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Preface

The 11th edition of Microeconomic Theory: Basic Principles and Extensions
a successful collaboration between the authors starting with the 10™ edition. This edi
represents a significant effort to continue refining and modernizing our treatment of
microeconomics. Despite the significant changes appearing in virtually every chapter, the
text retains all of the elements that have made it successful for so many editions. The ba-
sic approach is to focus on building intuition about economic models while providing
students with the mathematical tools needed to go further in their studies. The text also
seeks to facilitate that linkage by providing many numerical examples, advanced prob-
lems, and extended discussions of empirical implementation—all of which are intended
to show students how microeconomic theory is used today. New developments continue
to keep the field exciting, and we hope this edition manages to capture that excitement.

New to the Eleventh Edition \

We took a fresh look at every chapter to make sure that they continue to provide clear
and up-to-date coverage of all of the topics examined. The major revisions include the
following.

o Many of the topics in our introductory chapter on mathematics have been revised to
conform more closely to methods usually encountered in the recent economics liter-
ature.

o The chapters on uncertainty and game theory have been broken out into their own
separate part. This shrinks the part of the book on choice and demand to a more
manageable size and emphasizes the unique nature of the strategy and uncertainty
topics.

o The chapter on uncertainty (Chapter 7) has been extensively revised. The sections on
real options and the value of information have been expanded. Applications to finan-
cial economics and the portfolio problem have been streamlined and collected in the
Extensions.

o The treatment of game theory (Chapter 8) has been substantially streamlined, pro-
viding the same level of rigor in a third less space.

o A modern treatment of the literature on firms’ boundaries and objectives (The
Theory of the Firm) has been added to the body of Chapter 9 and expanded on fur-
ther in the Extensions.

o Our general equilibrium chapter (Chapter 13) has been thoroughly revised. Most
notably we now use this chapter to provide students with an elementary introduction
to vector notation.

o We have added a number of new topics to our discussion of labor markets focusing
mainly on issues related to human capital and job search.

o Coverage of behavioral economics has been expanded, sprinkled throughout various
relevant chapters. A handful of behavioral economics problems have been included.

o The public-good problem is rigorously analyzed using game theory (Chapter 19).

o Dozens of new problems have been added.

Xix
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Supplements to the Text \

The thoroughly revised ancillaries for this edition include the following.

o The Solutions Manual and Test Bank (by the text authors). The Solutions Manual
contains comments and solutions to all problems, and the test bank has been revised
to include additional questions. Both are available to all adopting instructors in elec-
tronic version on the text Web site (www.cengage.com/economics/nicholson) and on
the Instructor Resources CD (IRCD).

o PowerPoint Lecture Presentation Slides. PowerPoint slides for each chapter of the
text provide a thorough set of outlines for classroom use or for students as a study
aid. The slides are available from the book’s Web site (www.cengage.com/economics/
nicholson) and on the IRCD.

Online Resources \

South-Western, a part of Cengage Learning, provides students and instructors with a set
of valuable online resources that are an effective complement to this text. Each new copy
of the book comes with a registration card that provides access to Economic Applications
and InfoTrac College Edition.

Economic Applications

The purchase of this new textbook includes complimentary access to South-Western’s
InfoApps (InfoTrac and Economic Applications) Web site. The Web site includes a suite
of regularly updated Web features for economics students and instructors: EconNews,
EconDebates, and EconData. These resources can help students deepen their under-
standing of economic concepts by analyzing current news stories, policy debates, and eco-
nomic data. EconApps can also help instructors develop assignments, case studies, and
examples based on real-world issues.

EconDebates provides current coverage of economics policy debates; it includes a
primer on the issues, links to background information, and commentaries.

EconNews summarizes recent economics news stories and offers questions for further
discussion.

EconData presents current and historical economic data with accompanying com-
mentary, analysis, and exercises.

Students buying a used book can purchase access to InfoApps at www.cengagebrain.com.

InfoTrac College Edition

The purchase of this new textbook also comes with four months of access to InfoTrac.
This powerful and searchable online database provides access to full text articles from
more than a thousand different publications ranging from the popular press to scholarly
journals. Instructors can search topics and select readings for students, and students can
search articles and readings for homework assignments and projects. The publications
cover a variety of topics and include articles that range from current events to theoretical
developments. InfoTrac College Edition offers instructors and students the ability to inte-
grate scholarship and applications of economics into the learning process.


www.cengage.com/economics/nicholson
www.cengage.com/economics/nicholson
www.cengage.com/economics/nicholson
www.cengagebrain.com
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Introduction

Chapter 1
Economic Models

Chapter 2
Mathematics for Microeconomics

This part contains two chapters. Chapter 1 examines the general philosophy of how economists build models
of economic behavior. Chapter 2 then reviews some of the mathematical tools used in the construction of
these models. The mathematical tools from Chapter 2 will be used throughout the remainder of this book.
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CHAPTER
ONE

The main goal of this book is to introduce you to the most important models that econo-
mists use to explain the behavior of consumers, firms, and markets. These models are
central to the study of all areas of economics. Therefore, it is essential to understand both
the need for such models and the basic framework used to develop them. The goal of this
chapter is to begin this process by outlining some of the conceptual issues that determine
the ways in which economists study practically every question that interests them.

THEORETICAL MODELS )

A modern economy is a complicated entity. Thousands of firms engage in producing mil-
lions of different goods. Many millions of people work in all sorts of occupations and
make decisions about which of these goods to buy. Let’s use peanuts as an example. Pea-
nuts must be harvested at the right time and shipped to processors who turn them into
peanut butter, peanut oil, peanut brittle, and numerous other peanut delicacies. These
processors, in turn, must make certain that their products arrive at thousands of retail
outlets in the proper quantities to meet demand.

Because it would be impossible to describe the features of even these peanut markets
in complete detail, economists have chosen to abstract from the complexities of the real
world and develop rather simple models that capture the “essentials.” Just as a road map
is helpful even though it does not record every house or every store, economic models of,
say, the market for peanuts are also useful even though they do not record every minute
feature of the peanut economy. In this book we will study the most widely used economic
models. We will see that, even though these models often make heroic abstractions from
the complexities of the real world, they nonetheless capture essential features that are
common to all economic activities.

The use of models is widespread in the physical and social sciences. In physics, the
notion of a “perfect” vacuum or an “ideal” gas is an abstraction that permits scientists to
study real-world phenomena in simplified settings. In chemistry, the idea of an atom or a
molecule is actually a simplified model of the structure of matter. Architects use mock-up
models to plan buildings. Television repairers refer to wiring diagrams to locate prob-
lems. Economists’ models perform similar functions. They provide simplified portraits of
the way individuals make decisions, the way firms behave, and the way in which these
two groups interact to establish markets.
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VERIFICATION OF ECONOMIC MODELS )

Of course, not all models prove to be “good.” For example, the earth-centered model of
planetary motion devised by Ptolemy was eventually discarded because it proved incapa-
ble of accurately explaining how the planets move around the sun. An important purpose
of scientific investigation is to sort out the “bad” models from the “good.” Two general
methods have been used for verifying economic models: (1) a direct approach, which
seeks to establish the validity of the basic assumptions on which a model is based; and (2)
an indirect approach, which attempts to confirm validity by showing that a simplified
model correctly predicts real-world events. To illustrate the basic differences between the
two approaches, let’s briefly examine a model that we will use extensively in later chapters
of this book—the model of a firm that seeks to maximize profits.

The profit-maximization model

The model of a firm seeking to maximize profits is obviously a simplification of reality. It
ignores the personal motivations of the firm’s managers and does not consider conflicts
among them. It assumes that profits are the only relevant goal of the firm; other possible
goals, such as obtaining power or prestige, are treated as unimportant. The model also
assumes that the firm has sufficient information about its costs and the nature of the
market to which it sells to discover its profit-maximizing options. Most real-world firms,
of course, do not have this information readily available. Yet such shortcomings in the
model are not necessarily serious. No model can exactly describe reality. The real ques-
tion is whether this simple model has any claim to being a good one.

Testing assumptions

One test of the model of a profit-maximizing firm investigates its basic assumption: Do
firms really seek maximum profits? Some economists have examined this question by
sending questionnaires to executives, asking them to specify the goals they pursue. The
results of such studies have been varied. Businesspeople often mention goals other than
profits or claim they only do “the best they can” to increase profits given their limited in-
formation. On the other hand, most respondents also mention a strong “interest” in prof-
its and express the view that profit maximization is an appropriate goal. Therefore,
testing the profit-maximizing model by testing its assumptions has provided inconclusive
results.

Testing predictions

Some economists, most notably Milton Friedman, deny that a model can be tested by
inquiring into the “reality” of its assumptions.' They argue that all theoretical models are
based on “unrealistic” assumptions; the very nature of theorizing demands that we make
certain abstractions. These economists conclude that the only way to determine the valid-
ity of a model is to see whether it is capable of predicting and explaining real-world
events. The ultimate test of an economic model comes when it is confronted with data
from the economy itself.

Friedman provides an important illustration of that principle. He asks what kind of
theory one should use to explain the shots expert pool players will make. He argues that
the laws of velocity, momentum, and angles from theoretical physics would be a suitable

'See M. Friedman, Essays in Positive Economics (Chicago: University of Chicago Press, 1953), chap. 1. For an alternative view
stressing the importance of using “realistic” assumptions, see H. A. Simon, “Rational Decision Making in Business Organiza-
tions,” American Economic Review 69, no. 4 (September 1979): 493-513.
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model. Pool players shoot shots as if they follow these laws. But most players asked
whether they precisely understand the physical principles behind the game of pool will
undoubtedly answer that they do not. Nonetheless, Friedman argues, the physical laws
provide accurate predictions and therefore should be accepted as appropriate theoretical
models of how experts play pool.

Thus, a test of the profit-maximization model would be provided by predicting the
behavior of real-world firms by assuming that these firms behave as if they were maxi-
mizing profits. (See Example 1.1 later in this chapter.) If these predictions are reasonably
in accord with reality, we may accept the profit-maximization hypothesis. However, we
would reject the model if real-world data seem inconsistent with it. Hence the ultimate
test of any theory is its ability to predict real-world events.

Importance of empirical analysis

The primary concern of this book is the construction of theoretical models. But the goal of
such models is always to learn something about the real world. Although the inclusion of a
lengthy set of applied examples would needlessly expand an already bulky book,”
the Extensions included at the end of many chapters are intended to provide a transition
between the theory presented here and the ways that theory is applied in empirical studies.

GENERAL FEATURES OF ECONOMIC
MODELS

The number of economic models in current use is, of course, large. Specific assumptions
used and the degree of detail provided vary greatly depending on the problem being
addressed. The models used to explain the overall level of economic activity in the
United States, for example, must be considerably more aggregated and complex than
those that seek to interpret the pricing of Arizona strawberries. Despite this variety,
practically all economic models incorporate three common elements: (1) the ceteris pari-
bus (other things the same) assumption; (2) the supposition that economic decision-
makers seek to optimize something; and (3) a careful distinction between “positive” and
“normative” questions. Because we will encounter these elements throughout this book,
it may be helpful at the outset to describe the philosophy behind each of them.

The ceteris paribus assumption

As in most sciences, models used in economics attempt to portray relatively simple rela-
tionships. A model of the market for wheat, for example, might seek to explain wheat
prices with a small number of quantifiable variables, such as wages of farmworkers, rain-
fall, and consumer incomes. This parsimony in model specification permits the study of
wheat pricing in a simplified setting in which it is possible to understand how the specific
forces operate. Although any researcher will recognize that many “outside” forces (e.g.,
presence of wheat diseases, changes in the prices of fertilizers or of tractors, or shifts in
consumer attitudes about eating bread) affect the price of wheat, these other forces are
held constant in the construction of the model. It is important to recognize that econo-
mists are not assuming that other factors do not affect wheat prices; rather, such other
variables are assumed to be unchanged during the period of study. In this way, the effect

*For an intermediate-level text containing an extensive set of real-world applications, see W. Nicholson and C. Snyder, Interme-
diate Microeconomics and Its Application, 11th ed. (Mason, OH: Thomson/Southwestern, 2010).
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of only a few forces can be studied in a simplified setting. Such ceteris paribus (other
things equal) assumptions are used in all economic modeling.

Use of the ceteris paribus assumption does pose some difficulties for the verification of
economic models from real-world data. In other sciences, the problems may not be so
severe because of the ability to conduct controlled experiments. For example, a physicist
who wishes to test a model of the force of gravity probably would not do so by dropping
objects from the Empire State Building. Experiments conducted in that way would be
subject to too many extraneous forces (e.g., wind currents, particles in the air, variations
in temperature) to permit a precise test of the theory. Rather, the physicist would conduct
experiments in a laboratory, using a partial vacuum in which most other forces could be
controlled or eliminated. In this way, the theory could be verified in a simple setting,
without considering all the other forces that affect falling bodies in the real world.

With a few notable exceptions, economists have not been able to conduct controlled
experiments to test their models. Instead, they have been forced to rely on various statisti-
cal methods to control for other forces when testing their theories. Although these statis-
tical methods are as valid in principle as the controlled experiment methods used by
other scientists, in practice they raise a number of thorny issues. For that reason, the limi-
tations and precise meaning of the ceteris paribus assumption in economics are subject to
greater controversy than in the laboratory sciences.

Structure of Economic Models

Most of the economic models you will encounter in this book will have a mathematical
structure. They will highlight the relationships between factors that affect the decisions of
households and firms and the results of those decisions. Economists tend to use different
names for these two types of factors (or, in mathematical terms, variables). Variables that
are outside of a decision-maker’s control are called exogenous variables. Such variables
are inputs into economic models. For example, in consumer theory we will usually treat
individuals as price-takers. The prices of goods are determined outside of our models of
consumer behavior, and we wish to study how consumers adjust to them. The results of
such decisions (e.g., the quantities of each good that a consumer buys) are endogenous
variables. These variables are determined within our models. This distinction is pictured
schematically in Figure 1.1. Although the actual models developed by economists may be
complicated, they all have this basic structure. A good way to start studying a particular
model is to identify precisely how it fits into this framework.

This distinction between exogenous and endogenous variables will become clearer as we
explore a variety of economic models. Keeping straight which variables are determined
outside a particular model and which variables are determined within a model can be con-
fusing; therefore, we will try to remind you about this as we go along. The distinction
between exogenous and endogenous variables is also helpful in understanding the way in
which the ceteris paribus assumption is incorporated into economic models. In most cases
we will want to study how the results of our models change when one of the exogenous
variables changes. It is possible, even likely, that the change in such a single variable will
change all the results calculated from the model. For example, as we will see, it is likely that
the change in the price of a single good will cause an individual to change the quantities of
practically every good he or she buys. Examining all such responses is precisely why econo-
mists build models. The ceteris paribus assumption is enforced by changing only one exog-
enous variable, holding all others constant. If we wish to study the effects of a change in the
price of gasoline on a household’s purchases, we change that price in our model, but we do
not change the prices of other goods (and in some cases we do not change the individual’s
income either). Holding the other prices constant is what is meant by studying the ceteris
paribus effect of an increase in the price of gasoline.
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Values for exogenous variables are inputs into most economic models. Model outputs (results) are values
for the endogenous variables.

tructure of a Typical e ~
Microeconomic Model

EXOGENOUS VARIABLES

Households: Prices of goods
Firms: Prices of inputs and output

ECONOMIC MODEL

Households: Utility maximization
Firms: Profit maximization

ENDOGENOUS VARIABLES
Households: Quantities bought
Firms: Output produced, inputs hired

\_ J

Optimization assumptions

Many economic models start from the assumption that the economic actors being studied
are rationally pursuing some goal. We briefly discussed such an assumption when investi-
gating the notion of firms maximizing profits. Example 1.1 shows how that model can be
used to make testable predictions. Other examples we will encounter in this book include
consumers maximizing their own well-being (utility), firms minimizing costs, and gov-
ernment regulators attempting to maximize public welfare. Although, as we will show, all
these assumptions are unrealistic, and all have won widespread acceptance as good start-
ing places for developing economic models. There seem to be two reasons for this accep-
tance. First, the optimization assumptions are useful for generating precise, solvable
models, primarily because such models can draw on a variety of mathematical techniques
suitable for optimization problems. Many of these techniques, together with the logic
behind them, are reviewed in Chapter 2. A second reason for the popularity of optimiza-
tion models concerns their apparent empirical validity. As some of our Extensions show,
such models seem to be fairly good at explaining reality. In all, then, optimization models
have come to occupy a prominent position in modern economic theory.

EXAMPLE 1.1 Profit Maximization

The profit-maximization hypothesis provides a good illustration of how optimization assumptions
can be used to generate empirically testable propositions about economic behavior. Suppose that a
firm can sell all the output that it wishes at a price of p per unit and that the total costs of
production, C, depend on the amount produced, g. Then profits are given by

profits = m = pqg — C(q). (1.1)
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Maximization of profits consists of finding that value of g which maximizes the profit expression
in Equation 1.1. This is a simple problem in calculus. Differentiation of Equation 1.1 and setting
that derivative equal to 0 give the following first-order condition for a maximum:

@:p—C/(q)zo or p=C'(q). (1.2)
dq
In words, the profit-maximizing output level (¢*) is found by selecting that output level for which
price is equal to marginal cost, C’(g). This result should be familiar to you from your introductory
economics course. Notice that in this derivation the price for the firm’s output is treated as a
constant because the firm is a price-taker. That is, price is an exogenous variable in this model.
Equation 1.2 is only the first-order condition for a maximum. Taking account of the second-
order condition can help us to derive a testable implication of this model. The second-order
condition for a maximum is that at g* it must be the case that
2
% =-C"(q) <0 or C"(q")>0. (1.3)
That is, marginal cost must be increasing at g" for this to be a true point of maximum profits.
Our model can now be used to “predict” how a firm will react to a change in price. To do so,
we differentiate Equation 1.2 with respect to price (p), assuming that the firm continues to
choose a profit-maximizing level of g:

d[p - C/(q*) = 0] B "y ox dq* _
i =1-C"(q") dp_o. (1.4)
Rearranging terms a bit gives
dq* 1
=) ° 19

Here the final inequality again reflects the fact that marginal cost must be increasing at ¢" if this
point is to be a true maximum. This then is one of the testable propositions of the profit-
maximization hypothesis—if other things do not change, a price-taking firm should respond to
an increase in price by increasing output. On the other hand, if firms respond to increases in
price by reducing output, there must be something wrong with our model.

Although this is a simple model, it reflects the way we will proceed throughout much of this
book. Specifically, the fact that the primary implication of the model is derived by calculus, and
consists of showing what sign a derivative should have, is the kind of result we will see many
times. Notice that in this model there is only one endogenous variable—g, the quantity the firm
chooses to produce. There is also only one exogenous variable—p, the price of the product,
which the firm takes as a given. Our model makes a specific prediction about how changes in
this exogenous variable affect the firm’s output choice.

QUERY: In general terms, how would the implications of this model be changed if the price a
firm obtains for its output were a function of how much it sold? That is, how would the model
work if the price-taking assumption were abandoned?

Positive-normative distinction

A final feature of most economic models is the attempt to differentiate carefully between
“positive” and “normative” questions. Thus far we have been concerned primarily with
positive economic theories. Such theories take the real world as an object to be studied,
attempting to explain those economic phenomena that are observed. Positive economics
seeks to determine how resources are in fact allocated in an economy. A somewhat differ-
ent use of economic theory is normative analysis, taking a definite stance about what
should be done. Under the heading of normative analysis, economists have a great deal to
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say about how resources should be allocated. For example, an economist engaged in posi-
tive analysis might investigate how prices are determined in the U.S. health-care econ-
omy. The economist also might want to measure the costs and benefits of devoting even
more resources to health care by, for example, offering government-subsidized health in-
surance. But when he or she specifically advocates that such an insurance plan should be
adopted, the analysis becomes normative.

Some economists believe that the only proper economic analysis is positive analysis.
Drawing an analogy with the physical sciences, they argue that “scientific” economics
should concern itself only with the description (and possibly prediction) of real-world
economic events. To take political positions and to plead for special interests are consid-
ered to be outside the competence of an economist acting as such. Of course, an econo-
mist, like any other citizen, is free to express his or her views on political matters. But
when doing so he or she is acting as a citizen, not an economist. For other economists,
however, the positive-normative distinction seems artificial. They believe that the study
of economics necessarily involves the researchers’ own views about ethics, morality, and
fairness. According to these economists, searching for scientific “objectivity” in such cir-
cumstances is hopeless. Despite some ambiguity, this book tries to adopt a positivist tone,
leaving normative concerns for you to decide for yourself.

DEVELOPMENT OF THE ECONOMIC
THEORY OF VALUE

Because economic activity has been a central feature of all societies, it is surprising that
these activities were not studied in any detail until fairly recently. For the most part, eco-
nomic phenomena were treated as a basic aspect of human behavior that was not suffi-
ciently interesting to deserve specific attention. It is, of course, true that individuals have
always studied economic activities with a view toward making some kind of personal
gain. Roman traders were not above making profits on their transactions. But investiga-
tions into the basic nature of these activities did not begin in any depth until the eight-
eenth century.” Because this book is about economic theory as it stands today, rather
than the history of economic thought, our discussion of the evolution of economic theory
will be brief. Only one area of economic study will be examined in its historical setting:
the theory of value.

Early economic thoughts on value

The theory of value, not surprisingly, concerns the determinants of the “value” of a com-
modity. This subject is at the center of modern microeconomic theory and is closely
intertwined with the fundamental economic problem of allocating scarce resources to al-
ternative uses. The logical place to start is with a definition of the word “value.” Unfortu-
nately, the meaning of this term has not been consistent throughout the development of
the subject. Today we regard value as being synonymous with the price of a commodity.*
Earlier philosopher-economists, however, made a distinction between the market price
of a commodity and its value. The term value was then thought of as being, in some
sense, synonymous with “importance,” “essentiality,” or (at times) “godliness.” Because
“price” and “value” were separate concepts, they could differ, and most early economic

*For a detailed treatment of early economic thought, see the classic work by J. A. Schumpeter, History of Economic Analysis
(New York: Oxford University Press, 1954), pt. II, chaps. 1-3.

“This is not completely true when “externalities” are involved, and a distinction must be made between private and social
value (see Chapter 19).
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discussions centered on these divergences. For example, St. Thomas Aquinas believed
value to be divinely determined. Because prices were set by humans, it was possible for
the price of a commodity to differ from its value. A person accused of charging a price in
excess of a good’s value was guilty of charging an “unjust” price. St. Thomas believed
that, in most cases, the “just” rate of interest was zero. Any lender who demanded a pay-
ment for the use of money was charging an unjust price and could be—and sometimes
was—prosecuted by church officials.

The founding of modern economics

During the latter part of the eighteenth century, philosophers began to take a more scien-
tific approach to economic questions. The 1776 publication of The Wealth of Nations by
Adam Smith (1723-1790) is generally considered the beginning of modern economics. In
his vast, all-encompassing work, Smith laid the foundation for thinking about market
forces in an ordered and systematic way. Still, Smith and his immediate successors, such
as David Ricardo (1772-1823), continued to distinguish between value and price. To
Smith, for example, the value of a commodity meant its “value in use,” whereas the price
represented its “value in exchange.” The distinction between these two concepts was illus-
trated by the famous water-diamond paradox. Water, which obviously has great value in
use, has little value in exchange (it has a low price); diamonds are of little practical use
but have a great value in exchange. The paradox with which early economists struggled
derives from the observation that some useful items have low prices whereas certain non-
essential items have high prices.

Labor theory of exchange value

Neither Smith nor Ricardo ever satisfactorily resolved the water-diamond paradox. The
concept of value in use was left for philosophers to debate, while economists turned their
attention to explaining the determinants of value in exchange (i.e., to explaining relative
prices). One obvious possible explanation is that exchange values of goods are determined
by what it costs to produce them. Costs of production are primarily influenced by labor
costs—at least this was so in the time of Smith and Ricardo—and therefore it was a short
step to embrace a labor theory of value. For example, to paraphrase an example from
Smith, if catching a deer takes twice the number of labor hours as catching a beaver, then
one deer should exchange for two beavers. In other words, the price of a deer should be
twice that of a beaver. Similarly, diamonds are relatively costly because their production
requires substantial labor input, whereas water is freely available.

To students with even a passing knowledge of what we now call the law of supply and
demand, Smith’s and Ricardo’s explanation must seem incomplete. Did they not recog-
nize the effects of demand on price? The answer to this question is both yes and no. They
did observe periods of rapidly rising and falling relative prices and attributed such
changes to demand shifts. However, they regarded these changes as abnormalities that
produced only a temporary divergence of market price from labor value. Because they
had not really developed a theory of value in use, they were unwilling to assign demand
any more than a transient role in determining relative prices. Rather, long-run exchange
values were assumed to be determined solely by labor costs of production.

The marginalist revolution

Between 1850 and 1880, economists became increasingly aware that to construct an
adequate alternative to the labor theory of value, they had to devise a theory of value in
use. During the 1870s, several economists discovered that it is not the total usefulness of
a commodity that helps to determine its exchange value, but rather the usefulness of the
last unit consumed. For example, water is certainly useful—it is necessary for all life.
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Marshall theorized that demand and supply interact to determine the equilibrium price (p*) and the
quantity (q*) that will be traded in the market. He concluded that it is not possible to say that either demand
or supply alone determines price or therefore that either costs or usefulness to buyers alone determines

exchange value.
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However, because water is relatively plentiful, consuming one more pint (ceteris paribus)
has a relatively low value to people. These “marginalists” redefined the concept of value
in use from an idea of overall usefulness to one of marginal, or incremental, usefulness—
the usefulness of an additional unit of a commodity. The concept of the demand for an
incremental unit of output was now contrasted with Smith’s and Ricardo’s analysis of
production costs to derive a comprehensive picture of price determination.’

Marshallian supply-demand synthesis

The clearest statement of these marginal principles was presented by the English econo-
mist Alfred Marshall (1842-1924) in his Principles of Economics, published in 1890. Mar-
shall showed that demand and supply simultaneously operate to determine price. As
Marshall noted, just as you cannot tell which blade of a scissors does the cutting, so too
you cannot say that either demand or supply alone determines price. That analysis is
illustrated by the famous Marshallian cross shown in Figure 1.2. In the diagram the quan-
tity of a good purchased per period is shown on the horizontal axis, and its price appears
on the vertical axis. The curve DD represents the quantity of the good demanded per pe-
riod at each possible price. The curve is negatively sloped to reflect the marginalist princi-
ple that as quantity increases, people are willing to pay less for the last unit purchased. It
is the value of this last unit that sets the price for all units purchased. The curve SS shows
how (marginal) production costs increase as more output is produced. This reflects the
increasing cost of producing one more unit as total output expands. In other words, the
upward slope of the SS curve reflects increasing marginal costs, just as the downward
slope of the DD curve reflects decreasing marginal value. The two curves intersect at
p", q". This is an equilibrium point—both buyers and sellers are content with the quantity
being traded and the price at which it is traded. If one of the curves should shift, the equi-
librium point would shift to a new location. Thus, price and quantity are simultaneously
determined by the joint operation of supply and demand.

*Ricardo had earlier provided an important first step in marginal analysis in his discussion of rent. Ricardo theorized that as the
production of corn increased, land of inferior quality would be used and this would cause the price of corn to increase. In his
argument Ricardo recognized that it is the marginal cost—the cost of producing an additional unit—that is relevant to pricing.
Notice that Ricardo implicitly held other inputs constant when discussing decreasing land productivity; that is, he used one ver-
sion of the ceteris paribus assumption.
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EXAMPLE 1.2 Supply-Demand Equilibrium

Although graphical presentations are adequate for some purposes, economists often use algebraic
representations of their models both to clarify their arguments and to make them more precise. As an
elementary example, suppose we wished to study the market for peanuts and, based on the statistical
analysis of historical data, concluded that the quantity of peanuts demanded each week (g, measured in
bushels) depended on the price of peanuts (p, measured in dollars per bushel) according to the equation:

quantity demanded = gp = 1,000 — 100p. (1.6)

Because this equation for gp, contains only the single independent variable p, we are implicitly holding
constant all other factors that might affect the demand for peanuts. Equation 1.6 indicates that, if other
things do not change, at a price of $5 per bushel people will demand 500 bushels of peanuts, whereas at
a price of $4 per bushel they will demand 600 bushels. The negative coefficient for p in Equation 1.6
reflects the marginalist principle that a lower price will cause people to buy more peanuts.

To complete this simple model of pricing, suppose that the quantity of peanuts supplied also
depends on price:

quantity supplied = g5 = —125 + 125p. (1.7)

Here the positive coefficient of price also reflects the marginal principle that a higher price will call
forth increased supply—primarily because (as we saw in Example 1.1) it permits firms to incur
higher marginal costs of production without incurring losses on the additional units produced.

Equilibrium price determination. Therefore, Equations 1.6 and 1.7 reflect our model of
price determination in the market for peanuts. An equilibrium price can be found by setting
quantity demanded equal to quantity supplied:

qp = gs (1.8)
or
1,000 — 100p = —125 + 125p (1.9)
or
225p = 1,125 (1.10)
thus,
p=5. (1.1)

At a price of $5 per bushel, this market is in equilibrium: At this price people want to purchase
500 bushels, and that is exactly what peanut producers are willing to supply. This equilibrium is
pictured graphically as the intersection of D and S in Figure 1.3.

A more general model. To illustrate how this supply-demand model might be used, let’s
adopt a more general notation. Suppose now that the demand and supply functions are given by

gp=a+bp and gs=c+dp (1.12)

where a and ¢ are constants that can be used to shift the demand and supply curves, respec-
tively, and b (<0) and d (>0) represent demanders’ and suppliers’ reactions to price. Equilib-
rium in this market requires

qp =4qs oOr

(1.13)
a+bp=c+dp.
Thus, equilibrium price is given by®
a—c
= 1.14
=2 (1.14)

°Equation 1.14 is sometimes called the “reduced form” for the supply-demand structural model of Equations 1.12 and 1.13. It
shows that the equilibrium value for the endogenous variable p ultimately depends only on the exogenous factors in the model
(a and ¢) and on the behavioral parameters b and d. A similar equation can be calculated for equilibrium quantity.
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FIGURE 1.3 Changing Supply-Demand Equilibria

The initial supply-demand equilibrium is illustrated by the intersection of D and S (p* = 5, g~ = 500).
When demand shifts to gp' = 1,450 — 100p (denoted as D), the equilibrium shifts to p* = 7, " = 750.
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Notice that in our previous example a = 1,000, b = —100, c = —125, and d = 125; therefore,

. _L000+125 1125

= = = (1.15)
125 + 100 225

With this more general formulation, however, we can pose questions about how the equilibrium
price might change if either the demand or supply curve shifted. For example, differentiation of
Equation 1.14 shows that

a1 >0
da d—b ’
o (1.16)
L
de  d—b ’

That is, an increase in demand (an increase in a) increases equilibrium price, whereas an
increase in supply (an increase in c) reduces price. This is exactly what a graphical analysis of
supply and demand curves would show. For example, Figure 1.3 shows that when the constant
term, a, in the demand equation increases to 1,450, equilibrium price increases to p* = 7
[= (1,450 + 125)/225].

QUERY: How might you use Equation 1.16 to “predict” how each unit increase in the
exogenous constant a affects the endogenous variable p*? Does this equation correctly predict
the increase in p* when the constant a increases from 1,000 to 1,450?
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Paradox resolved

Marshall’s model resolves the water-diamond paradox. Prices reflect both the marginal
evaluation that demanders place on goods and the marginal costs of producing the goods.
Viewed in this way, there is no paradox. Water is low in price because it has both a low
marginal value and a low marginal cost of production. On the other hand, diamonds are
high in price because they have both a high marginal value (because people are willing to
pay quite a bit for one more) and a high marginal cost of production. This basic model of
supply and demand lies behind much of the analysis presented in this book.

General equilibrium models

Although the Marshallian model is an extremely useful and versatile tool, it is a partial
equilibrium model, looking at only one market at a time. For some questions, this nar-
rowing of perspective gives valuable insights and analytical simplicity. For other, broader
questions, such a narrow viewpoint may prevent the discovery of important relationships
among markets. To answer more general questions we must have a model of the whole
economy that suitably mirrors the connections among various markets and economic
agents. The French economist Leon Walras (1831-1910), building on a long Continental
tradition in such analysis, created the basis for modern investigations into those broad
questions. His method of representing the economy by a large number of simultaneous
equations forms the basis for understanding the interrelationships implicit in general
equilibrium analysis. Walras recognized that one cannot talk about a single market in iso-
lation; what is needed is a model that permits the effects of a change in one market to be
followed through other markets.

For example, suppose that the demand for peanuts were to increase. This would cause
the price of peanuts to increase. Marshallian analysis would seek to understand the size
of this increase by looking at conditions of supply and demand in the peanut market.
General equilibrium analysis would look not only at that market but also at repercussions
in other markets. An increase in the price of peanuts would increase costs for peanut but-
ter makers, which would, in turn, affect the supply curve for peanut butter. Similarly, the
increasing price of peanuts might mean higher land prices for peanut farmers, which
would affect the demand curves for all products that they buy. The demand curves for
automobiles, furniture, and trips to Europe would all shift out, and that might create
additional incomes for the providers of those products. Consequently, the effects of the
initial increase in demand for peanuts eventually would spread throughout the economy.
General equilibrium analysis attempts to develop models that permit us to examine such
effects in a simplified setting. Several models of this type are described in Chapter 13.

Production possibility frontier

Here we briefly introduce some general equilibrium ideas by using another graph you
should remember from introductory economics—the production possibility frontier. This
graph shows the various amounts of two goods that an economy can produce using its
available resources during some period (say, one week). Because the production possibil-
ity frontier shows two goods, rather than the single good in Marshall’s model, it is used
as a basic building block for general equilibrium models.

Figure 1.4 shows the production possibility frontier for two goods: food and clothing.
The graph illustrates the supply of these goods by showing the combinations that can be
produced with this economy’s resources. For example, 10 pounds of food and 3 units of
clothing could be produced, or 4 pounds of food and 12 units of clothing. Many other
combinations of food and clothing could also be produced. The production possibility
frontier shows all of them. Combinations of food and clothing outside the frontier cannot
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The production possibility frontier shows the different combinations of two goods that can be produced
from a certain amount of scarce resources. It also shows the opportunity cost of producing more of one
good as the amount of the other good that cannot then be produced. The opportunity cost at two
different levels of clothing production can be seen by comparing points A and B.
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be produced because not enough resources are available. The production possibility fron-
tier reminds us of the basic economic fact that resources are scarce—there are not enough
resources available to produce all we might want of every good.

This scarcity means that we must choose how much of each good to produce. Figure
1.4 makes clear that each choice has its costs. For example, if this economy produces 10
pounds of food and 3 units of clothing at point A, producing 1 more unit of clothing
would “cost” % pound of food—increasing the output of clothing by 1 unit means the
production of food would have to decrease by % pound. Thus, the opportunity cost of 1
unit of clothing at point A is %2 pound of food. On the other hand, if the economy ini-
tially produces 4 pounds of food and 12 units of clothing at point B, it would cost 2
pounds of food to produce 1 more unit of clothing. The opportunity cost of 1 more unit
of clothing at point B has increased to 2 pounds of food. Because more units of clothing
are produced at point B than at point A, both Ricardo’s and Marshall’s ideas of increasing
incremental costs suggest that the opportunity cost of an additional unit of clothing will
be higher at point B than at point A. This effect is shown by Figure 1.4.

The production possibility frontier provides two general equilibrium insights that are
not clear in Marshall’s supply and demand model of a single market. First, the graph
shows that producing more of one good means producing less of another good because
resources are scarce. Economists often (perhaps too often!) use the expression “there is
no such thing as a free lunch” to explain that every economic action has opportunity
costs. Second, the production possibility frontier shows that opportunity costs depend on
how much of each good is produced. The frontier is like a supply curve for two goods: It
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shows the opportunity cost of producing more of one good as the decrease in the amount
of the second good. Therefore, the production possibility frontier is a particularly useful
tool for studying several markets at the same time.

EXAMPLE 1.3 The Production Possibility Frontier and Economic Inefficiency

General equilibrium models are good tools for evaluating the efficiency of various economic
arrangements. As we will see in Chapter 13, such models have been used to assess a wide variety
of policies such as trade agreements, tax structures, and environmental regulations. In this
simple example, we explore the idea of efficiency in its most elementary form.

Suppose that an economy produces two goods, x and y, using labor as the only input. The
production function for good x is x = /%° (where I, is the quantity of labor used in x
production), and the production function for good y is ¥ = 2/%5. Total labor available is
constrained by I, + [, < 200. Construction of the production possibility frontier in this
economy is extremely simple:

L+ 1, = x* +0.255" < 200 (1.17)

where the equality holds exactly if the economy is to be producing as much as possible (which,
after all, is why it is called a “frontier”). Equation 1.17 shows that the frontier here has the shape
of a quarter ellipse—its concavity derives from the diminishing returns exhibited by each pro-
duction function.

Opportunity cost. Assuming this economy is on the frontier, the opportunity cost of good y
in terms of good x can be derived by solving for y as

32 =800 — 4x> or y= /800 — 4x2 = [800 — 4x*]°? (1.18)

And then differentiating this expression:

G 0.5[800 — 4x%]**(—8x) = iy (1.19)
dx y

Suppose, for example, labor is equally allocated between the two goods. Then x = 10, y = 20,
and dy/dx = —4(10)/20 = —2. With this allocation of labor, each unit increase in x output
would require a reduction in y of 2 units. This can be verified by considering a slightly different
allocation, [, = 101 and [, = 99. Now production is x = 10.05 and y = 19.9. Moving to this
alternative allocation would have

Ay (199-20)  —0.1 _
Ax  (10.05—10)  0.05

>

which is precisely what was derived from the calculus approach.

Concavity. Equation 1.19 clearly illustrates the concavity of the production possibility frontier.
The slope of the frontier becomes steeper (more negative) as x output increases and y output
decreases. For example, if labor is allocated so that I, = 144 and [, = 56, then outputs are x =
12 and y = 15 and so dy/dx = —4(12)/15 = —3.2. With expanded x production, the
opportunity cost of one more unit of x increases from 2 to 3.2 units of y.

Inefficiency. If an economy operates inside its production possibility frontier, it is operating
inefficiently. Moving outward to the frontier could increase the output of both goods. In this
book we will explore many reasons for such inefficiency. These usually derive from a failure of
some market to perform correctly. For the purposes of this illustration, let’s assume that the
labor market in this economy does not work well and that 20 workers are permanently
unemployed. Now the production possibility frontier becomes

x* +0.25y* = 180, (1.20)
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and the output combinations we described previously are no longer feasible. For example, if x =
10, then y output is now y ~ 17.9. The loss of approximately 2.1 units of y is a measure of the
cost of the labor market inefficiency. Alternatively, if the labor supply of 180 were allocated
evenly between the production of the two goods, then we would have x ~ 9.5 and y ~ 19, and
the inefficiency would show up in both goods’ production—more of both goods could be pro-
duced if the labor market inefficiency were resolved.

QUERY: How would the inefficiency cost of labor market imperfections be measured solely in
terms of x production in this model? How would it be measured solely in terms of y production?
What would you need to know to assign a single number to the efficiency cost of the
imperfection when labor is equally allocated to the two goods?

Welfare economics

In addition to using economic models to examine positive questions about how the econ-
omy operates, the tools used in general equilibrium analysis have also been applied to the
study of normative questions about the welfare properties of various economic arrange-
ments. Although such questions were a major focus of the great eighteenth- and nineteenth-
century economists (e.g., Smith, Ricardo, Marx, and Marshall), perhaps the most significant
advances in their study were made by the British economist Francis Y. Edgeworth
(1848-1926) and the Italian economist Vilfredo Pareto (1848-1923) in the early years of the
twentieth century. These economists helped to provide a precise definition for the concept of
“economic efficiency” and to demonstrate the conditions under which markets will be able
to achieve that goal. By clarifying the relationship between the allocation pricing of resources,
they provided some support for the idea, first enunciated by Adam Smith, that properly
functioning markets provide an “invisible hand” that helps allocate resources efficiently.
Later sections of this book focus on some of these welfare issues.

MODERN DEVELOPMENTS )

Research activity in economics expanded rapidly in the years following World War II. A
major purpose of this book is to summarize much of this research. By illustrating how
economists have tried to develop models to explain increasingly complex aspects of eco-
nomic behavior, this book seeks to help you recognize some of the remaining unanswered
questions.

The mathematical foundations of economic models

A major postwar development in microeconomic theory was the clarification and formal-
ization of the basic assumptions that are made about individuals and firms. The first
landmark in this development was the 1947 publication of Paul Samuelson’s Foundations
of Economic Analysis, in which the author (the first American Nobel Prize winner in eco-
nomics) laid out a number of models of optimizing behavior.” Samuelson demonstrated
the importance of basing behavioral models on well-specified mathematical postulates so
that various optimization techniques from mathematics could be applied. The power of
his approach made it inescapably clear that mathematics had become an integral part of
modern economics. In Chapter 2 of this book we review some of the mathematical con-
cepts most often used in microeconomics.

“Paul A. Samuelson, Foundations of Economic Analysis (Cambridge, MA: Harvard University Press, 1947).
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New tools for studying markets

A second feature that has been incorporated into this book is the presentation of a num-
ber of new tools for explaining market equilibria. These include techniques for describing
pricing in single markets, such as increasingly sophisticated models of monopolistic pric-
ing or models of the strategic relationships among firms that use game theory. They also
include general equilibrium tools for simultaneously exploring relationships among many
markets. As we shall see, all these new techniques help to provide a more complete and
realistic picture of how markets operate.

The economics of uncertainty and information

A final major theoretical advance during the postwar period was the incorporation of
uncertainty and imperfect information into economic models. Some of the basic assump-
tions used to study behavior in uncertain situations were originally developed in the
1940s in connection with the theory of games. Later developments showed how these
ideas could be used to explain why individuals tend to be adverse to risk and how they
might gather information to reduce the uncertainties they face. In this book, problems of
uncertainty and information enter the analysis on many occasions.

Computers and empirical analysis

One final aspect of the postwar development of microeconomics should be mentioned—
the increasing use of computers to analyze economic data and build economic models.
As computers have become able to handle larger amounts of information and carry out
complex mathematical manipulations, economists’ ability to test their theories has dra-
matically improved. Whereas previous generations had to be content with rudimentary
tabular or graphical analyses of real-world data, today’s economists have available a wide
variety of sophisticated techniques together with extensive microeconomic data with
which to test their models. To examine these techniques and some of their limitations
would be beyond the scope and purpose of this book. However, the Extensions at the end
of most chapters are intended to help you start reading about some of these applications.

This chapter provided background on how economists
approach the study of the allocation of resources. Much of
the material discussed here should be familiar to you from
introductory economics. In many respects, the study of
economics represents acquiring increasingly sophisticated
tools for addressing the same basic problems. The purpose
of this book (and, indeed, of most upper-level books on
economics) is to provide you with more of these tools. As a
starting place, this chapter reminded you of the following

points:

o Economics is the study of how scarce resources are

o The most commonly used economic model is the
supply-demand model first thoroughly developed by
Alfred Marshall in the latter part of the nineteenth cen-
tury. This model shows how observed prices can be
taken to represent an equilibrium balancing of the pro-
duction costs incurred by firms and the willingness of
demanders to pay for those costs.

o Marshall’s model of equilibrium is only “partial’—that
is, it looks only at one market at a time. To look at many
markets together requires an expanded set of general
equilibrium tools.

allocated among alternative uses. Economists seek to
develop simple models to help understand that process.
Many of these models have a mathematical basis
because the use of mathematics offers a precise short-
hand for stating the models and exploring their conse-
quences.

Testing the validity of an economic model is perhaps
the most difficult task economists face. Occasionally, a
model’s validity can be appraised by asking whether it
is based on ‘“reasonable” assumptions. More often,
however, models are judged by how well they can
explain economic events in the real world.
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Microeconomic models are constructed using a wide variety of mathematical techniques.
In this chapter we provide a brief summary of some of the most important techniques
that you will encounter in this book. A major portion of the chapter concerns mathemati-
cal procedures for finding the optimal value of some function. Because we will frequently
adopt the assumption that an economic actor seeks to maximize or minimize some func-
tion, we will encounter these procedures (most of which are based on calculus) many
times.

After our detailed discussion of the calculus of optimization, we turn to four topics
that are covered more briefly. First, we look at a few special types of functions that arise
in economics. Knowledge of properties of these functions can often be helpful in solving
problems. Next, we provide a brief summary of integral calculus. Although integration is
used in this book far less frequently than is differentiation, we will nevertheless encounter
situations where we will want to use integrals to measure areas that are important to eco-
nomic theory or to add up outcomes that occur over time or across many individuals.
One particular use of integration is to examine problems in which the objective is to max-
imize a stream of outcomes over time. Our third added topic focuses on techniques to be
used for such problems in dynamic optimization. Finally, Chapter 2 concludes with a
brief summary of mathematical statistics, which will be particularly useful in our study of
economic behavior in uncertain situations.

MAXIMIZATION OF A FUNCTION OF h
ONE VARIABLE

We can motivate our study of optimization with a simple example. Suppose that a man-
ager of a firm desires to maximize' the profits received from selling a particular good.
Suppose also that the profits (n) received depend only on the quantity () of the good
sold. Mathematically,

n=f(q). (2.1)

Figure 2.1 shows a possible relationship between m and g. Clearly, to achieve maximum
profits, the manager should produce output g, which yields profits *. If a graph such as
that of Figure 2.1 were available, this would seem to be a simple matter to be accom-
plished with a ruler.

'Here we will generally explore maximization problems. A virtually identical approach would be taken to study minimization
problems because maximization of f(x) is equivalent to minimizing —f (x).

21
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pothetical
elationship between
Quantity Produced and
Profits

If a manager wishes to produce the level of output that maximizes profits, then q* should be produced.
Notice that at g*, dr/dg = 0.
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Suppose, however, as is more likely, the manager does not have such an accurate
picture of the market. He or she may then try varying g to see where a maximum
profit is obtained. For example, by starting at g, profits from sales would be ;. Next,
the manager may try output q,, observing that profits have increased to m,. The com-
monsense idea that profits have increased in response to an increase in g can be stated
formally as

T, — T

>0 or An >0, (22)
Q2= q Aq

where the A notation is used to mean “the change in” © or g. As long as An/Aq is posi-

tive, profits are increasing and the manager will continue to increase output. For increases

in output to the right of q*, however, An/Ag will be negative, and the manager will realize

that a mistake has been made.

Derivatives

As you probably know, the limit of An/Ag for small changes in g is called the derivative
of the function, © = f(q), and is denoted by dr/dq or df/dq or f'(g). More formally, the
derivative of a function © = f(q) at the point g, is defined as

dn _df . flen+h)—f(q)
d_q_d_q_}fi% h ‘ 23)

Notice that the value of this ratio obviously depends on the point g; that is chosen. The
derivative of a function may not always exist or it may be undefined at certain points.
Most of the functions studied in this book are fully differentiable, however.

Value of the derivative at a point

A notational convention should be mentioned: Sometimes we wish to note explicitly the
point at which the derivative is to be evaluated. For example, the evaluation of the deriva-
tive at the point g = ¢q; could be denoted by

dn

d_q . (2.4)

=q
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At other times, we are interested in the value of dn/dq for all possible values of ¢, and no
explicit mention of a particular point of evaluation is made.
In the example of Figure 2.1,

dm

- 0,
dq -

9=q
whereas

dm

d_q < 0.

q9=q3

What is the value of dn/dq at ¢"? It would seem to be 0 because the value is positive for
values of q less than ¢* and negative for values of q greater than g*. The derivative is the
slope of the curve in question; this slope is positive to the left of g* and negative to the
right of g". At the point g, the slope of f(g) is 0.

First-order condition for a maximum

This result is general. For a function of one variable to attain its maximum value at some
point, the derivative at that point (if it exists) must be 0. Hence if a manager could esti-
mate the function f(q) from some sort of real-world data, it would theoretically be possi-
ble to find the point where df/dg = 0. At this optimal point (say, g*),

4

=0. (2.5)
dq =7

Second-order conditions

An unsuspecting manager could be tricked, however, by a naive application of this
first-derivative rule alone. For example, suppose that the profit function looks like that
shown in either Figure 2.2a or 2.2b. If the profit function is that shown in Figure
2.2a, the manager, by producing where dr/dg = 0, will choose point g’. This point in
fact yields minimum, not maximum, profits for the manager. Similarly, if the profit
function is that shown in Figure 2.2b, the manager will choose point g, which,
although it yields a profit greater than that for any output lower than gj, is certainly
inferior to any output greater than g;. These situations illustrate the mathematical fact
that dn/dq = 0 is a necessary condition for a maximum, but not a sufficient condition.
To ensure that the chosen point is indeed a maximum point, a second condition must
be imposed.

Intuitively, this additional condition is clear: The profit available by producing either a
bit more or a bit less than g" must be smaller than that available from g". If this is not true,
the manager can do better than g*. Mathematically, this means that dn/dg must be greater
than 0 for g < " and must be less than 0 for g > g". Therefore, at g%, dn/dg must be decreas-
ing. Another way of saying this is that the derivative of dn/dgq must be negative at q".

Second derivatives
The derivative of a derivative is called a second derivative and is denoted by

d’n d?
e or d_quc or f"(q).
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0 Profit Functions
hat Give Misleading
Results If the First
Derivative Rule Is
Applied Uncritically

In (a), the application of the first derivative rule would result in point g’ being chosen. This point is in
fact a point of minimum profits. Similarly, in (b), output level g; would be recommended by the first
derivative rule, but this point is inferior to all outputs greater than g;. This demonstrates graphically that
finding a point at which the derivative is equal to 0 is a necessary, but not a sufficient, condition for a
function to attain its maximum value.
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The additional condition for g* to represent a (local) maximum is therefore
d2
= =r@ <o (2.6)
1 lg=q a=q'

where the notation is again a reminder that this second derivative is to be evaluated at g".

Hence although Equation 2.5 (dn/dq = 0) is a necessary condition for a maximum, that
equation must be combined with Equation 2.6 (d’n/dq” < 0) to ensure that the point is a
local maximum for the function. Therefore, Equations 2.5 and 2.6 together are sufficient con-
ditions for such a maximum. Of course, it is possible that by a series of trials the manager
may be able to decide on g* by relying on market information rather than on mathematical
reasoning (remember Friedman’s pool-player analogy). In this book we shall be less inter-
ested in how the point is discovered than in its properties and how the point changes when
conditions change. A mathematical development will be helpful in answering these questions.

Rules for finding derivatives

Here are a few familiar rules for taking derivatives of a function of a single variable. We
will use these at many places in this book.

1. If ais a constant, then
2. If ais a constant, then

3. Ifais a constant, then
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4 dinx 1
odx x

where In signifies the logarithm to the base e (= 2.71828).

5. dix = a*Ina for any constant a
A particular case of this rule is de*/dx = e".

Now suppose that f(x) and g(x) are two functions of x and that f'(x) and g’(x)

exist. Then:
dlf(x)+ g(x , ,

o A _py Ly
d[f(x).g(x)]

7. S f0)g () +F (1)),
d1f(x)/g(x)] _f(2)glx) ~ Fx)g ()

8. = ,
dx [g(x))?
provided that g(x) # 0.
Finally, if y = f(x) and x = g(z) and if both f’(x) and g’(2) exist, then
9 dy dy dx df dg
" dz dx dz dx dz
This result is called the chain rule. It provides a convenient way to study how
one variable (z) affects another variable (y) solely through its influence on some in-
termediate variable (x). Some examples are
10 de™  de™ d(ax) g g
" odx o d(ax) dx '
dln(ax)] d[n(ax)] d(ax) 1 1
11. = : =—.a=-
dx d(ax) dx  ax X
L dinG)] _dlin()] de) 1 2
dx d(x?) dx  x? x

EXAMPLE 2.1 Profit Maximization

Suppose that the relationship between profits (n) and quantity produced (q) is given by
n(q) = 1,000q — 5¢*. (2.7)

A graph of this function would resemble the parabola shown in Figure 2.1. The value of g that
maximizes profits can be found by differentiation:
dm

— = 1,000 — 10g = 0, 28
i q (2.8)

thus
q° = 100. (2.9)

At g = 100, Equation 2.7 shows that profits are 50,000—the largest value possible. If, for example,
the firm opted to produce g = 50, profits would be 37,500. At ¢ = 200, profits are precisely 0.

That g = 100 is a “global” maximum can be shown by noting that the second derivative of
the profit function is —10 (see Equation 2.8). Hence the rate of increase in profits is always
decreasing—up to g = 100 this rate of increase is still positive, but beyond that point it becomes
negative. In this example, ¢ = 100 is the only local maximum value for the function n. With
more complex functions, however, there may be several such maxima.

QUERY: Suppose that a firm’s output (q) is determined by the amount of labor (J) it hires according
to the function g = 2+/I. Suppose also that the firm can hire all the labor it wants at $10 per unit and
sells its output at $50 per unit. Therefore, profits are a function of I given by n(I) = 100+/] — 10L.
How much labor should this firm hire to maximize profits, and what will those profits be?
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FUNCTIONS OF SEVERAL VARIABLES R

Economic problems seldom involve functions of only a single variable. Most goals of in-
terest to economic agents depend on several variables, and trade-offs must be made
among these variables. For example, the utility an individual receives from activities as a
consumer depends on the amount of each good consumed. For a firm’s production func-
tion, the amount produced depends on the quantity of labor, capital, and land devoted to
production. In these circumstances, this dependence of one variable (y) on a series of
other variables (x;, x5, ..., x,,) is denoted by

Y =f(x1, X25 o005 Xn). (2.10)

Partial derivatives

We are interested in the point at which y reaches a maximum and in the trade-offs that
must be made to reach that point. It is again convenient to picture the agent as changing
the variables at his or her disposal (the x’s) to locate a maximum. Unfortunately, for a
function of several variables, the idea of the derivative is not well defined. Just as the
steepness of ascent when climbing a mountain depends on which direction you go, so
does the slope (or derivative) of the function depend on the direction in which it is taken.
Usually, the only directional slopes of interest are those that are obtained by increasing
one of the x’s while holding all the other variables constant (the analogy for mountain
climbing might be to measure slopes only in a north-south or east-west direction). These
directional slopes are called partial derivatives. The partial derivative of y with respect to
(i.e., in the direction of) x; is denoted by

9 of
o or o or f, or f.

It is understood that in calculating this derivative all the other x’s are held constant.
Again it should be emphasized that the numerical value of this slope depends on the

value of x; and on the (preassigned and constant) values of x5, ..., x,,.
A somewhat more formal definition of the partial derivative is
of :limf(x1—&—h,xz,...,xn)—f(xl,xz,...,xn), 2.11)
Oxily 5 h=0 h

where the notation is intended to indicate that x,, ..., x,, are all held constant at the preas-
signed values X, ..., X, so the effect of changing x; only can be studied. Partial deriva-
tives with respect to the other variables (x,, ..., x,,) would be calculated in a similar way.

Calculating partial derivatives

It is easy to calculate partial derivatives. The calculation proceeds as for the usual deriva-
tive by treating x,, ..., x,, as constants (which indeed they are in the definition of a partial
derivative). Consider the following examples.

1. If y = f(x1, x2) = ax? + bx;x; + cx3, then

0
8—£:ﬁ:2ax1+bx2

and

7]
a—j;:fz = bx; + 2cx;.
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Notice that Jf/0x, is in general a function of both x; and x,; therefore, its value will
depend on the particular values assigned to these variables. It also depends on the param-
eters a, b, and ¢, which do not change as x; and x, change.

2. If y = f(x1, x5) = e™ 7% then

ﬁ :fl _ aealerbxz

8x1
and
of
= —b ax1+bxz'
8x2 f2 ¢
3. If y = f(x1, x5) = aln x; + b In x,, then
of . a
o T
and
of . b
e

Notice here that the treatment of x, as a constant in the derivation of Jf/0x; causes the
term b In x, to disappear on differentiation because it does not change when x; changes.
In this case, unlike our previous examples, the size of the effect of x; on y is independent
of the value of x,. In other cases, the effect of x; on y will depend on the level of x,.

Partial derivatives and the ceteris paribus assumption

In Chapter 1, we described the way in which economists use the ceteris paribus assumption
in their models to hold constant a variety of outside influences so the particular relationship
being studied can be explored in a simplified setting. Partial derivatives are a precise mathe-
matical way of representing this approach; that is, they show how changes in one variable
affect some outcome when other influences are held constant—exactly what economists need
for their models. For example, Marshall’s demand curve shows the relationship between price
(p) and quantity (q) demanded when other factors are held constant. Using partial deriva-
tives, we could represent the slope of this curve by 9q/0p to indicate the ceteris paribus
assumptions that are in effect. The fundamental law of demand—that price and quantity
move in opposite directions when other factors do not change—is therefore reflected by the
mathematical statement dg/0p < 0. Again, the use of a partial derivative serves as a reminder
of the ceteris paribus assumptions that surround the law of demand.

Partial derivatives and units of measurement

In mathematics relatively little attention is paid to how variables are measured. In fact,
most often no explicit mention is made of the issue. However, the variables used in eco-
nomics usually refer to real-world magnitudes; therefore, we must be concerned with
how they are measured. Perhaps the most important consequence of choosing units of
measurement is that the partial derivatives often used to summarize economic behavior
will reflect these units. For example, if q represents the quantity of gasoline demanded by
all U.S. consumers during a given year (measured in billions of gallons) and p represents
the price in dollars per gallon, then dq/0p will measure the change in demand (in billions
of gallons per year) for a dollar per gallon change in price. The numerical size of this
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derivative depends on how g and p are measured. A decision to measure consumption in
millions of gallons per year would multiply the size of the derivative by 1,000, whereas a
decision to measure price in cents per gallon would reduce it by a factor of 100.

The dependence of the numerical size of partial derivatives on the chosen units of mea-
surement poses problems for economists. Although many economic theories make predic-
tions about the sign (direction) of partial derivatives, any predictions about the numerical
magnitude of such derivatives would be contingent on how authors chose to measure their
variables. Making comparisons among studies could prove practically impossible, especially
given the wide variety of measuring systems in use around the world. For this reason, econ-
omists have chosen to adopt a different, unit-free way to measure quantitative impacts.

Elasticity—A general definition

Economists use elasticities to summarize virtually all the quantitative impacts that are of
interest to them. Because such measures focus on the proportional effect of a change in
one variable on another, they are unit-free—the units “cancel out” when the elasticity is
calculated. For example, suppose that y is a function of x (which we can denote by y(x)).
Then the elasticity of y with respect to x (which we will denote by e, ) is defined as

(2.12)

If the variable y depends on several variables in addition to x (as will often be the case), the de-
rivative in Equation 2.12 would be replaced by a partial derivative. In either case, notice how
the units in which y and x are measured cancel out in the definition of elasticity; the result is a
figure that is a pure number with no dimensions. This makes it possible for economists to
compare elasticities across different countries or across rather different goods. You should al-
ready be familiar with the price elasticities of demand and supply usually encountered in a
first economics course. Throughout this book you will encounter many more such concepts.

EXAMPLE 2.2 Elasticity and Functional Form

The definition in Equation 2.12 makes clear that elasticity should be evaluated at a specific point
on a function. In general the value of this parameter would be expected to vary across different
ranges of the function. This observation is most clearly shown in the case where y is a linear
function of x of the form

y = a+ bx + other terms.
In this case,

x
=p.— 213
a+bx+... 12

dy x X
e),,x:—y—:b_

dx y y
which makes clear that e, is not constant. Hence for linear functions it is especially important
to note the point at which elasticity is to be computed.

If the functional relationship between y and x is of the exponential form
y = ax’,
then the elasticity is a constant, independent of where it is measured:

L JF SR S
P dx y axt
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A logarithmic transformation of this equation also provides a convenient alternative definition
of elasticity. Because

Iny=Ina+blnx,
we have

_dlny
" dlnx’

ey =b (2.14)

Hence elasticities can be calculated through “logarithmic differentiation.” As we shall see, this is
frequently the easiest way to proceed in making such calculations.

QUERY: Are there any functional forms in addition to the exponential that have a constant
elasticity, at least over some range?

Second-order partial derivatives

The partial derivative of a partial derivative is directly analogous to the second derivative

of a function of one variable and is called a second-order partial derivative. This may
written as

9(0f | 0xi)

an
or more simply as

0*f
=f.. 21
axjﬁxi fl] ( 5)

For the examples discussed previously:

1. y=f(x,x)=ax + bxyx; +cx;

fir =2a
f="b
fa=b
fa2 = 2c
2 y=flx.x) = i+
fo=a M1+

f12 _ abeax1+bx2
f21 — abeax1+bx2

f22 _ bzeux1+bxz

3. y=alnx +blnx,
fir = —ax;?
fz=0
fu=0

for = —bx;?

be
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Young'’s theorem

These examples illustrate the mathematical result that, under general conditions, the
order in which partial differentiation is conducted to evaluate second-order partial deriv-
atives does not matter. That is,

fi=F; (2.16)

for any pair of variables x;, x;. This result is sometimes called Young’s theorem. For an in-
tuitive explanation of the theorem, we can return to our mountain-climbing analogy. In
this example, the theorem states that the gain in elevation a hiker experiences depends on
the directions and distances traveled, but not on the order in which these occur. That is,
the gain in altitude is independent of the actual path taken as long as the hiker proceeds
from one set of map coordinates to another. He or she may, for example, go one mile
north, then one mile east or proceed in the opposite order by first going one mile east,
then one mile north. In either case, the gain in elevation is the same because in both cases
the hiker is moving from one specific place to another. In later chapters we will make
good use of this result because it provides a convenient way of showing some of the pre-
dictions that economic models make about behavior.”

Uses of second-order partials

Second-order partial derivatives will play an important role in many of the economic the-
ories that are developed throughout this book. Probably the most important examples
relate to the “own” second-order partial, f;;. This function shows how the marginal influ-
ence of x; on y (i.e., dy/Ox;) changes as the value of x; increases. A negative value for f;; is
the mathematical way of indicating the economic idea of diminishing marginal effective-
ness. Similarly, the cross-partial f;; indicates how the marginal effectiveness of x; changes
as x; increases. The sign of this effect could be either positive or negative. Young’s theo-
rem indicates that, in general, such cross-effects are symmetric. More generally, the sec-
ond-order partial derivatives of a function provide information about the curvature of
the function. Later in this chapter we will see how such information plays an important
role in determining whether various second-order conditions for a maximum are satis-
fied. They also play an important role in determining the signs of many important deriva-
tives in economic theory.

The chain rule with many variables

Calculating partial derivatives can be rather complicated in cases where some variables
depend on other variables. As we will see, in many economic problems it can be hard to
tell exactly how to proceed in differentiating complex functions. In this section we illus-
trate a few simple cases that should help you to get the general idea. We start with look-
ing at how the “chain rule” discussed earlier in a single variable context can be
generalized to many variables. Specifically, suppose that y is a function of three variables,
¥y = f(x1, X2, x3). Suppose further that each of these x’s is itself a function of a single pa-
rameter, say a. Hence we can write y = f[x;(a), x,(a), x3(a)]. Now we can ask how a
change in a affects the value of y, using the chain rule:
dy Of dx;  Of dx, Of dxs

L= 217
da Ox, da +8x2 da +8x3 da 217)

*Young’s theorem implies that the matrix of the second-order partial derivatives of a function is symmetric. This symmetry
offers a number of economic insights. For a brief introduction to the matrix concepts used in economics, see the Extensions to
this chapter.
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In words, changes in a affect each of the x’s, and then these changes in the x’s affect the
final value of y. Of course, some of the terms in this expression may be zero. That would
be the case if one of the X’s is not affected by a or if a particular x had no effect on y (in
which case it should not be in the function). But this version of the chain rule shows that
a can influence y through many routes.” In our economic models we will want to be sure
that all those routes are taken into account.

EXAMPLE 2.3 Using the Chain Rule

As a simple (and probably unappetizing) example, suppose that each week a pizza fanatic
consumes three kinds of pizza, denoted by x;, x,, and x3. Type 1 pizza is a simple cheese pizza
costing p per pie. Type 2 pizza adds two toppings and costs 2p. Type 3 pizza is the house
special, which includes five toppings and costs 3p. To ensure a (modestly) diversified menu, this
fanatic decides to allocate $30 each week to each type of pizza. Here we wish to examine how
the total number of pizzas purchased is affected by the underlying price p. Notice that this
problem includes a single exogenous variable, p, which is set by the pizza shop. The quantities of
each pizza purchased (and total purchases) are the endogenous variables in the model.

Because of the way this fanatic budgets his pizza purchases, the quantity purchased of each
type depends only on the price p. Specifically, x; = 30/p, x, = 30/2p, x3 = 30/3p. Now total
pizza purchases (y) are given by

y = fx1(p), %2(p), x3(p)] = x1(p) + x2(p) + x3(p) (2.18)
Applying the chain rule from Equation 2.17 to this function yields:

Z—; =f -Z—’; +£ -Z—’; + £ -i—’; =—30p 2 —15p 2 —10p 2 = —55p 2 (2.19)
We can interpret this with a numerical illustration. Suppose that initially p = 5. With this price
total pizza purchases will be 11 pies. Equation 2.19 implies that each unit price increase would
reduce purchases by 2.2 (= 55/25) pies, but such a change is too large for calculus (which
assumes small changes) to work correctly. Therefore, instead, let’s assume p increases by 5 cents
to p = 5.05. Equation 2.19 now predicts that total pizza purchases will decrease by 0.11 pies
(0.05 x 55/25). If we calculate pie purchases directly we get x; = 5.94, x, = 2.97, x3 = 1.98.
Hence total pies purchased are 10.89—a reduction of 0.11 from the original level, just what was
predicted by Equation 2.19.

QUERY: It should be obvious that a far easier way to solve this problem would be to define
total pie purchases (y) directly as a function of p. Provide a proof using this approach, and then
describe some reasons why this simpler approach may not always be possible to implement.

One special case of this chain rule might be explicitly mentioned here. Suppose x3(a) =
a. That is, suppose that the parameter a enters directly into the determination of
y = flx1(a), x(a), a]. In this case the effect of a on y can be written as:*

d_of dn Of dx  of

da O0x; da Ox, da Oa 220

*If the x’s in Equation 2.17 depended on several parameters, all the derivatives in the equation would be partial derivatives to
indicate that the chain rule looks at the effect of only one parameter at a time, holding the others constant.

“The expression in Equation 2.20 is sometimes called the total derivative or full derivative of the function f, although this usage
is not consistent across various fields of applied mathematics.
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This shows that the effect of a on y can be decomposed into two different kinds of effects:
(1) a direct effect (which is given by f,); and (2) an indirect effect that operates only
through the ways in which a affects the x’s. In many economic problems, analyzing these
two effects separately can provide a number of important insights.

Implicit functions

If the value of a function is held constant, an implicit relationship is created among the
independent variables that enter into the function. That is, the independent variables can
no longer take on any values, but must instead take on only that set of values that result
in the function’s retaining the required value. Examining these implicit relationships can
often provide another analytical tool for drawing conclusions from economic models.

Probably the most useful result provided by this approach is in the ability to quantify
the trade-offs inherent in most economic models. Here we will look at a simple case.
Consider the function y = f(x;, x,). If we hold the value of y constant, we have created
an implicit relationship between the x’s showing how changes in them must be related to
keep the value of the function constant. In fact, under fairly general conditions” (the most
important of which is that f, # 0) it can be shown that holding y constant allows the cre-
ation of an implicit function of the form x, = g(x;). Although computing this function
may sometimes be difficult, the derivative of the function g is related in a specific way to
the partial derivatives of the original function f. To show this, first set the original func-
tion equal to a constant (say, zero) and write the function as

y=0=f(x1, x2) = f(x1, g(x1)) (2.21)

Using the chain rule to differentiate this relationship with respect to x; yields:

0:ﬁ+ﬁ.%xﬂ (2.22)

Rearranging terms gives the final result that

dg(x:) _ dx, _ h
e d_x1 = —]72. (2.23)

Thus, we have shown® that the partial derivatives of the function f can be used to derive
an explicit expression for the trade-offs between x; and x,. The next example shows how
this can make computations much easier in certain situations.

EXAMPLE 2.4 A Production Possibility Frontier—Again

In Example 1.3 we examined a production possibility frontier for two goods of the form
x% + 0.25y% = 200. (2.24)

Because this function is set equal to a constant, we can study the relationship between the
variables by using the implicit function result:

*For a detailed discussion of this implicit function theorem and of how it can be extended to many variables, see Carl P. Simon
and Lawrence Blume, Mathematics for Economists (New York: W.W. Norton, 1994), chapter 15.

®An alternative approach to proving this result uses the total differential of f: dy = fi dx; + f, dx,. Setting dy = 0 and rearrang-
ing terms gives the same result (assuming one can make the mathematically questionable move of dividing by dx;).
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dy _ ofe T2x A (2.25)
 f, 05 y~ '

which is precisely the result we obtained earlier, with considerably less work.

QUERY: Why does the trade-off between x and y here depend only on the ratio of x to y and
not on the size of the labor force as reflected by the 200 constant?

MAXIMIZATION OF FUNCTIONS OF h
SEVERAL VARIABLES

Using partial derivatives allows us to find the maximum value for a function of several
variables. To understand the mathematics used in solving this problem, an analogy to the
one-variable case is helpful. In this one-variable case, we can picture an agent varying x
by a small amount, dx, and observing the change in y, dy. This change is given by

dy = f'(x)dx. (2.26)

The identity in Equation 2.26 records the fact that the change in y is equal to the change
in x times the slope of the function. This formula is equivalent to the point-slope formula
used for linear equations in basic algebra. As before, the necessary condition for a maxi-
mum is that dy = 0 for small changes in x around the optimal point. Otherwise, y could
be increased by suitable changes in x. But because dx does not necessarily equal 0 in
Equation 2.26, dy = 0 must imply that at the desired point, f'(x) = 0. This is another
way of obtaining the first-order condition for a maximum that we already derived.

Using this analogy, let’s look at the decisions made by an economic agent who must
choose the levels of several variables. Suppose that this agent wishes to find a set of x’s
that will maximize the value of y = f(x, x,, ..., x,,). The agent might consider changing
only one of the x’s, say x;, while holding all the others constant. The change in y (i.e., dy)
that would result from this change in x; is given by

of
dy = 8_x1dx1 = f,dx;. (2.27)
This says that the change in y is equal to the change in x; times the slope measured in
the x; direction. Using the mountain analogy again, the gain in altitude a climber heading
north would achieve is given by the distance northward traveled times the slope of the
mountain measured in a northward direction.

First-order conditions for a maximum

For a specific point to provide a (local) maximum value to the function f it must be the
case that no small movement in any direction can increase its value. Hence all the direc-
tional terms similar to Equation 2.27 must not increase y, and the only way this can hap-
pen is if all the directional (partial) derivatives are zero (remember, the term dx; in
Equation 2.27 could be either positive or negative). That is, a necessary condition for a
point to be a local maximum is that at this point:

fi=h=--=f=0 (2.28)

Technically, a point at which Equation 2.25 holds is called a critical point of the function.
It is not necessarily a maximum point unless certain second-order conditions (to be
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discussed later) hold. In most of our economic examples, however, these conditions will
hold; thus, Equation 2.28 will allow us to find a maximum.

The necessary “first-order” conditions for a maximum described by Equation 2.28 also
have an important economic interpretation. They say that for a function to reach its max-
imal value, any input to the function must be increased up to the point at which its mar-
ginal (or incremental) value to the function is zero. If, say, f; were positive at a point, this
could not be a true maximum because an increase in x; (holding all other variables con-
stant) would, by Equation 2.27, increase f.

EXAMPLE 2.5 Finding a Maximum

Suppose that y is a function of x; and x, given by

y=—(x1—1)* — (%, —2)* +10 (2.29)

or
yzffoerl fx§+4x2+5.

For example, y might represent an individual’s health (measured on a scale of 0 to 10), and x;
and x, might be daily dosages of two health-enhancing drugs. We wish to find values for x; and
x, that make y as large as possible. Taking the partial derivatives of y with respect to x; and x,
and applying the necessary conditions given by Equation 2.28 yields

(;9_)’ =-2x1+2=0,
a’; (2.30)
or
5 R
553 =X

Therefore, the function is at a critical point when x; = 1, x, = 2. At that point, y = 10 is the
best health status possible. A bit of experimentation provides convincing evidence that this is
the greatest value y can have. For example, if x; = x, = 0, then y = 5, or if x; = x, = 1, then
y = 9. Values of x; and x, larger than 1 and 2, respectively, reduce y because the negative
quadratic terms in Equation 2.29 become large. Consequently, the point found by applying the
necessary conditions is in fact a local (and global) maximum.”

QUERY: Suppose y took on a fixed value (say, 5). What would the relationship implied between
x; and x;, look like? How about for y = 72 Or y = 10? (These graphs are contour lines of the
function and will be examined in more detail in several later chapters. See also Problem 2.1.)

Second-order conditions

Again, however, the conditions of Equation 2.28 are not sufficient to ensure a maximum.
This can be illustrated by returning to an already overworked analogy: All hilltops are (more
or less) flat, but not every flat place is a hilltop. A second-order condition is needed to
ensure that the point found by applying Equation 2.28 is a local maximum. Intuitively, for a
local maximum, y should be decreasing for any small changes in the x’s away from the criti-
cal point. As in the single variable case, this involves looking at the curvature of the function

"More formally, the point x; = 1, x, = 2 is a global maximum because the function described by Equation 2.29 is concave (see
our discussion later in this chapter).
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around the critical point to be sure that the value of the function really does decrease for
movements in every direction. To do this we must look at the second partial derivatives of
the function. A first condition (that draws in obvious ways from the single variable case) is
that the own second partial derivative for any variable (f;) must be negative. If we confine
our attention only to movements in a single direction, a true maximum must be character-
ized by a pattern in which the slope of the function goes from positive (up), to zero (flat), to
negative (down). That is what the mathematical condition f; < 0 means. Unfortunately, the
conditions that assure the value of f decreases for movements in any arbitrary direction
involve all the second partial derivatives. A two-variable example is discussed later in this
chapter, but the general case is best discussed with matrix algebra (see the Extensions to this
chapter). For economic theory, however, the fact that the own second partial derivatives
must be negative for a maximum is often the most important fact.

THE ENVELOPE THEOREM h

One major application of the idea of implicit functions, which will be used many times in
this book, is called the envelope theorem; it concerns how the optimal value for a particu-
lar function changes when a parameter of the function changes. Because many of the eco-
nomic problems we will be studying concern the effects of changing a parameter (e.g., the
effects that changing the market price of a commodity will have on an individual’s pur-
chases), this is a type of calculation we will frequently make. The envelope theorem often
provides a nice shortcut to solving the problem.

A specific example

Perhaps the easiest way to understand the envelope theorem is through an example. Sup-
pose y is a function of a single variable (x) and a parameter (a) given by

y= —x% + ax. (2.31)

For different values of the parameter a, this function represents a family of inverted
parabolas. If a is assigned a specific value, Equation 2.31 is a function of x only, and the
value of x that maximizes y can be calculated. For example, if a = 1, then x* = 1 and, for
these values of x and a, y = 1 (its maximal value). Similarly, if a = 2, then x* = 1 and y"*
= 1. Hence an increase of 1 in the value of the parameter a has increased the maximum
value of y by 2. In Table 2.1, integral values of a between 0 and 6 are used to calculate the
optimal values for x and the associated values of the objective, y. Notice that as a
increases, the maximal value for y also increases. This is also illustrated in Figure 2.3,
which shows that the relationship between a and y* is quadratic. Now we wish to calcu-
late explicitly how y* changes as the parameter a changes.

TABLE 2.1 OPTIMAL VALUES OF y AND x FOR ALTERNATIVE VALUES OF aIN y = —x* + ax

Value of a Value of x* Value of y*
0 0 0

1
1 1

[SIE

DOl
INTCR

DG N
NS

2
3
4
5
6
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The envelope theorem states that the slope of the relationship between y* (the maximum value of y) and

the parameter a can be found by calculating the slope of the auxiliary relationship found by substituting
stration of the the respective optimal values for x into the objective function and calculating dy/0a.

nvelope Theorem Vs ~

yx»

10
y*=fa)

\_ /

A direct, time-consuming approach

The envelope theorem states that there are two equivalent ways we can make this calcula-
tion. First, we can calculate the slope of the function in Figure 2.3 directly. To do so, we
must solve Equation 2.32 for the optimal value of x for any value of a:

dy
= =-2 =05
x X+ a
hence
. a
X ==
2

Substituting this value of x™ in Equation 2.32 gives

Y =~ 4 ale)
=3 +<(5) 23

a> a*  a

=—3t3 T

and this is precisely the relationship shown in Figure 2.3. From the previous equation, it
is easy to see that
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dy* 2a a

Z _2=2_Z 2.33

da 4 2 2.33)
and, for example, at a = 2, dy*/da = 1. That is, near a = 2 the marginal impact of
increasing a is to increase y* by the same amount. Near a = 6, any small increase in a will
increase y* by three times this change. Table 2.1 illustrates this result.

The envelope shortcut

Arriving at this conclusion was a bit complicated. We had to find the optimal value of x
for each value of a and then substitute this value for x* into the equation for y. In more
general cases this may be burdensome because it requires repeatedly maximizing the
objective function. The envelope theorem, providing an alternative approach, states that
for small changes in a, dy”/da can be computed by holding x at its optimal value and sim-
ply calculating dy/Ja from the objective function directly.

Proceeding in this way gives

dy* 9y _O(—x" + ax)
da  Oa N

9 e =x"(a) (2.34)

x=x"(a)

The notation here is a reminder that the partial derivative used in the envelope theorem
must be evaluated at the value of x, which is optimal for the particular parameter value
for a. In Equation 2.32 we showed that, for any value of a, x"(a) = a/2. Substitution into
Equation 2.34 now yields:
dy* a
= x* a) = — 2.35
da (@) 2 (2.35)

This is precisely the result obtained earlier. The reason that the two approaches yield identi-
cal results is illustrated in Figure 2.3. The tangents shown in the figure report values of y for
a fixed x*. The tangents’ slopes are dy/Ja. Clearly, at y* this slope gives the value we seek.
This result is general, and we will use it at several places in this book to simplify our
analysis. To summarize, the envelope theorem states that the change in the optimal value
of a function with respect to a parameter of that function can be found by partially differ-
entiating the objective function while holding x at its optimal value. That is,
0 236)
where the notation again provides a reminder that dy/Oa must be computed at that value
of x that is optimal for the specific value of the parameter a being examined.

Many-variable case

An analogous envelope theorem holds for the case where y is a function of several varia-
bles. Suppose that y depends on a set of x’s (xy, ..., x,,) and on a particular parameter of
interest, say, a:

y=f(x1,..., X, Q) (2.37)

Finding an optimal value for y would consist of solving # first-order equations of the form

N _o (i
a—xi—O (i=1,...,n), (2.38)

and a solution to this process would yield optimal values for these x’s (x}, x5, ..., x}})
that would implicitly depend on the parameter a. Assuming the second-order conditions
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are met, the implicit function theorem would apply in this case and ensure that we could
solve each x] as a function of the parameter a:

x; = xi(a),
X =xa), 239
x, = x,(a).

Substituting these functions into our original objective (Equation 2.37) yields an expres-
sion in which the optimal value of y (say, y*) depends on the parameter a both directly
and indirectly through the effect of a on the x™s:

vt =flxi(a)x(a), ..., x,(a), al.
Totally differentiating this expression with respect to a yields

dl*—ﬁ.@+ﬁ.&+...+af.dx” g
da  Ox;, da  Ox, da Ox, da Oa’

(2.40)

But because of the first-order conditions, all these terms except the last are equal to 0 if
the x’s are at their optimal values. Hence again we have the envelope result:

dy*  of
= 2.4
da Oa ( )

where this derivative is to be evaluated at the optimal values for the x’s.

EXAMPLE 2.6 The Envelope Theorem: Health Status Revisited

Earlier, in Example 2.5, we examined the maximum values for the health status function

y=—(x1 -1 —(—2+10 (2.42)
and found that
75 =8
2.43
o, (2.49)
and
y* =10.

Suppose now we use the arbitrary parameter a instead of the constant 10 in Equation 2.42. Here
a might represent a measure of the best possible health for a person, but this value would
obviously vary from person to person. Hence

y=flxnx,0)=—(x— 1) = (x,—2) +a (2.44)

In this case the optimal values for x; and x, do not depend on a (they are always x] =1,
x; = 2); therefore, at those optimal values we have

Yy =a (2.45)

and

*

dy
= 1. (2.46)
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People with “naturally better health” will have concomitantly higher values for y*, providing
they choose x; and x, optimally. But this is precisely what the envelope theorem indicates
because

dy _of

e =1 2.47

da  Oa (247)
from Equation 2.44. Increasing the parameter a simply increases the optimal value for y* by an

identical amount (again, assuming the dosages of x; and x, are correctly chosen).

QUERY: Suppose we focused instead on the optimal dosage for x; in Equation 2.42—that is,
suppose we used a general parameter, say b, instead of 1. Explain in words and using
mathematics why dy"/0b would necessarily be 0 in this case.

CONSTRAINED MAXIMIZATION R

Thus far we have focused our attention on finding the maximum value of a function
without restricting the choices of the x’s available. In most economic problems, however,
not all values for the x’s are feasible. In many situations, for example, it is required that
all the x’s be positive. This would be true for the problem faced by the manager choosing
output to maximize profits; a negative output would have no meaning. In other instances
the x’s may be constrained by economic considerations. For example, in choosing the
items to consume, an individual is not able to choose any quantities desired. Rather,
choices are constrained by the amount of purchasing power available; that is, by this per-
son’s budget constraint. Such constraints may lower the maximum value for the function
being maximized. Because we are not able to choose freely among all the x’s, y may not
be as large as it could be. The constraints would be “nonbinding” if we could obtain the
same level of y with or without imposing the constraint.

Lagrange multiplier method

One method for solving constrained maximization problems is the Lagrange multiplier
method, which involves a clever mathematical trick that also turns out to have a useful
economic interpretation. The rationale of this method is simple, although no rigorous pre-
sentation will be attempted here.® In a previous section, the necessary conditions for a local
maximum were discussed. We showed that at the optimal point all the partial derivatives of
fmust be 0. Therefore, there are n equations (f; = 0 for i = 1, ..., n) in n unknowns (the x’s).
Generally, these equations can be solved for the optimal x’s. When the x’s are constrained,
however, there is at least one additional equation (the constraint) but no additional varia-
bles. Therefore, the set of equations is overdetermined. The Lagrangian technique introdu-
ces an additional variable (the Lagrange multiplier), which not only helps to solve the
problem at hand (because there are now n + 1 equations in # + 1 unknowns), but also has
an interpretation that is useful in a variety of economic circumstances.

The formal problem

More specifically, suppose that we wish to find the values of xy, x5, ..., x,, that maximize

y=f(x1,%2,..., %), (2.48)

SFor a detailed presentation, see A. K. Dixit, Optimization in Economic Theory, 2nd ed. (Oxford: Oxford University Press,
1990), chapter 2.
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subject to a constraint that permits only certain values of the x’s to be used. A general
way of writing that constraint is

g(x1, %2, .., xy) =0 (2.49)

where the function’ g represents the relationship that must hold among all the x’s.

First-order conditions
The Lagrange multiplier method starts with setting up the Lagrangian expression

L =f(x1, %2, ooy X) + Ag(x1, X2, .20y Xn), (2.50)

where A is an additional variable called the Lagrange multiplier. Later we will interpret
this new variable. First, however, notice that when the constraint holds, & and f have the
same value [because g(x;, X, ..., x,) = 0]. Consequently, if we restrict our attention only
to values of the x’s that satisfy the constraint, finding the constrained maximum value of
fis equivalent to finding a critical value of £. Let’s proceed then to do so, treating A also
as a variable (in addition to the x’s). From Equation 2.50, the conditions for a critical
point are:

o<

8_x1_f1 + g1 =0,

o<

87962—](2+7\g2 —0,

(2.51)

oL

a—xn—fn+7\.gn —0,

o<

a:g(xl, X2, .oy Xy) = 0.

The equations comprised by Equation 2.51 are then the conditions for a critical point for
the function &. Notice that there are n 4 1 equations (one for each x and a final one for
A) in n + 1 unknowns. The equations can generally be solved for x;, x,, ..., X,,, and A.
Such a solution will have two properties: (1) The x’s will obey the constraint because the
last equation in 2.51 imposes that condition; and (2) among all those values of x’s that
satisfy the constraint, those that also solve Equation 2.51 will make & (and hence f) as
large as possible (assuming second-order conditions are met). Therefore, the Lagrange
multiplier method provides a way to find a solution to the constrained maximization
problem we posed at the outset."

The solution to Equation 2.51 will usually differ from that in the unconstrained case
(see Equations 2.28). Rather than proceeding to the point where the marginal contribu-
tion of each x is 0, Equation 2.51 requires us to stop short because of the constraint. Only
if the constraint were ineffective (in which case, as we show below, A would be 0) would
the constrained and unconstrained equations (and their respective solutions) agree. These
revised marginal conditions have economic interpretations in many different situations.

?As we pointed out earlier, any function of x;, x5, ..., x,, can be written in this implicit way. For example, the constraint x; + x, = 10
could be written 10