by its df = n − (p + 1). Several
formulas for RSS can be computed by substituting the value of β̂ into (3.11) and
simplifying:

RSS = Y′Y − β̂
′
(X′X)β̂

= Y′Y − β̂
′
X′Y

= Y ′Y − β̂
∗′

(X ′X )β̂
∗

(3.15)

= Y ′Y − β̂
′
(X′X)β̂ + ny2
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Recognizing that Y ′Y = SYY, (3.15) has the nicest interpretation, as it writes RSS
as equal to the total sum of squares minus a quantity we will call the regression
sum of squares, or SSreg. In addition, if e is normally distributed, then the residual
sum of squares has a Chi-squared distribution,

(n − (p + 1))σ̂ 2/σ 2 ∼ χ2(n − (p + 1))

By substituting σ̂ 2 for σ 2 in (3.12), we find the estimated variance of β̂, V̂ar(β̂),
to be

V̂ar(β̂) = σ̂ 2(X′X)−1 (3.16)

3.4.5 Simple Regression in Matrix Terms

For simple regression, X and Y are given by

X =




1 x1
1 x2
...

...

1 xn


 Y =




y1
y2
...

yn




and thus

(X′X) =
(

n
∑

xi∑
xi

∑
x2
i

)
X′Y =

( ∑
yi∑
y2
i

)

By direct multiplication, (X′X)−1 can be shown to be

(X′X)−1 = 1

SXX

( ∑
x2
i /n −x

−x 1

)
(3.17)

so that

β̂ =
(

β̂0

β̂1

)
= (X′X)−1X′Y = 1

SXX

( ∑
x2
i /n −x

−x
∑

xiyi

) ( ∑
yi∑
y2
i

)

=
(

y − β̂1x

SXY/SXX

)

as found previously. Also, since
∑

x2
i /(nSXX) = 1/n + x2/SXX, the variances and

covariances for β̂0 and β̂1 found in Chapter 2 are identical to those given by
σ 2(X′X)−1.

The results are simpler in the deviations from the sample average form, since

X ′X = SXX X ′Y = SXY



ORDINARY LEAST SQUARES 59

and

β̂1 = (X ′X )
−1X ′Y = SXY

SXX

β̂0 = y − β̂1x

Fuel Consumption Data
We will generally let p equal the number of terms in a mean function excluding the
intercept, and p′ = p + 1 equal if the intercept is included; p′ = p if the intercept
is not included. We shall now fit the mean function with p′ = 5 terms, including
the intercept for the fuel consumption data. Continuing a practice we have already
begun, we will write Fuel on Tax Dlic Income log(Miles) as shorthand for using
ols to fit the multiple linear regression model with mean function

E(Fuel|X) = β0 + β1Tax + β2Dlic + β3Income + β4log(Miles)

where conditioning on X is short for conditioning on all the terms in the mean
function. All the computations are based on the summary statistics, which are the
sample means given in Table 3.1 and the sample covariance matrix C defined at
(3.10) and given by

Tax Dlic Income logMiles Fuel
Tax 20.6546 -28.4247 -0.2162 -0.2955 -104.8944
Dlic -28.4247 5308.2591 -57.0705 3.3135 3036.5905
Income -0.2162 -57.0705 19.8171 -1.9580 -183.9126
logMiles -0.2955 3.3135 -1.9580 2.2103 55.8172
Fuel -104.8944 3036.5905 -183.9126 55.8172 7913.8812

Most statistical software will give the sample correlations rather than the covari-
ances. The reader can verify that the correlations in Table 3.2 can be obtained from
these covariances. For example, the sample correlation between Tax and Income
is −0.2162/

√
(20.6546 × 19.8171) = −0.0107 as in Table 3.2. One can convert

back from correlations and sample variances to covariances; the square root of the
sample variances are given in Table 3.1.

The 5 × 5 matrix (X′X)−1 is given by

Intercept Tax Dlic Income logMiles
Intercept 9.02151 -2.852e-02 -4.080e-03 -5.981e-02 -1.932e-01
Tax -0.02852 9.788e-04 5.599e-06 4.263e-05 1.602e-04
Dlic -0.00408 5.599e-06 3.922e-06 1.189e-05 5.402e-06
Income -0.05981 4.263e-05 1.189e-05 1.143e-03 1.000e-03
logMiles -0.19315 1.602e-04 5.402e-06 1.000e-03 9.948e-03

The elements of (X′X)−1 often differ by several orders of magnitude, as is the case
here, where the smallest element in absolute value is 3.9 × 10−6 = 0.0000039, and
the largest element is 9.02. It is the combining of these numbers of very different
magnitude that can lead to numerical inaccuracies in computations.
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The lower-right 4 × 4 sub-matrix of (X′X)−1 is (X ′X )−1. Using the formulas
based on corrected sums of squares in this chapter, the estimate β̂

∗
is computed

to be

β̂
∗ = (X ′X )

−1X ′Y =




β̂1

β̂2

β̂3

β̂4


 =




−4.2280
0.4719

−6.1353
18.5453




The estimated intercept is

β̂0 = y − β̂
∗′

x = 154.193

and the residual sum of squares is

RSS = Y ′Y − β̂
∗′

(X ′X )Oβ∗ = 193,700

so the estimate of σ 2 is

σ̂ 2 = RSS

n − (p + 1)
= 193,700

51 − 5
= 4211

Standard errors and estimated covariances of the β̂j are found by multiplying σ̂

by the square roots of elements of (X′X)−1. For example,

se(β̂2) = σ̂
√

3.922 × 10−6 = 0.1285

Virtually all statistical software packages include higher-level functions that will
fit multiple regression models, but getting intermediate results like (X′X)−1 may be
a challenge. Table 3.3 shows typical output from a statistical package. This output
gives the estimates β̂ and their standard errors computed based on σ̂ 2 and the

TABLE 3.3 Edited Output from the Summary Method in R for
Multiple Regression in the Fuel Data

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 154.1928 194.9062 0.791 0.432938
Tax -4.2280 2.0301 -2.083 0.042873
Dlic 0.4719 0.1285 3.672 0.000626
Income -6.1353 2.1936 -2.797 0.007508
logMiles 18.5453 6.4722 2.865 0.006259

Residual standard error: 64.89 on 46 degrees of freedom
Multiple R-Squared: 0.5105
F-statistic: 11.99 on 4 and 46 DF, p-value: 9.33e-07
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diagonal elements of (X′X)−1. The column marked t-value is the ratio of the
estimate to its standard error. The column labelled Pr(>|t|) will be discussed
shortly. Below the table are a number of other summary statistics; at this point
only the estimate of σ called the residual standard error and its df are familiar.

3.5 THE ANALYSIS OF VARIANCE

For multiple regression, the analysis of variance is a very rich technique that is
used to compare mean functions that include different nested sets of terms. In the
overall analysis of variance, the mean function with all the terms

E(Y |X = x) = β ′x (3.18)

is compared with the mean function that includes only an intercept:

E(Y |X = x) = β0 (3.19)

For simple regression, these correspond to (2.16) and (2.13), respectively. For mean
function (3.19), β̂0 = y and the residual sum of squares is SYY. For mean function
(3.18), the estimate of β is given by (3.9) and RSS is given in (3.11). We must
have RSS < SYY, and the difference between these two

SSreg = SYY − RSS (3.20)

corresponds to the sum of squares of Y explained by the larger mean function that
is not explained by the smaller mean function. The number of df associated with
SSreg is equal to the number of df in SYY minus the number of df in RSS, which
equals p, the number of terms in the mean function excluding the intercept.

These results are summarized in the analysis of variance table in Table 3.4.
We can judge the importance of the regression on the terms in the larger model
by determining if SSreg is sufficiently large by comparing the ratio of the mean
square for regression to σ̂ 2 to the F(p, n − p′) distribution2 to get a significance

TABLE 3.4 The Overall Analysis of Variance Table

Source df SS MS F p-value

Regression p SSreg SSreg/1 MSreg/σ̂ 2

Residual n − (p + 1) RSS σ̂ 2 = RSS/(n − 2)

Total n − 1 SYY

2Reminder: p′ = p for mean functions with no intercept, and p′ = p + 1 for mean functions with an
intercept.
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level. If the computed significance level is small enough, then we would judge that
the mean function (3.18) provides a significantly better fit than does (3.19). The
ratio will have an exact F distribution if the errors are normal and (3.19) is true.
The hypothesis tested by this F -test is

NH: E(Y |X = x) = β0
AH: E(Y |X = x) = x′β

3.5.1 The Coefficient of Determination

As with simple regression, the ratio

R2 = SSreg

SYY
= 1 − RSS

SYY
(3.21)

gives the proportion of variability in Y explained by regression on the terms. R2

can also be shown to be the square of the correlation between the observed values
Y and the fitted values Ŷ ; we will explore this further in the next chapter. R2 is
also called the multiple correlation coefficient because it is the maximum of the
correlation between Y and any linear combination of the terms in the mean function.

Fuel Consumption Data
The overall analysis of variance table is given by

Df Sum Sq Mean Sq F value Pr(>F)
Regression 4 201994 50499 11.992 9.33e-07
Residuals 46 193700 4211
Total 50 395694

To get a significance level for the test, we would compare F = 11.992 with the
F(4, 46) distribution. Most computer packages do this automatically, and the result
is shown in the column marked Pr(>F) to be about 0.0000009, a very small
number, leading to very strong evidence against the null hypothesis that the mean
of Fuel does not depend on any of the terms. The value of R2 = 201994/395694 =
0.5105 indicates that about half the variation in Fuel is explained by the terms.
The value of F , its significance level, and the value of R2 are given in Table 3.3.

3.5.2 Hypotheses Concerning One of the Terms

Obtaining information on one of the terms may be of interest. Can we do as
well, understanding the mean function for Fuel if we delete the Tax variable? This
amounts to the following hypothesis test of

NH: β1 = 0, β0, β2, β3, β4 arbitrary
AH: β1 �= 0, β0, β2, β3, β4 arbitrary

(3.22)

The following procedure can be used. First, fit the mean function that excludes the
term for Tax and get the residual sum of squares for this smaller mean function.
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Then fit again, this time including Tax, and once again get the residual sum of
squares. Subtracting the residual sum of squares for the larger mean function from
the residual sum of squares for the smaller mean function will give the sum of
squares for regression on Tax after adjusting for the terms that are in both mean
functions, Dlic, Income and log(Miles). Here is a summary of the computations
that are needed:

Df SS MS F Pr(>F)
Excluding Tax 47 211964
Including Tax 46 193700

Difference 1 18264 18264 4.34 0.043

The row marked “Excluding Tax” gives the df and RSS for the mean function
without Tax, and the next line gives these values for the larger mean function
including Tax. The difference between these two given on the next line is the sum
of squares explained by Tax after adjusting for the other terms in the mean function.
The F -test is given by F = (18,264/1)/σ̂ 2 = 4.34, which, when compared to the
F distribution with (1, 46) df gives a significance level of about 0.04. We thus have
modest evidence that the coefficient for Tax is different from zero. This is called a
partial F -test. Partial F -tests can be generalized to testing several coefficients to
be zero, but we delay that generalization to Section 5.4.

3.5.3 Relationship to the t-Statistic

Another reasonable procedure for testing the importance of Tax is simply to com-
pare the estimate of the coefficient divided by its standard error to the t (n − p′)
distribution. One can show that the square of this t-statistic is the same number of
the F -statistic just computed, so these two procedures are identical. Therefore, the
t-statistic tests hypothesis (3.22) concerning the importance of terms adjusted for
all the other terms, not ignoring them.

From Table 3.3, the t-statistic for Tax is t = −2.083, and t2 = (−2.083)2 =
4.34, the same as the F -statistic we just computed. The significance level for Tax
given in Table 3.3 also agrees with the significance level we just obtained for the
F -test, and so the significance level reported is for the two-sided test. To test the
hypothesis that β1 = 0 against the one-sided alternative that β1 < 0, we could again
use the same t-value, but the significance level would be one-half of the value for
the two-sided test.

A t-test that βj has a specific value versus a two-sided or one-sided alternative
(with all other coefficients arbitrary) can be carried out as described in Section 2.8.

3.5.4 t-Tests and Added-Variable Plots

In Section 3.1, we discussed adding a term to a simple regression mean function.
The same general procedure can be used to add a term to any linear regression
mean function. For the added-variable plot for a term, say X1, plot the residuals
from the regression of Y on all the other X’s versus the residuals for the regression
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of X1 on all the other Xs. One can show (Problem 3.2) that (1) the slope of the
regression in the added-variable plot is the estimated coefficient for X1 in the
regression with all the terms, and (2) the t-test for testing the slope to the zero in
the added-variable plot is essentially the same as the t-test for testing β1 = 0 in the
fit of the larger mean function, the only difference being a correction for degrees
of freedom.

3.5.5 Other Tests of Hypotheses

We have obtained a test of a hypothesis concerning the effect of Tax adjusted for
all the other terms in the mean function. Equally well, we could obtain tests for the
effect of Tax adjusting for some of the other terms or for none of the other terms.
In general, these tests will not be equivalent, and a variable can be judged useful
ignoring variables but useless when adjusted for them. Furthermore, a predictor
that is useless by itself may become important when considered in concert with
the other variables. The outcome of these tests depends on the sample correlations
between the terms.

3.5.6 Sequential Analysis of Variance Tables

By separating Tax from the other terms, SSreg is divided into two pieces, one
for fitting the first three terms, and one for fitting Tax after the other three. This
subdivision can be continued by dividing SSreg into a sum of squares “explained”
by each term separately. Unless all the terms are uncorrelated, this breakdown is
not unique. For example, we could first fit Dlic, then Tax adjusted for Dlic, then
Income adjusted for both Dlic and Tax, and finally log(Miles) adjusted for the other
three. The resulting table is given in Table 3.5a. Alternatively, we could fit in the
order log(Miles), Income, Dlic and then Tax as in Table 3.5b. The sums of squares
can be quite different in the two tables. For example, the sum of squares for Dlic
ignoring the other terms is about 25% larger than the sum of squares for Dlic
adjusting for the other terms. In this problem, the terms are nearly uncorrelated,
see Table 3.2, so the effect of ordering is relatively minor. In problems with high
sample correlations between terms, order can be very important.

TABLE 3.5 Two Analysis of Variance Tables with Different Orders of Fitting

(a) First analysis (b) Second analysis

Df Sum Sq Mean Sq
Dlic 1 86854 86854
Tax 1 19159 19159
Income 1 61408 61408
logMiles 1 34573 34573
Residuals 46 193700 4211

Df Sum Sq Mean Sq
logMiles 1 70478 70478
Income 1 49996 49996
Dlic 1 63256 63256
Tax 1 18264 18264
Residuals 46 193700 4211
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3.6 PREDICTIONS AND FITTED VALUES

Suppose we have observed, or will in the future observe, a new case with its own
set of predictors that result in a vector of terms x∗. We would like to predict the
value of the response given x∗. In exactly the same way as was done in simple
regression, the point prediction is ỹ∗ = x′∗β̂, and the standard error of prediction,
sepred(ỹ∗|x∗), using Appendix A.8, is

sepred(ỹ∗|x∗) = σ̂

√
1 + x′∗(X′X)−1x∗ (3.23)

Similarly, the estimated average of all possible units with a value x for the terms is
given by the estimated mean function at x, Ê(Y |X = x) = ŷ = x′β̂ with standard
error given by

sefit(ŷ|x) = σ̂
√

x′(X′X)−1x (3.24)

Virtually all software packages will give the user access to the fitted values, but
getting the standard error of prediction and of the fitted value may be harder. If a
program produces sefit but not sepred, the latter can be computed from the former
from the result

sepred(ỹ∗|x∗) =
√

σ̂ 2 + sefit(ỹ∗|x∗)2

PROBLEMS

3.1. Berkeley Guidance Study The Berkeley Guidance Study enrolled children
born in Berkeley, California, between January 1928 and June 1929, and then
measured them periodically until age eighteen (Tuddenham and Snyder, 1954).
The data we use is described in Table 3.6, and the data is given in the data
files BGSgirls.txt for girls only, BGSboys.txt for boys only, and
BGSall.txt for boys and girls combined. For this example, use only the
data on the girls.

3.1.1. For the girls only, draw the scatterplot matrix of all the age two vari-
ables, all the age nine variables and Soma. Write a summary of the
information in this scatterplot matrix. Also obtain the matrix of sample
correlations between the height variables.

3.1.2. Starting with the mean function E(Soma|WT9) = β0 + β1WT9, use
added-variable plots to explore adding LG9 to get the mean function
E(Soma|WT9, LG9) = β0 + β1WT9 + β2LG9. In particular, obtain the
four plots equivalent to Figure 3.1, and summarize the information in
the plots.

3.1.3. Fit the multiple linear regression model with mean function

E(Soma|X) = β0 + β1HT2 + β2WT2 + β3HT9 + β4WT9 + β5ST9
(3.25)
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TABLE 3.6 Variable Definitions for the Berkeley Guidance Study in the Files
BGSgirls.txt, BGSboys.txt, and BGSall.txt

Variable Description

Sex 0 for males, 1 for females
WT2 Age 2 weight, kg
HT2 Age 2 height, cm
WT9 Age 9 weight, kg
HT9 Age 9 height, cm
LG9 Age 9 leg circumference, cm
ST9 Age 9 strength, kg
WT18 Age 18 weight, kg
HT18 Age 18 height, cm
LG18 Age 18 leg circumference, cm
ST18 Age 18 strength, kg
Soma Somatotype, a scale from 1, very thin, to 7, obese, of body type

Find σ̂ , R2, the overall analysis of variance table and overall F -test.
Compute the t-statistics to be used to test each of the βj to be zero
against two-sided alternatives. Explicitly state the hypotheses tested and
the conclusions.

3.1.4. Obtain the sequential analysis of variance table for fitting the variables
in the order they are given in (3.25). State the hypotheses tested and
the conclusions for each of the tests.

3.1.5. Obtain analysis of variance again, this time fitting with the five terms
in the order given from right to left in (3.25). Explain the differences
with the table you obtained in Problem 3.1.4. What graphs could help
understand the issues?

3.2. Added-variable plots This problem uses the United Nations example in
Section 3.1 to demonstrate many of the properties of added-variable plots.
This problem is based on the mean function

E(log(Fertility)|log(PPgdp) = x1, Purban = x2) = β0 + β1x1 + β2x2

There is nothing special about the two-predictor regression mean function, but
we are using this case for simplicity.

3.2.1. Show that the estimated coefficient for log(PPgdp) is the same as the
estimated slope in the added-variable plot for log(PPgdp) after Purban.
This correctly suggests that all the estimates in a multiple linear regres-
sion model are adjusted for all the other terms in the mean function.
Also, show that the residuals in the added-variable plot are identical to
the residuals from the mean function with both predictors.
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3.2.2. Show that the t-test for the coefficient for log(PPgdp) is not quite the
same from the added-variable plot and from the regression with both
terms, and explain why they are slightly different.

3.3. The following questions all refer to the mean function

E(Y |X1 = x1, X2 = x2) = β0 + β1x1 + β2x2 (3.26)

3.3.1. Suppose we fit (3.26) to data for which x1 = 2.2x2, with no error. For
example, x1 could be a weight in pounds, and x2 the weight of the
same object in kg. Describe the appearance of the added-variable plot
for X2 after X1.

3.3.2. Again referring to (3.26), suppose now that Y and X1 are perfectly
correlated, so Y = 3X1, without any error. Describe the appearance of
the added-variable plot for X2 after X1.

3.3.3. Under what conditions will the added-variable plot for X2 after X1
have exactly the same shape as the scatterplot of Y versus X2?

3.3.4. True or false: The vertical variation in an added-variable plot for X2
after X1 is always less than or equal to the vertical variation in a plot
of Y versus X2. Explain.

3.4. Suppose we have a regression in which we want to fit the mean function (3.1).
Following the outline in Section 3.1, suppose that the two terms X1 and X2
have sample correlation equal to zero. This means that, if xij , i = 1, . . . , n,
and j = 1, 2 are the observed values of these two terms for the n cases in the
data,

∑n
i=1(xi1 − x1)(xi2 − x2) = 0.

3.4.1. Give the formula for the slope of the regression for Y on X1, and for
Y on X2. Give the value of the slope of the regression for X2 on X1.

3.4.2. Give formulas for the residuals for the regressions of Y on X1 and for
X2 on X1. The plot of these two sets of residuals corresponds to the
added-variable plot in Figure 3.1d.

3.4.3. Compute the slope of the regression corresponding to the added-variable
plot for the regression of Y on X2 after X1, and show that this slope
is exactly the same as the slope for the simple regression of Y on X2
ignoring X1. Also find the intercept for the added-variable plot.

3.5. Refer to the data described in Problem 1.5, page 18. For this problem, consider
the regression problem with response BSAAM, and three predictors as terms
given by OPBPC, OPRC and OPSLAKE.

3.5.1. Examine the scatterplot matrix drawn for these three terms and the
response. What should the correlation matrix look like (that is, which
correlations are large and positive, which are large and negative, and
which are small)? Compute the correlation matrix to verify your results.
Get the regression summary for the regression of BSAAM on these three
terms. Explain what the “t-values” column of your output means.
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3.5.2. Obtain the overall test if the hypothesis that BSAAM is independent of
the three terms versus the alternative that it is not independent of them,
and summarize your results.

3.5.3. Obtain three analysis of variance tables fitting in the order (OPBPC,
OPRC and OPSLAKE), then (OPBPC, OPSLAKE and OPRC), and
finally (OPSLAKE, OPRC and OPBPC). Explain the resulting tables,
and discuss in particular any apparent inconsistencies. Which F -tests
in the Anova tables are equivalent to t-tests in the regression output?

3.5.4. Using the output from the last problem, test the hypothesis that the coef-
ficients for both OPRC and OPBPC are both zero against the alternative
that they are not both zero.


