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P R E F A C E  

Control theory originated around 150 years ago when the performance 
of mechanical governors started to be analysed in a mathematical way. Such 
governors act in a stable way if all the roots of some associated polynomi- 
als are contained in the left half of the complex plane. One of the most 
outstanding results of the early period of control theory was the Routh al- 
gorithm, which allowed one to check whether a given polynomial had this 
property. Questions of stability are present in control theory today, and, 
in addition, to technical applications, new ones of economical and biologi- 
cal nature have been added. Control theory has been strongly linked with 
mathematics since World War II. It has had considerable influence on the 
calculus of variations, the theory of differential equations and the theory of 
stochastic processes. 

The aim of Mathematical Control Theory is to give a self-contained 
outline of mathematical control theory. The work consciously concentrates 
on typical and characteristic results, presented in four parts preceded by 
an introduction. The introduction surveys basic concepts and questions of 
the theory and describes typical, motivating examples. 

Part I is devoted to structural properties of linear systems. It contains 
basic results on controllability, observability, stability and stabilizabifity. A 
separate chapter covers realization theory. Toward the end more special 
topics are treated: linear systems with bounded sets of control parameters 
and the so-cMled positive systems. 

Structural properties of nonlinear systems are the content of Part  II, 
which is similar in setting to Part I. It starts from an analysis of control- 
lability and observability and then discusses in great detail stability and 
stabilizability. It also presents typical theorems on nonlinear realizations. 

Part III concentrates on the question of how to find optimal controls. 
It discusses Bellman's optimality principle and its typical applications to 
the linear regulator problem and to impulse control. It gives a proof of 
Pontriagin's maximum principle for classical problems with fixed control 
intervals as well as for time-optimM and impulse control problems. Exis- 
tence problems are considered in the final chapters, which also contain the 
basic Fillipov theorem. 

Part  IV is devoted to infinite dimensional systems. The course is lim- 
ited to linear systems and to the so-called semigroup approach. The first 
chapter treats linear systems without control and is, in a sense, a concise 
presentation of the theory of semigroups of linear operators. The following 
two chapters concentrate on controllability, stability and stabilizability of 



linear systems and the final one on the linear regulator problem in Hilbert 
spaces. 

Besides classical topics the book also discusses less traditional ones. In 
particular great attention is paid to realization theory and to geometrical 
methods of analysis of controllability, observability and stabilizability of 
linear and nonlinear systems. One can find here recent results on positive, 
impulsive and infinite dimensional systems. To preserve some uniformity 
of style discrete systems as well as stochastic ones have not been included. 
This was a conscious compromise. Each would be worthy of a separate 
book. 

Control theory is today a separate branch of mathematics, and each of 
the topics covered in this book has an extensive literature. Therefore the 
book is only an introduction to control theory. 

Knowledge of basic facts from linear algebra, differential equations and 
calculus is required. Only the final part of the book assumes familiarity with 
more advanced mathematics. 

Several unclear passages and mistakes have been removed due to re- 
marks of Professor L. Mikotajczyk and Professor W. Szlenk. The presen- 
tation of the realization theory owes much to discussions with Professor B. 
Jakubczyk. I thank them very much for their help. 

Finally some comments about the arrangement of the material. Suc- 
cessive number of paragraph, theorem, lemma, formula, example, exercise 
is preceded by the number of the chapter. When referring to a paragraph 
from some other parts of the book a latin number of the part is added. 
Numbers of paragraphs, formulae and examples from Introduction are pre- 
ceded by 0 and those from Appendix by letter A. 

Jerzy Zabczyk 



I N T R O D U C T I O N  

In the first part of the Introduction, in a schematic way, basic questions 
of control theory are formulated. The second part describes several specific 
models of control systems giving physical interpretation of the introduced 
parameters. The second part is not necessary for the understanding of the 
following considerations, although mathematical versions of the discussed 
models will often appear. 

w 0 . 1 .  P r o b l e m s  o f  m a t h e m a t i c a l  c o n t r o l  t h e o r y  

A departure point of control theory is the differential equation 

- y ( y ,  y ( 0 )  - �9 e R " ,  (0.1) 

with the right hand side depending on a parameter u from a set U C R m. 
The set U is called the set of control parameters. Differential equations 
depending on a parameter have been objects of the theory of differential 
equations for a long time. In particular an important question of conthauous 
dependence of the solutions on parameters has been asked and answered 
under appropriate conditions. Problems studied in mathematical control 
theory are, however, of different nature, and a basic role in their formulation 
is played by the concept of control. One distinguishes controls of two types: 
open and closed loop. An open loop control can be basically an arbitrary 
function u(-) :  [0, +cr , U, for which the equation 

y(t) -- f (y( t)) ,  u(t)), t >_ O, y(O) = x, (0.2) 

has a well defined solution. 
A closed loop control can be identified with a mapping k" R n 

which may depend on t > 0, such that the equation 
, U ,  

i l ( t ) -  f ( y ( t ) , k ( y ( t ) ) ) ,  t >__ O, y(0) - x, (0.3) 

has a well defined solution. The mapping k(. ) is called feedback. Controls 
are called also strategies or inputs, and the corresponding solutions of (0.2) 
or (0.3) are outputs of the system. 

One of the main aims of control theory is to find a strategy such that 
the corresponding output has desired properties. Depending on the prop- 
erties involved one gets more specific questions. 



2 Introduction 

C o n t r o l l a b i l i t y .  One says that  a state z E [I n is reachable from x in time 
T, if there exists an open loop control u ( - )  such that, for the ou tpu t  y ( - ) ,  
y(O) = x, y ( T ) =  z. if an arbitrary state z is reachable from an arbi trary  
state x in a time T, then the system (0.1) is said to be controllable. In several 
si tuations one requires a weaker property  of transfering an arbi trary state 
into a given one, in particular into the origin. A formulation of effective 
characterizations of controllable systems is an important  task of control 
theory only partially solved. 

S tab i l i zab i l i t y .  An equally important  issue is that of stabilizability. As- 
sume that  for some ~ E R n and fi E U, f(s fi) - 0. A function k: [i n - ; U, 
such that  k(~) - fi, is called a stabilizing feedback if s is a stable equilibrium 
for the system 

i t ( t ) -  f ( y ( t ) , k (y ( t ) ) ) ,  t > O, y(O) -- x. (0.4) 

In the theory of differential equations there exist several methods to deter- 
mine whether a given equilibrium state is a stable one. The question of 
whether, in the class of all equations of the form (0.4), there exists one for 
which ~ is a stable equilibrium is of a new qualitative type. 

O b s e r v a b i l i t y .  In many situations of practical interest one observes not 
the state y(t) but its function h(y(t)),  t >_ O. It is therefore often necessary 
to investigate the pair of equations 

- Y(u,-) ,  u ( 0 ) -  (0.5) 
w -  h(u). (0.6) 

Relation (0.6)is  called an observation equation. The system (0.5)-(0.6)  is 
said to be observable if, knowing a control u ( - )  and an observation w( - ) ,  on 
a given interval [0,T], one can determine uniquely the initial condition x. 

S t a b i l i z a b i l i t y  o f  p a r t i a l l y  o b s e r v a b l e  s y s t e m s .  The constraint  that  
one can use only a partial observation w complicates considerably the sta- 
bilizability problem. Stabilizing feedback should be a function of the obser- 
vation only, and therefore it should be "factorized" by the function h( - ) .  
This  way one is led to a closed loop system of the form 

- / ( v , k ( h ( v ) ) ) ,  (0.7) 

There exists no satisfactory theory which allows one to determine when 
there exists a function k ( - )  such that  a given ~ is a stable equilibrium for 
(0.7). 

R e a l i z a t i o n .  In connection with the full system (0.5)-(0.6)  one poses the 
problem of realization. 



w 0.2. Specific models 3 

For a given initial condition x E R n, system (0.5)-(0.6) defines a map- 
ping which transforms open loop controls u(.  ) onto outputs  given by (0.6): 
w(t) = h(y(t)) ,  t E [0,T]. Denote this transformation by g .  W h a t  are 
its properties? What  conditions should a transformation g satisfy to be 
given by a system of the type (0.5)-(0.6)? How, among all the possible 
"realizations" (0.5)-(0.6) of a transformation R,  do we find the simplest 
one? The transformation g is called an input-output map of the system 
(0.5)- (0.6). 
O p t i m a l i t y .  Besides the above problems of structural character, in control 
theory, with at least the same intensity, one asks optimality questions. In 
the so-called time-optimal problem one is looking for a control which not 
only transfers a state z onto z but does it in the minimal time T. In other 
situations the time T > 0 is fixed and one is looking for a control u( .  ) 
which minimizes the integral 

~0 T g(y(t), u(t)) dt + G(y(T)),  

in which g and G are given functions. A related class of problems consists 
of optimal impulse control. They require however a modified concept of 
strategy. 

S y s t e m s  on  m a n i f o l d s .  Difficulties of a different nature arise if the state 
space is not R n or an open subset of R n but a differential manifold. This is 
particularly so if one is interested in the global properties of a control sys- 
tem. The language and methods of differential geometry in control theory 
are starting to play a role similar to the one they used to play in classical 
mechanics. 

In f in i t e  d i m e n s i o n a l  s y s t e m s .  The problems mentioned above problems 
do not lose their meanings if, instead of ordinary differential equations, one 
takes, as a description of a model, a partial differential equation of parabolic 
or hyperbolic type. The methods of solutions, however become, much more 
complicated. 

w  S p e c i f i c  m o d e l s  

The aim of the examples introduced in this paragraph is to show that  
the models and problems discussed in control theory have an immediate 
real meaning. 

E x a m p l e  0.1. Electrically heated oven. Let us consider a simple model of 
an electrically heated oven, which consists of a jacket with a coil directly 
heating the jacket and of an interior part. Let To denote the outside tem- 
perature. We make a simplifying assumption, that at an arbitrary moment  
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t >_ 0, temperatures  in the jacket and in the interior part  are uniformly 
distributed and equal to T1 (t),T2(t). We assume also tha t  the flow of heat 
through a surface is proportional to the area of the surface and to the differ- 
ence of temperature  between the separated media. Let u(t) be the intensity 
of the heat input produced by the coil at moment  t >_ 0. Let moreover a l, a2 
denote the area of exterior and interior surfaces of the jacket,  cl, c~ denote 
heat capacities of the jacket and the interior of the oven and rl ,  r2 denote 
radiation coefficients of the exterior and interior surfaces of the jacket. An 
increase of heat in the jacket is equal to the amount  of heat produced by the 
coil reduced by the amount  of heat which entered the interior and exterior 
of the oven. Therefore, for the interval [t, t + At], we have the following 
balance: 

c~(Tl(t + A t ) -T~( t ) )  .~ u( t )At-(T~(t ) -T~(t ) )a~r~ A t - (T~( t ) -To )a2r~At .  

Similarly, an increase of heat in the interior of the oven is equal to the 
amount  of heat radiated by the jacket" 

~2(T2(t + A t ) -  T2(t))  - (T~ (t)  - T2 ( t ) ) , , , , ' 2A t .  

Dividing the obtained identities by At and taking the limit, as At I O, we 
obtain 

dT1 
cl--~- -- u - (7'1 - T2)alrl - (T1 - To)a2r2, 

dT2 _ (7"1 T2)a rl C2 - - ~  - -  1 �9 

Let us remark that ,  according to the physical interpretat ion,  u(t) >_ 0 for 
t > 0. Introducing new variables xl = 7'1 - To and x2 - -  T2 - To ,  we have 

I rlal+r2a2 rlol 1[ ]  [xl] cl cl cl 
~" X2 r l a l  r l a l  x2 

c2 c2 

U. 

It is natural  to limit the considerations to the case when z l(0)  > 0 and 
x2(0) > 0. It is physically obvious that  if u(t) > 0 for t ___ 0, then also 
x l ( t )  > 0, x2(t) >_ 0, t >_ 0. One can prove this mathematical ly;  see w 1.4.2. 

Let us assume that  we want to obtain, in the interior part  of the oven, 
a temperature  T and keep it at this level infinitely long. Is this possible? 
Does the answer depend on initial temperatures  T1 > To ,  712 > T o ?  

The  obtained model is a typical example of a positive control system 
discussed in detail in w 1.4.2. 

E x a m p l e  0.2.  Rigid body. When s tudying the motion of a spacecraft it 
as convenient to treat it as a rigid body rotat ing around a fixed point O. 
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Let us regard this point as the origin of an inertial system. In the inertial 
system the motion is described by 

//-F, 

where H denotes the total angular momentum and F the torque produced 
by 2r gas jets located symetrically with respect to O. The torque F is equal 
to ulb 1 + . . .  + urbr, where b l , . . . ,  br are vectors fixed to the spacecraft and 
u 1 , . . . ,  ur - -  are thrusts of the jets. 

Let {et, e2, e3} and {rl, r2, rs} be orthonormal bases of the inertial 
system and the rotating one. There exists exactly one matrix  R such that  
ri = Rei, i = 1,2,3. It determines completely the position of the body. 
Let ft be the angular velocity measured in the inertial system, given in the 
moving system by the formula w = RQ. It is not difficult to show (see [2]) 
that  [ ] 0 w3 -w~ 

- S R ,  where S -  -wa 0 wl . 
w2 - w l  0 

Let J be the inertia matrix. Then the total angular momentum H is 
given by H - R - 1 j .  Inserting this expresion into the equation of motion 
we obtain 

After an elementary transformation we arrive at the Euler equation 

7" 

Jfo - SJw + y ~  uibi. 
i----1 

This equation together with 
k - s R  

characterizes completely the motion of the rotating object. 
From a practical point of view the following questions are of interest: 
Is it possible to transfer a given pair (Ro, wo) to a desirable pair (R1,0), 

using some steering functions u l ( - ) , . . . ,  ur ( - )?  
Can one find feedback controls which slow down the rotational move- 

ment independently on the initial angular velocity? 
While the former question was concerned with controllability, the latter 

one was about stabilizability. 

E x a m p l e  0.3. Wall's governor. Let J be the moment of inertia of the 
flywheel of a steam engine with the rotational speed w(t), t >_ 0. Then 

J& - u -  p, 
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where u and p are torques produced by the action of s team and the weight 
of the cage respectively. This is the basic movement  equation, and Wat t ' s  
governor is a technical implementation of a feedback whose aim is a stable 
action of the steam engine. It consists of two arms with weights m at their 
ends, fixed symetrically to a vertical rod, rotat ing with speed l, where i is 
a positive number. Let ~ denote the angle between the arms and the rod, 
equal to the angle between the bars support ing the arms and at tached to 
the sleeve moving along the rod and to the rod itself. The position of the 
sleeve determines the intensity of the s team input.  If b is the coefficient of 
the frictional force in the hinge joints and g the gravitat ional  acceleration, 
then (see [45]) 

m(5 - ml2w 2 sin ~ cos ~ - mg sin ~p - b#. 

One is looking for a feedback of the form 

u - ~ + k(cos ~o-  cos ~),  

where u, ~ and k are fixed numbers. Introducing a new variable r - ~, one 
obtains a system of three equations 

b 
- l ~w 2 sin ~ cos ~p - g sin ~ - - - r  

m 

tb - k cos ~o + (fi - p - k cos ~).  

Assume tha t  p is constant and let (90, r w0)* be an equilibrium s tate  of 
the above system. For what parameters  of the system is the equil ibrium 
position stable for values p from a given interval? This question has already 
been asked by Maxwell. An answer is provided by stability theory. 

E x a m p l e  0.4. Eleclrical filter. An electrical filter consists of a capacitor 
with capaci ty  C, a resistor with resistance R, two inductors with inductance 
L and a voltage source [45]. Let V(t) be the voltage of the input and I( t )  
the current  in one of the inductors at a moment  t E R. From Kirchoff's law 

daI d~I dI 
L2C--::x-~dt ~ + R L C - ~  + 2L-~  + R I -  U. 

The basic issue here is a relation between the voltage U ( - )  and current  
I ( - ) .  They  can be regarded as the control and the output  of the system. 

Let us assume that  the voltage U( .  ) is a periodic function of a period w. 
Is it true tha t  the current I ( .  ) is also periodic? Let a(w) be the ampl i tude  
of I ( - ) .  For what range of w is the ampl i tude  c~(w) very large or conversely 
very close to zero? In the former case we deal with the amplification of the 
frequences w and in the latter one the frequences w are "filtered" out. 
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E x a m p l e  0.5. Soft landing. Let us consider a spacecraft of total mass M 
moving vertically with the gas thruster directed toward the landing surface. 
Let h be the height of the spacecraft above the surface, u the thrust of 
its engine produced by the expulsion of gas from the jet. The gas is a 
product of the combustion of the fuel. The combustion decreases the total 
mass of the spacecraft, and the thrust u is proportional to the speed with 
which the mass decreases. Assuming that there is no atmosphere above the 
surface and that g is gravitational acceleration, one arrives at the following 
equations [26]" 

, .  

M h  - - g M  + u, (0.8) 

]Q - - k u ,  (0.9) 

with the initial conditions M ( 0 ) -  M0, h ( 0 ) -  h0, h(0) - hi; k a positive 
constant. One imposes additional constraints on the control parameter of 
the type 0 < u < a and M > m, where rn is the mass of the spacecraft 
without fuel. Let us fix T > 0. The soft landing problem consists of finding 
a control u ( - )  such that for the solutions M(- ) ,  h ( . )  of equation (0.8) 

M(t)  > m, h(t) > O, t e [0, T], and h(T) = h(T) - o. 

The problem of the existence of such a control is equivalent to the control- 
lability of the system (0.8)-(0.9). 

A natural optimization question arises when the moment T is not fixed 
and one is minimizing the landing time. The latter problem can be formu- 
lated equivalently as the minimum fuel problem. In fact, let v - h denote 
the velocity of the spacecraft, and let M(t)  > 0 for t e [0, T]. Then 

M(t)  _ - k , ) ( t ) -  gk t e [O,T]. 
M(t)  -- 

Therefore, after integration, 
M ( T ) -  e--v(T)k-gkT+~(O)kM(O). 

Thus a soft landing is taking place at a moment T > 0 (v(T)  - 0) if and 
only if 

M (T) - e -9~Te v(~ M(0). 

Consequently, the minimization of the landing time T is equivalent to the 
minimization of the amount of fuel M ( 0 ) -  M(T)  needed for landing. 

E x a m p l e  0.6. Optimal consumption. The capital y(t) >_ 0 of an economy 
at any moment t is divided into two parts" u(t)y(t) and ( 1 - u ( t ) ) y ( t ) ,  where 
u(t) is a number from the interval [0, 1]. The first part goes for investments 
and contributes to the increase in capital according to the formula 

f t -  uy, y(0)-x>0. 
The remaining part is for consumption evaluated by the satisfaction 

JT(X, u(.  )) -- ((1 -- u(t))y(t)) a dt + ay'*(T). (0.10) 
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In definition (0.10), the number a is nonnegative and a E (0, 1). In the 
described situation one is trying to divide the capital to maximize the 
satisfaction. 

E x a m p l e  0.7. Heating a rod. To fix ideas let us denote by y(t, ~,) the 
temperature of a rod at the moment t > 0 and at the point ~ E [0, L], 
heated with the intensity u(t)b(~), where the value u(t) can be arbitrarily 
chosen: u(t) E R. Assuming additionally that the ends of the rods are 
insulated: u ( t , O ) -  u( t ,L) ,  t > O, and applying elementary laws of the 
heat conduction, one arrives at the following parabolic equation describing 
the evolution of the temperature in the rod" 

oy  (t, - 02y rt 
0--7 + 

y(t,O) - y ( t ,L)  - O, t > O, 

y(0,~) - x(~), ~ e [0, L]. 

t > 0 ,  ~ E ( 0 ,  L), (0.11) 

(0.12) 

(0.13) 

The parameter a in (0.11) is the heat capacity of the rod, and the 
function x ( - )  is the initial distribution of the temperature. 

Let us assume that ~(~), ~ E [0, L] is the required distribution of 
the temperature and T > 0 a fixed moment. The question, whether one 
can heat the rod in such a way to obtain y(T,~) = a3(~), ~ e [0, L], is 
identical to asking whether, for system (0.11)-(0.12), the initial state x ( - )  
can be transferred onto ~(-)  in time T. A practical situation may impose 
additional constraints on the control parameter u of the type u E [0, fi]. 
Under such a constraint, the problem of finding control transferring x ( - )  
and ~(- )  in minimal time is mathematically well posed and has a clear 
physical meaning. 

B i b l i o g r a p h i c a l  n o t e s  

In the development of mathematical control theory the following works 
played an important rble: J.C. Maxwell, On governers [39], N. Wiener, 
Cybernetics or control and communication in the animal and the machine 
[58], R. Bellman, Dynamic Programming [5], L.S. Pontriagin, W.G. Boltian- 
ski, R.W. Gamkrelidze and E.F. Miszczenko, Matemati6eskaja teorija op- 
tymal'nych processow [45], R.E. Kalman, On the general theory of control 
systems [33], T. Waiewski, Syst~mes de commandee t  dquations an con- 
tingent [57], J.L. Lions, Contr61e optimale de systdmes par des dquations 
aux dgrivges partielles [38], W.M. Wonham, Linear multivariable control: 
A geometric approach [61]. 

The model of an electrically heated oven is borrowed from [4]. The 
dynamics of a rigid body is discussed in W.I. Arnold [2]. 
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P A R T  I 

E L E M E N T S  OF C L A S S I C A L  C O N T R O L  T H E O R Y  

Chapter 1 
Controllability and observability 

In this chapter basic information about linear differential equations 
are recalled and the main concepts of control theory, controllability and 
obervability, are studied. Specific formulae for controls transferring one 
state onto another as well as algebraic characterizations of controllable and 
observable systems are obtained. A complete classification of controllable 
systems with one dimensional input is given. 

w 1.1. L inear  di f ferent ia l  e q u a t i o n s  

The basic object of classical control theory is a linear system described 
by a differential equation 

dy 
d--t = Ay( t )  + Bu( t ) ,  y(O) - z E a '~, ( 1 . 1 )  

and an observation relation 

w(t) - Cy( t ) ,  t > O. (1.2) 

Linear transformations A: R n , R n,  B :  R m , R ~ ,  C :  R m , R k 

in (1.1) and (1.2) will be identified with representing matrices and elements 
ofR ~, R m, R ~ with one column matrices. The set of all matrices with n rows 
and m columns will be denoted by M(n ,  m) and the identity transformation 
as well as the identity matrix by I. The scalar product (x, y) and the norm 
Ix[, of elements x ,y  E R '~ with coordinates ~ l , - - - ,~n  and r/1, . . . ,r/n,  are 
defined by 

I 1- 
j = l  j = l  
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The adjoint transformation of a linear transformation A as well as 
the transpose matrix of A are denoted by A*. A matrix A E M(n,  n) is 
called symmetric  if A - A*. The set of all symmetric matrices is partially 
ordered by the relation A1 > As if (A1 x, x) > (A2x, x) for arbitrary x E R n. 
If A > 0 then one says that matrix A is nonnegative definite and if, in 
addition, (Ax,  x) > 0 for x ~- 0 that A is positive definite. Treating x E It n 
as an element of i ( n ,  1) we have x* E i ( 1 ,  n). In particular we can write 
(x ,y)  - x*y and Ixl 2 = x*x. The inverse transformation of A and the 
inverse matrix of A will be denoted by A-1. 

If F(t)  - [fij(t); i - 1 , . . . , n ,  j =  1 , . . . , rn]  E i ( n , m ) ,  t E [0,T], 
then, by definition, 

F ( t ) d t -  f i j ( t )d t ,  i - 1 , . . . , n ;  j - 1 , . . . , n  , (1.3) 

under the condition that elements of F ( - )  are integrable. 
Derivatives of the 1st and 2nd order of a function y(t), t E R, are 

d(n)y 
denoted by a_y. a_~ or by y ~) and the nth order derivative, by dr(n) 

d t  ~ d t  ~ ' 

We will need some basic results on linear equations 

dq 
d--[ = A(t)q(t)  + a(t), q(to) - qo E It n, (1.4) 

on a fixed interval [0, T]; to E [O,T], where A(t)  E M(n,  n), A(t)  = [aij(t); 
i =  1 , . . . , n ,  j = 1 , . . . , m ] ,  a(t) E It", a(t) = (ai(t); i =  1 , . . . , n ) ,  t E [0, T]. 

T h e o r e m  1.1. Assume that elements of the function A ( . )  are locally 
integrable. Then there exists exactly one function S(t) ,  t E [0,T] with 
values in M(n,  n) and with absolutely continuous elements such that 

d s ( t )  - A( t )S( t )  for almost all t E [0,T] (1.5) 
dt 

S(0) = I. (1.6) 

In addition, a matrix S(t)  is invertible for an arbitrary t e [0,T], and 
the unique solution of the equation (1.4) is of the form 

f2 q(t) -- S ( t )S - ' ( t o )qo  + S ( t ) S - ' ( s ) a ( s )  ds, t e [0,T]. (1.7) 

Because of its importance we will sketch a proof of the theorem. 

Proof .  Equation (1.4) is equivalent to the integral equation 

q(t) - ao + A(s)q(s) ds + a(s) ds, t (5 [0, TI. 
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The formula 

s - ao + a(s) ds + A(s)y(s) ds, t e [0,Tq, 

defines a continuous transformation from the space of continuous functions 
C[O, T; R n] into itself, such that for arbitrary y(-) ,  .0(" ) e C[O, T; R"] 

(/0 T ) sup ICy(t) - x:~(t)l _< IA(~)I d~ sup  ly(t)  - ~( t ) l .  
tetO,T] tE[0,TI 

If f [  IA(s)l ds < 1, then by Theorem A.1 (the contraction mapping prin- 
ciple) the equation q = s has exactly one solution in C[0,T; R ~] which 
is the solution of the integral equation. The case f r  o IA(s)l ds > 1 can be 
reduced to the previous one by considering the equation on appropriately 
shorter intervals. In particular we obtain the existence and uniqueness of a 
matrix valued function satifying (1.5) and (1.6). 

To prove the second part of the theorem let us denote by r t E [0, 7"], 
the matrix solution of 

d 
d~r  -r  r = I, t E [0, 7"]. 

Assume that, for some t E [0, T], det S(t) = 0. Let To = min{t E [0, T]; 
det S(t) = 0}. Then To > 0, and for t E [0, To) 

d 
o--El  (s( t)s- ' ( t ))  - s(t) s - ' ( t )  + s(t)-j-is-'(t) 

Thus 
d 

- A ( t ) -  S( t ) -~S- l ( t ) ,  

and consequently 

d ~( 
d- - iS -~( t ) - -S  - t)A(t), 

so S- ' ( t )  = r t E [0,To). 

t e [0 ,To) ,  

Since the function det r t E [0,T], is continuous and 

1 
det r  det S(t)' t e [0,T0), 

therefore there exists a finite lim det r This way det S(To) = lim S(t) 
tTTo tTTo 

0, a contradiction. The validity of (1.6) follows now by elementary calcula- 
tion. 121 
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The function S( t ) ,  t E [0, 7'] will be called the fundamen ta l  solution of 
equation (1.4). It follows from the proof that the fundamental solution of 
the "adjoint" equation 

d__p.p = - A * ( t ) p ( t )  t E [0, 7'] 
dt ' ' 

is ( S * ( t ) ) - ' ,  t E [0,7']. 

Exerc i se  1.1. Show that  for A E M(n, n) the series 

n! ' 
n----1 

t E R ,  

is uniformly convergent, with all derivatives, on an arbitrary finite interval. 
The sum of the series from Exercise 1.1 is often denoted by exp(tA) or 

e t A  , t G_ R .  W e  check easily that 

etAe "A = e (t+')A t s E R, 

in particular 
( e tA) -  1 ._ e - tA ,  t ~. R. 

Therefore the solution of (1.1) has the form 

0 t 

I' = s(t)  + s ( t -  , )B , , ( , )e , ,  t [0,T], 

(1.8) 

where S( t )  = exp tA ,  t >__ O. 
The majority of the concepts and results from Part I discussed for 

systems (1.1)-(1.2) can be extended to time dependent matrices A(t )  E 
M(n ,n ) ,  B( t )  E M ( n , m ) ,  C(t)  E M(k,n) ,  t E [0, T], and therefore for 
systems 

dy = a ( t ) y ( t )  + B( t )u ( t )  
dt 

w( t )  = C( t ) y ( t ) ,  t E [0, T]. 

y(0) = z E R", (1.9) 

(1.10) 

Some of these extensions will appear in the exercises. 
Generalizations to arbitrary finite dimensional spaces of states and 

control parameters E and U are immediate. 
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w 1 . 2 .  T h e  c o n t r o l l a b i l i t y  m a t r i x  

An arbitrary function u ( . )  defined on [0, +oo)  locally integrable and 
with values in R m will be called a control, strategy or input of the system 
(1.1)-(1.2) .  The corresponding solution of equation (1.1) will be denoted 
by yr,U(. ), to underline the dependence on the initial condition z and the 
input u ( - ) .  Relationship (1.2) can be written in the following way: 

= t e [ 0 , T ] .  

The function w(. ) is the output of the controlled system. 
We will assume now that  C - I or equivalently that  w(t) - yX,U(t), 

t > 0 .  
m 

We say that  a control u transfers a state a to a state b at the t ime 
T > 0 i f  

ya'U(T) =-b. (1.11) 

We then also say that  the state a can be steered to b at time T or that  the 
state b is reachable or attainable from a at t ime T. 

The proposition below gives a formula for a control transferring a to 
b. In this formula the matrix QT, called the controllability matrix or con- 
trollability Gramian, appears: 

QT - B B "  S" (,') d,', r > O. 

We cheek easily that 07' is symmetric and nonnegative definite (see 
the beginning of w 1.1). 

P r o p o s i t i o n  1.1. Assume that for some T > 0 the matrix QT is nonsin- 
gular. Then 

(i) for arbitrary a, b E I t  '~ the control 

fi(s) = - B * S * ( T -  S ) Q T I ( S ( T ) a -  b), s e [0,T], (1.12) 

transfers a to b at time T; 
(ii) among all controls u ( . )  steering a to b at time T the control ft 

minimizes  the integral f [  lu(s)[ 2 ds. Moreover, 

0 T I ~ ( s ) l  2 ds (Q~.I(S(T)a - b), S ( T ) a  - b). (1.13) 

P r o o f .  It follows from (1.12) that  the control ft is smooth or even analytic. 
From (1.8) and (1.12) we obtain that  

ya'a(T) - S ( T ) a -  S ( T -  s ) B B * S ' ( T -  s )ds  ( Q ~ r l ( S ( T ) a -  b)) 

= S (T )a  - Q T ( Q T I ( S ( T ) a  - b)) - b. 
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This shows (i). To prove (ii) let us remark that the formula (1.13) is a 
consequence of the following simple calculations: 

]o T ]o T Ifi(s)l 2 ds = IB* S* ( T  - S)QTI ( S ( T ) a  - b)l 2 ds - 

IT - ( S ( T -  s)BB*S*(T- s)(QT'(S(T)a- b))ds, QT'(S(T)a- b)) 

- (QTQTI(S(T)a - b), Q~r' (S(T)a - b)) 

- ( Q T ' ( S ( T ) a -  b), S ( T ) a -  b). 

Now let u( .  ) be an arbitrary control transferring a to b at time T. We can 
assume that  u( .  ) i s  square integrable on [0, T]. Then 

]o T ]o T (u(s),  fi(s)) ds = - (u(s), B* S* (T  - s )Qr  1 ( S ( T ) b  - a)) ds 

/o T -- - (  S ( T  - s )Bu ( s )  ds, Q T I ( S ( T ) a  -- b)) 

-- ( S ( T ) a  - b, QTrl(S(T)a - b)). 

Hence 

]o T ]0 T ( , ( , ) .  ~ ( , ) )  ds - (c,(,).  ~,(,)) d , .  

From this we obtain that  

/0 T /0 T /0 T I,,(s)l ~ d~ - I,~(~)12 d,  + I - ( , ) -  ~ ( , ) l  2 d ,  

and consequently the desired minimality property. wl 

E x e r c i s e  1.2. Write equation 

d2y dy [~1] 
dr2 = ' '  ~(0) = 6 ,  -~(0)  - ~2, ~2 e a 2, 

as a first order system. Prove that for the new system, the matrix Q,T is 

0 

at time T > 0 and minimizing the functional f0 T [u(s)l 2 ds. Determine the 
minimal value m of the functional. Consider (1 = 1, (~ = 0. 

A n s w e r .  The required control is of the form 

{2T 2 sTY2 ) 
3 2 s 6  . s ~ [ 0 T ] .  
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and the minimal value m of the fuctional is equal to 

~-512( ) 2 2T2 ) m -  (~1 + ~ 1 ~ 2 T -  - - ~ ( ~ 2 )  2 

In particular,  when ~1 - 1, ~ - 0, 

12 T 12 
f i ( s ) - ~ ( s - - ~ ) ,  s ~ [ 0 , T ] ,  m -  T-- ~. 

We say that a state b is attainable or reachable from a E }l n if it is 
at tainable or reachable at some time T > 0. 

System (1.1) is called controllable if an arbitrary state b E R n is at- 
tainable from any state a E }1 n at some time T > 0. Instead of saying tha t  
system (1.1) is controllable we will frequently say that  the pair ( A , B )  is 
controllable. 

If for arbitrary a, b E R n the at tainabl i ty  takes place at a given t ime 
T > 0, we say that the system is controllable at time T. Proposition 1.1 
gives a sufficient condition for the system (1.1) to be controllable. It turns 
out tha t  this condition is also a necessary one. 

The  following result holds. 

P r o p o s i t i o n  1.2. I f  an arbitrary state b E It n is attainable from O, then 
the matrix  QT is nonsingular for an arbitrary T > O. 

P r o o f .  Let, for a control u and T > 0, 

s  -- S ( ~ ) B u ( T  - ,)  d,. (1.14) 

The  formula (1.14) defines a linear operator from UT = LI[0, T; N 'n] 
into N n. Let us remark that 

s = y~ (1.15) 

Let ET -- f~T(UT), T > O. It follows from (1.14) that  the family of the 
linear spaces ET is nondecreasing in T > 0. Since U ET = R n, taking 

T)0 
into account the dimensions of ET, we have that  E~  - H n for some T. Let 
us remark that,  for arbitrary T ) 0, v 6- R n and u 6. UT, 

(/0 �9 ) (OTv, v) - ( S ( r ) B B * S ' ( r )  dr v, v) (1.16) 

- IB ~ S" ( , ) , ,  I ~ d,, 

(s ~) -- (u(~), B ' S ' ( r -  , )~)  d,. (1.17) 
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From identities (1.16) and (1.17) we obtain Qrv  = 0 for some v E }l n if 
the space ET is orthogonal to v or if the function B ' S * ( .  )v is identically 
equal to zero on [0,T]. It follows from the analiticity of this function tha t  
it is equal to zero everywhere. Therefore if QTV - 0 for some T > 0 then 
QTV = 0 for all T > 0 and in particular Q~v = 0. Since E ~ -  R n we have 
tha t  v - 0, and the nonsingularity of QT follows. El 

A sufficient condition for controllability is that the rank of B is equal 
to n. This follows from the next exercise. 

E x e r c i s e  1.3. Assume rank B - n and let B + be a matr ix  such tha t  
B B  + = I. Check that  the control 

1 B+e(S_T)A(b_ erAa), s G_ [0, T], - 

transfers a to b at t ime T > 0. 

w 1 . 3 .  R a n k  c o n d i t i o n  

We now formulate an algebraic condition equivalent to controllability. 
For matrices A (5 i ( n , n ) ,  B E M ( n , m )  denote by [AIB ] the matr ix  
[B, A B , . . . ,  A n - lB]  E M ( n ,  nm)  which consists of consecutively wri t ten 
columns of matrices B,  A B  , . . . , A " -  lB.  

T h e o r e m  1.2. The following conditions are equivalent. 
(i) An arbitrary state b E H" is attainable from O. 

(ii) System (1 .1 ) i s  controllable. 
(iii) System (1 .1 ) i s  controllable at a given time T > O. 
(iv) Matrix QT is nonsingular for some T > O. 
(v) Matrix QT is nonsingular for an arbitrary T > O. 

(vi) rank [AIB] = n. 
Condition (vi) is called the Kalman rank condition, or the rank condi- 

tion for short. 
The proof will use the Cayley-Hamil ton theorem. Let us recall tha t  a 

characteristic polynomial p( .  ) of a matrix  A E M(n,  n) is defined by 

p()~) -- det()~I - A), )~ E C. (1.18) 

Let 
p()~) = A n + al)~ n-1 + . . .  + an, )~ E C. (1.19) 

The  Cayley-Hamil ton theorem has the following formulation (see [3, 358- 
359]): 

T h e o r e m  1.3. For arbitrary A E M ( n , n ) ,  with the characteristic polyno- 
mial (1.19), 

A n + a lA  n-1 + . . .  + a , I  = O. 
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Symbolically, p(A) = O. 

P r o o f  o f  T h e o r e m  1.2. Equivalences ( i ) - (v )  follow from the proofs of 
Proposit ions I .I  and 1.2 and the identi ty  

ya'U(T) - s  + S(T)a .  

To show the equivalences to condition (vi) it is convenient to introduce a 
linear mapping I, from the Cartesian product  of n copies R m into H"" 

n-1 
I ,(uo,  . . . , u,_,) -- Z A 1 B u j ,  

j=0  
uj 6 R "  j = O ,  n - 1  ) " o ~  �9 

We prove first the following lemma. 

L e m m a  1.1. The transformation ~.T, T > O, has the same image as I , .  
In particular s is onto if  and only i f  1, is onto. 

P r o o f .  For arbitrary v {5 R", u {5 LI[o, T; Rm], uj {5 R m, j = 0 , . . . ,  n -  1" 

~o T (s v) -- (u(s), B * S * ( T -  s)v) ds, 

., , - ... B *  ) , - I  (l,(uo,.. u,_,) v) (uo, B'v) + + (u,_x, (A" v). 

Suppose that  ( / , ( u 0 , . . . ,  un-1), v) - 0 for arbi trary  Uo . . . .  , u , - ,  6. R m. 
Then B* v - 0 , . . . ,  B* (A*)"-  Iv - 0. From Theorem 1.3, applied to matr ix  
A* it follows that for some constants co, c , - ,  �9 . . 

n--1 

(A*)" = y ~  ck(A*) j,. 
6=0 

Thus,  by induction, for abi trary I - 0, 1 , . . .  there exist constants cz ,0 , . . . ,  
q ,n -  x such that 

rt--I 

(A')n+'  = Z c',k(A*) k" 
k--O 

Therefore B * ( A * ) ~ v -  0 for k -  0, 1, . . . .  Taking into account tha t  

+co t k  ' 

B ' S ' ( t ) v  - Z B*(A*)kv~.  ' 
k--O 

t>O, 

we deduce that for arbitrary T > 0 and t {5 [0, T] 

B* S* (t)v -0, 
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so ( s  v) = 0 for arbitrary u 6_ L'[O, T; am]. 
Assume, conversely, that  for arbitrary u 6_ L I[0, T; R"], ( s  v) -- O. 

Then B* S* ( t ) v  = 0 for t E [0, T]. Differentiating the identity 

+oo fk 

y ~ B ' ( A * ) k v ~  - O, t ~. [0,71, 
k=O 

0 , 1 , . . . , ( n -  1)- t imes and inserting each time t - 0, we obtain that  
B * ( A * ) k v  = 0 for k = 0, 1 , . . .  ,n - 1. And therefore 

( l o ( u o ,  . . .  , t / n - l ) ,  I)) = 0 for arbitrary uo, . . . ,  u n - i  6_ [{m. 

This implies the lemma. I-t 

Assume that the system (I.I) is controllable. Then the transformation 
L~T is onto R n for arbitrary T > 0 and, by the above lemma, the matrix 
[AIB ] has rank n. Conversely, if the rank of [AIB ] is n then the mapping 
In is onto R n and also, therefore, the transformation L~T is onto R n and the 
controllability of (I.I) follows, r3 

If the rank condition is satisfied then the control fi(. ) given by (1.12) 
transfers a to b at time T. W e  now give a different, more explicit, formula for 
the transfer control involving the matrix [AIB ] instead of the controllability 
matrix QT. 

Note that if rank [AIB ] = n then there exists a matrix K 6- M ( m n ,  n) 
such that [AIB]K = I 6_ M ( n , n ) o r  equivalently there exist matrices 
KR, K2, . . . , K,., 6_ S ( m ,  n) such that  

B K I  + A B K 2  + . . . +  A " - I B K n  = I. (1.20) 

Let, in addition, ~o be a function of class C "-1 from [0, T] into R such that  

d#~o d#~o 
dsJ (0) = -~sj (T) - O, j = 0 , 1 , . . . , - -  1, (1.21) 

fo T ~o(s)ds 1 (1.22) I 

P r o p o s i t i o n  1.3. Assume  that rank [AI B] - n and (1.20)-(1.22) hold. 
Then the control 

d~ d"-'~ 
~(s) -- K, ~b(s) + K2-~s (S) +. . .  + If,, ds"-' (s), s 6- [0, 7'] 

where 
r = S ( s -  T)(b- S(T)a)~o(s), s E [0, T] (1.23) 
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transfers a to b at time T >_ O. 

P r o o f .  Taking into account (1.21) and integrating by parts (j  - 1) times, 
we have 

/0 S ( T - s ) B K j  d sJ - '  r  e A ( T - S ) B K j  d s J , i  r  ds 

_ .faT e A(T-"  ) A j -  1 B K 1 r  ds 

T g 

-- ]o S ( T -  s ) m J - l B K i r  ds, 

j -  1 , 2 , . . . , n .  

Consequently 

S ( T -  . )Br.(s)e~ - s ( t -  s ) [ A I B l g r  

f r S(T - .)r 

By the definition of r and by (1.22) we finally have 

~~ - s ( r l a  + S ( T -  . ) (S( .  - r ) ( b -  S(T)a))~,(s)a. 

= S(T)a  + (b - S(T)a)  ~.(~)ds 

- -b .  

t-1 

R e m a r k .  Note that Proposition 1.3 is a generalization of Exercise 1.3. 

E x e r c i s e  1.4. Assuming that  U - It prove that the system describing the 
electrically heated oven from Example 0.1 is controllable. 

Exerc i s e  1.5. Let L0 be a linear subspace dense in L 1 [0, T; Rm]. If system 
(1.1) is controllable then for arbitrary a,b E R n there exists u ( . )  E L0 
transferring a to b at time T. 

H in t .  Use the fact that the image of the closure of a set under a linear 
continuous mapping is contained in the closure of the image of the set. 

E x e r c i s e  1.6. If system (1.1) is controllable then for arbitrary T > 0 and 
arbitrary a, b E R n there exists a control u( .  ) of class C ~ transferring a to 
b at time T and such that 

d (j) u d(J) u 
dt(J) (0) - lit(J) (T)  - 0 for j - O, 1 , . . . .  
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Exercise  1.7. Assuming that the pair (A, B) is controllable, show that 
the system 

- Ay  + Bv  

with the state space R n+m and the set of control parameters R m, is also 
controllable. Deduce that for arbitrary a,b 6- R n, u0, ul 6- R m and T > 0 
there exists a control u(-)  of class C ~ transferring a to b at time T and 
such that u(0) = u0, u(T)  = ul. 
Hint .  Use Exercise 1.6 and the Kalman rank condition. 

Exerc ise  1.8. Suppose that A 6- M(n, n), B 6- M(n, m). Prove that the 
system 

d2Ydt 2 -- Ay  + Bu,  y(0) 6- R n, ~-(0)dY 6_ R n, 

is controllable in R ~" if and only if the pair (A, B) is controllable. 

Exercise  1.9. Consider system (1.9) on [0,T] with integrable matrix- 
valued functions A(t) ,  B( t ) ,  t 6- [0,T]. Let S(t) ,  t 6- [0,T] be the funda- 
mental solution of the equation q -  Aq. Assume that the matrix 

QT -- S ( T ) S - ' ( s ) B ( s ) B * ( s ) ( S - ' ( s ) ) * S * ( T )  ds 

is positive definite. Show that the control 

fi(s) - B * ( S - I ( s ) ) * S * ( T ) Q T I ( b -  S(T)a) ,  

transfers a to b at time T minimizing the functional u 

s z [O, TI, 

, I [  

w 1 .4 .  A c l a s s i f i c a t i o n  o f  c o n t r o l  s y s t e m s  

Let y(t), t >_ O, be a solution of the equation (1.1) corresponding to a 
control u(t), t > O, and let P 6- M(n, n) and S 6- M(m, m) be nonsingular 
matrices. Define 

Then 

where 

f l ( t ) -  Py( t ) ,  f i ( t )=  Su(t ) ,  t > O. 

d 
d ft(t) = P-~y ( t )  - PAy( t )  + P B u ( t )  

= PAP-I~I( t )  + P B S - l f i ( t )  

= Aft( t)  + Br , ( t ) ,  t >__ O, 

- P A P -  1 B - P B S -  1 (1.24) 
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The control systems described by ( A , B )  and ( A , B )  are called equivalent 
if there exist nonsingular matrices P E M(n ,  n), S E M ( m ,  m), such that  
(1.24) holds. Let us remark that  p - 1  and S -1 can be regarded as tran- 
sition matrices from old to new bases in R n and II ra respectively. The 
introduced concept is an equivalence relation. It is clear that  a pair (A, B) 
is controllable if and only if (A, B) is controllable. 

We now give a complete description of equivalent classes of the intro- 
duced relation in the case when m -  1. 

Let us first consider a system 

d(n) d(n-1) 
dt(------~z + a, dr(,_1) z + . . .  + anz - u, (1.25) 

with initial conditions 

dz d(n-1)z 
z(0) = ~1, a~(0) = ~2, . . . ,  dr(n- 1) (0) - ~r (1.26) 

Let z(t)  dz d ( ' - 1 )  , "J'i(t) , ' ' ' ,  d,(*-~ (t), t ~_ O, be coordinates of a function y(t),  t > O, 
and ~ 1 , . . . ,  ~n coordinates of a vector x. Then 

f l -  Ay  + Bu,  y(O) = x ~_ R n, (1.27) 

where matrices A and B are of the form 

0 1 . . .  0 0 0 
0 0 . . .  0 0 

A =  : : ".. . , B -  (128)  
o o o i 0 

~ 1 7 6  ~ 1 

- - a n  - - a n - 1  . . .  - - a 2  - - a l  

We easily check that  on the main diagonal of the matr ix  [AIB] there are 
only ones and above the diagonal only zeros. Therefore rank [AIB ] - n and, 
by Theorem 1.2, the pair (A, B) is controllable. Interpret ing this result in 
terms of the initial system (1.21)-(1.22) we can say tha t  for two arbi trary 
sequences of n numbers ~x,--- ,~n and r / i , . . . ,  r/n and for an arbi trary pos- 
itive number T there exists an analytic function u(t),  t ~. [0, T], such that  
for the corresponding solution z(t), t ~_ [0,T], of the equation (1.25)-(1.26) 

d z  
z(T) = r/, ,  -~(T) = r/2, 

d(n-1)z  
dr(n_1 ) (T)  = r/,. 

Theorem 1.4 states that  an arbi trary controllable sys tem with the one 
dimensional space of control parameters is equivalent to a system of the 
form (1.25)- (1.26). 
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T h e o r e m  1.4.  I f  A 6_ M ( n , n ) ,  b 6_ M(n ,  1) and the system 

f~ = Ay  + bu, y ( 0 ) =  z 6_ a "  (1.29) 

is controllable then it is equivalent to ezactly one system of  the form (1.28). 
Moreover the numbers a l , . . .  ,an in the representation (1.24) are identical 
to the coefficients of  the characteristic polynomial of the matrix A: 

p(A) = d e t [ A I -  A] = A" + a~A "-1 + . . .  + a , ,  A ~ C. (1.30) 

P r o o f .  By the Cayley-Hamil ton  theorem, A n + a lA  n-1 + . . .  + a n I -  O. 
In part icular  

A r i b -  - a l A  n - l b -  . . .  - anb. 

Since rank [AIb] - n, therefore vectors el - A n - l b , . . . ,  en - b are linearly 
independent  and form a basis in R". Let th ( t ) , . . .  ,~,n(t) be coordinates of 
the vector y( t )  in this basis, t _> 0. Then 

--al 1 0 ... 0 0 0 
--a2 0 1 ... 0 0 

d~ = . . . .  . . ~ +  " u. (1 31) 
dt . . . . .  " " 

--an-1 0 0 . . .  0 0 
- - a ~  0 0 . . .  0 1 

Therefore an arbitrary controllable system (1.29) is equivalent to (1.31) and 
the numbers al,..., an are the coefficients of the characteristic polynomial 
of A. O n  the other hand, direct calculation of the determinant of [AI - A] 
gives 

d e t ( A I - A ) - A  n + a l A  n - l + . . . + a n - p ( A ) ,  A(SC. 

Therefore the pair ( A , B )  is equivalent to the system (1.31) and conse- 
quently also to the pair (A, b). IZ! 

R e m a r k .  The  problem of an exact description of the equivalence classes 
in the case of arbi t rary  rn is much more complicated; see [39] and [67]. 

w 1 . 5 .  K a l m a n  d e c o m p o s i t i o n  

Theorem 1.2 gives several characterizations of controllable systems. 
Here we deal with uncontrollable ones. 

T h e o r e m  1.5.  Assume that 

rank [ A I B ] -  I < n. 

There exists a nonsingular matrix P E M ( n , n )  such that 

[ ] p A p - 1  _ All  A12 P B  = 
0 A2~ ' 0 ' 
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where A l l  E M(/, !), A22 E M ( n -  l , n -  l), B1 C:. M(/, m).  In addition the 
pair 

(All, Bx) 

is controllable. 

The theorem states that there exists a basis in R" such that system 
(1.1) written with respect to that basis has a representation 

~1 -- A l ib i  4- Aa~r + Blu, ~1(0) ~ R/, 

~ - A22~2, ~2(0) E R "- t ,  

in which (All, B1) is a controllable pair. The first equation describes the 
so-called controllable part and the second the completely uncontrollable part 
of the system. 

Proof .  It follows from Lemma 1.1 that the subspace E0 - s Rm]) 
is identical with the image of the transformation In. Therefore it consists of 
all elements of the form B u l  + A B u x  + . . . + A n - l B u n ,  Ul, . . .  ,un E [{,n and 
is of dimension i. In addition it contains the image of B and by the Cayley- 
Hamilton theorem, it is invariant with respect to the transformation A. Let 
E1 be any linear subspace of R n complementing E0 and let e l , . . . ,  et and 
e t+l , . . . , en  be bases in E0 and E1 and P the transition matrix from the 
new to the old basis. Let A - P A P  -1,  B - P B ,  

"" [~1 ] [Al1~1 + A12~2] ~ _ [ B l u ]  
A ~2 - A~lf, l+A22E,2 ' B2u ' 

~1 (3- [{I, ~ (3_ R n- l ,  u (3. R m. Since the space E0 is invariant with respect to 
A, therefore 

[ , ,  

Taking into account that B(R m) C E0, 

B 2 u - O  d l a u E R  m. 

Consequently the elements of the matrices A22 and B2 are zero. This 
finishes the proof of the first part of the theorem. To prove the final part, 
let us remark that for the nonsingular matrix P 

Since 

SO 

rank[AlB] -- rank (P[AlB] )  -- rank [AI/3]. 

[~.1~]_ [B1 A l l B 1  . . .  A ~ ' I B 1 ]  
0 0 . . .  0 ' 

I -- rank[A[B] - rank [All ]B1]. 

Taking into account that All E M(I, I), one gets the required property. D 
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R e m a r k .  Note that  the subspace E0 consists of all points attainable from 
0. It follows from the proof of Theorem 1.5 that E0 is the smallest subspace 
of R n invariant with respect to A and containing the image of B, and it is 
identical to the image of the transformation represented by [A[B]. 

Exerc i se  1.10. Give a complete classification of controllable systems when 
m - 1 and the dimension of E0 is 1 < n. 

w 1 .6 .  O b s e r v a b i l i t y  

Assume that  B - 0. Then system (1.1) is identical with the linear 
equation 

- Az ,  z(0) = x. (1.32) 

The observation relation (1.2) we leave unchanged: 

W - -  C z .  (1.33) 

The solution to (1.32) will be denoted by z~(t), t >_ 0. Obviously 

z ~ ( t ) -  s(t)~, �9 e a". 
The system (1.32)-(1.33), or the pair (A, C), is said t o  be observable if for 
arbitrary x E R ", x # 0, there exists a t > 0 such that 

w(t) - C z ' ( t )  # O. 

If for a given T > 0 and for arbitrary x # 0 there exists t E [0,T] with 
the above property, then the system (1.32)-(1.33) or the pair (A, C) are 
said to be observable at time T.  Let us introduce the so-called observabilitp 
matriz: 

R T  -- S ' ( O C ' C S ( O d ~ .  

The following theorem, dual to Theorem 1.2, holds. 

T h e o r e m  1.6. The following conditions are equivalent. 
(i) System (1.32)- (1.33) is observable. 

(ii) System (1.32)-(1.33) is observable at a given time T > O. 
(iii) The matr iz  RT is nonsingular for  some T > 0. 
(iv) The matrix  RT is nonsingular for arbitrary T > O. 
(v) r z [A*[C*] -  n. 

Proof .  Analysis of the function w(-)  implies the equivalence of (i) and 
(ii). Besides, 

Iw(012 d r  - -  ICz~(r)l 2 dr 

T f 

- I (s" (Oc 'cs (~)~ ,  ~) d~ 
Jo 

= (RTx ,  x). 
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Therefore observability at time T > 0 is equivalent to (/{TX, x) # 0 for arbi- 
trary x i# 0 and consequently to nonsingularity of the nonnegative, symmet- 
ric matrix RT. The remaining equivalences are consequences of Theorem 
1.2 and the observation that the controllability matrix corresponding to 
(A*, C*) is exactly RT. El 

E x a m p l e  1.1. Let us consider the equation 

d(n)z d(n-1) z 
+ a l ~  + . . . +  a . z  - 0 (1.34) 

dr(") dr("-~) 

and assume that 
, o ( t ) -  z(t), t >_ o. 

Matrices A and C corresponding to (1.34)-(1.35) are of the form 

(1.35) 

0 1 . . .  0 0 
0 0 . . .  0 0 

A =  : : ".. : " , C = [ 1 , 0 , . . . , 0 ] .  
0 0 . . .  0 1 

--an --an-1 . . .  --a2 --al 

We check directly that rank [A*IC* ] -- n and thus the pair (A, C) is ob- 
servable. 

The next theorem is analogous to Theorem 1.5 and gives a decompo- 
sition of system (1.32) - (1.33) into observable and completely unobservable 
parts. 

T h e o r e m  1.7. Assume that rank [A*[C*] = I < n. Then there exists a 
nonsingular matrix P E M(n, n) such that 

P A p - l - [  AliA21 A,20 ] ,  C p _ I  = [ c I ,  O], 

where All e M(I, i), A22 e M ( n -  1, n -  1) and C1 e M(k,  1) and the pair 
(A11, Cx) is observable. 
Proo f .  The theorem follows directly from Theorem 1.5 and from the ob- 
servation that  a pair (A, C) is observable if and only if the pair (A*, C*) is 
controllable, r-1 

R e m a r k .  It follows from the above theorem that  there exists a basis in R" 
such that  the system (1.1)-(1.2) has representation 

~1 - Al1~1 + Blu ,  

~2 - A21~1 + A2~2 + B2u, 
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C h a p t e r  2 

S t a b i l i t y  a n d  s t a b i l i z a b i l i t y  

In this chapter stable linear systems are characterized in terms of asso- 
ciated characteristic polynomials and Liapunov equations. A proof of the 
Routh theorem on stable polynomials is given as well as a complete descrip- 
tion of completely stabilizable systems. Luenberger's observer is introduced 
and used to illustrate the concept of detectability. 

w 2 .1 .  S t a b l e  l i n e a r  s y s t e m s  

Let A E M(n,  n) and consider linear systems 

- A z ,  z(O) - x E R" .  (2.1) 

Solutions of equation (2.1) will be denoted by z~( t ) ,  t >_ O. In accordance 
with earlier notations we have that 

z~(t)  -- S ( t ) x  -- (exptA)x ,  t >__ O. 

The system (2.1) is called stable if for arbi trary x E R n 

z ~(t) ~ 0, as t r +oo. 

Instead of saying that (2.1) is stable we will often say that  the matrix  A is 
stable. Let us remark that the concept of stability does not depend on the 
choice of the basis in It". Therefore if P is a nonsingular matrix and A is 
a stable one, then matrix P A P - 1  is stable. 

In what  follows we will need the Jordan theorem [4] on canonical rep- 
resentation of matrices. Denote by M(n ,  m; C) the set of all matrices with 
n rows and m columns and with complex elements. Let us recall that  a 
number A E C is called an eigenvalue of a matrix  A E M(n ,  n; C) if there 
exists a vector a E C n, a r 0, such that  A a  = An. The set of all eigenvalues 
of a matr ix  A will be denoted by er(A). Since A E a ( A )  if and only if the 
matr ix  A I -  A is singular, therefore A e a ( A )  if and only if p(A) = 0, where 
p is a character is t ic  po lynomial  of A: p(A) = det[)~I - A], A e C. The set 
a ( A )  consists of at most n elements and is nonempty. 
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T h e o r e m  2 . 1 .  For an arbitrary matrix A G M ( n ,  n; C)  there ezists a 
nonsingnlar matr iz  P E M ( n ,  n; C)  such that 

J1 0 . . .  0 0 
0 J2 . . .  0 0 

P A P - '  - " " ". " " = A (2.2)  
o . . } 

0 0 . . .  J ~ - I  0 
0 0 . . .  0 J~ 

where J1, J 2 , . . . ,  Jr are the so-called Jordan blocks 

AO k 7k . . .  0 0 
A~ . . .  0 0 

�9 . ~ 1 4 9  �9 . 

0 0 . . .  Ak 7k 
0 0 . . .  0 Ak 

7k # 0 or Jk = [Ak], k = 1 , . . . , r .  

In the representation (2.2) at least one Jordan block corresponds to 
an eigenvalue Ak G o (A) .  Selecting matrix P properly one can obtain a 
representation with nnmbers 7k # 0 given in advance. 

For m a t r i c e s  w i th  real  e l e m e n t s  the  r e p r e s e n t a t i o n  t h e o r e m  has  t h e  

fol lowing form:  

T h e o r e m  2 .2 .  For an arbitrary matriz  A E M ( n , n )  there ezists a non- 
singular matr iz  P G M ( n ,  n) such that (2.2) holds with "real" blocks Ik. 
Blocks Ik, k = 1 , . . . ,  r, corresponding to real eigenvalnes )tk = otk G R are 
of the form 

k 7k . . .  0 0 
ak  . . .  0 0 

[,~k] o,-  " : - .  : " , " r ~ # o , ' r k e R ,  

0 0 . . .  ak  7k 
0 0 . . .  0 ~k 

and corresponding to complez eingenvalues At = ak + i~k, flk # O, c~k, flk G 
R, 

Kk Lk . . .  0 0 
0 Kk �9 0 0 

�9 . �9 . 

�9 o " ~  . 

0 0 . . .  Kk Lk 
0 0 . . .  0 Kk 

[ ] ak flk Lk = where Kk = --~k trk ' 7k 

compare [4] .  
We n o w  prove  t he  fol lowing t h e o r e m .  
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T h e o r e m  2.3. Assume that A E M ( n ,  n). The following conditions are 
equivalent: 

(i) z~(t)  , 0  as t T +oo, for  arbitrary x E [i n. 

(ii) z~(t)  , 0  exponentially as t T +oo, for  arbitrary z 6_ R".  

(iii) w ( A ) =  sup {Re,~; )~ E o(A)} < 0. 

(iv) f+oo i : ( t ) l  2 dt < +oo for  arbitrary z 6_ It n. 

For the proof we will need the following lemma. 

L e m m a  2.1.  Let to > to(A). For arbitrary norm II" [I on R n there ezist 
constants M such that 

I I : ( t ) l l  Me 'll ll f o r  t >_ 0 and  z E R n. 

P r o o f .  Let us consider equation (2.1) with the matr ix  A in the Jordan 
form (2.2) 

- Aw,  w ( 0 ) - z E C " .  

For a -- ax + ia2, where al ,a2  e R n set II.ll = Ilalll + Ila2ll. Let us 
decompose vector w(t),  t > 0 and the initial s tate x into sequences of vectors 
w ~ ( t ) , . . . ,  w , ( t ) ,  t > 0 and z ~ , . . .  , z ,  according to the decomposit ion (2.2). 
Then  

t b k - J k w k ,  w k ( 0 ) - - x k ,  k - - 1 , . . . , r .  

Let j l , . . . , j ,  denote the dimensions of the matrices J 1 , . . . ,  Jr,  j l  + j2 + 
. . . + j , - n .  

I f j k - -  1 then 
w k ( t )  -- eXkt xk,  t >_ O. 

So I lwk( t ) l l -  e(RCx )*llx ll, t >__ 0. 

If jk > 1, then 

0 7k . . .  0 0 
0 0 0 0 

. , . ~  �9 . 

�9 �9 . 

0 0 . . .  0 7~ 
0 0 . . .  0 0 

So 

jk--1 

/ = 0  

t t 
Xk~.. 

jh-1 t! 
II, k(t)ll_ < e(R  ')'ll kll (MI,)  t ~, 

I = 0  

t > 0 ,  

where Mk is the norm of the transformation represented by 

0 7k . . .  0 0 
0 0 . . .  0 0 

�9 ~ * *  * . 

�9 �9 . �9 

0 0 . . .  0 7k 
0 0 . . .  0 0 
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Set t ing ~ao = w(A) we get 

r I- 

II~k(t)ll _< ~'~~ ~ ,  II~kll, 
k = l  k = l  

t > 0 ,  

where q is a polynomial  of order at most m a x ( j ~ -  1), k = 1 , . . . , r .  If 
~a > w0 and 

Mo- ,_  o}, 
then 214o < +oo and 

f" r 

I I~t (z) l l_  Moe"' ~/__., IlzJ, ll, 
k = l  k = l  

t > 0 .  

Therefore for a new constant  Mt 

IIw(t)ll _< M,e"llxll, t > 0 .  

Finally 

I lz f( t ) l l  = IIPw(t)P-*ll < M,e"llell IIP-'II  I1"11, t _ 0, 

and this is enough to define M = M~IIPII I Ie- ' l l -  Ca 

P r o o f  o f  t h e  t h e o r e m .  Assume ~a0 >_ 0. There exist A = a + i/~, Re A - 
c~ >_ 0 and a vector a r 0, a = al + ia2, a l , a s  E R n such that  

A ( a l  + ia2) = (~  + i[3)(al + ia~). 

The function 

z ( t )  - z l  ( t)  + i z2( t )  = e(~ t > O, 

as well as its real and imaginary parts,  is a solution of (2.1). Since a ~ 0, 
either al  ~- 0 or a2 ~ 0. Let us assume, for instance, tha t  al ~ 0 and/~ ~ 0. 
Then 

Zl(t) = e~t[(cosl~t)al -- (sin/~t)a2], t > 0. 

Inserting t -- 21rk113, we have 

Iz~(t)l = ~ ' 1 ~  I 

and, taking k T +oo,  we obtain z l ( t )  7t. O. 
Now let w0 < 0 and c~ E (0 , -w0) .  Then by the l emma 
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I~-(t)l < Me-~'lxl for t > 0 and x E R n. 

This implies (ii) and therefore also (i). 

It remains to consider (iv). It is clear that  it follows from (ii) and thus 
also from (iii). Let us assume that condition (iv) holds and w0 > 0. Then 
Iz~(t)l- e"'la,I ,  t > o, and therefore 

~0 +~176 [Zl(t)[ ~ dt -- 4-o0, 

a contradiction. The proof is complete. El 

Exerc i s e  2.1. The matrix 

A [O 1] 
corresponds to the equation ~ + 2~ + 2z - 0. Calculate to(A).  For w > w(A)  
find the smallest constant M - M(w) such that  

IS(t)l < M e  '~ t > O. 

Hin t .  Prove that Is(t)l- ~,(t)~-', where 

1( ) 
~(t) - ~ 24- 5sin2t 4- (20sin~t 4- 25sin 4t) 1/~ 

t /~ 
t > 0 .  

w 2 . 2 .  S t a b l e  p o l y n o m i a l s  

Theorem 2.3 reduces the problem of determining whether a matrix A 
is stable to the question of finding out whether all roots of the charac- 
teristic polynomial of A have negative real parts. Polynomials with this 
property will be called stable. Because of its importance, several efforts 
have been made to find necessary and sufficient conditions for the stability 
of an arbitrary polynomial 

,,~n-- 1 p()i)  -- )i n 4 - a l  4 - . . .  4- a n ,  A E C,  (2.3) 

with real coefficients, in term of the coefficients a l , . . . ,  an. Since there is 
no general formula for roots of polynomials of order greater than 4, the 
existence of such conditions is not obvious. Therefore their formulation 
in the nineteenth century by Routh was a kind of a sensation. Before 
formulating and proving a version of the Routh theorem we will characterize 
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stable polynomials  of degree smaller than or equal to 4 using only the fun- 
damental theorem of algebra. We deduce also a useful necessary condition 
for stability. 

T h e o r e m  2.4.  (1) Polynomials with real coefficients: 

(i) A + a, 
(ii) A 2 + a)~ + b, 

(iii))~3 + a)~ + bA + c, 
(iv) A 4 + a)i 3 q- b)~ s -1- cA h- d 

are stable i f  and only if, respectively 

(i)* a > 0, 
(ii)* a > 0 ,  b > 0 ,  

(iii)* a > 0 ,  b > 0 ,  c > 0 a n d a b > c ,  
(iv)* a > 0 ,  b > 0 ,  c > 0 ,  d > 0 a n d a b c > c  s + a s d .  

(2) I f  polynomial (2.3) is stable then all its coefficients a l , . . . ,  an are 
positive. 

P r o o f .  (1) Equivalence (i)r is obvious. 
To prove (ii)r assume that  the roots of the polynomial are of 

the form At = - ~  + i/~, As = - ~ -  i/5, fl # 0. Then p(A) = )i s + 2c~A +/~2, 
A E C and therefore the stability conditions are a > 0 and b > 0. If the 
roots A1, A2 of the polynomial p are real then a = -(A1 + A2), b = AlAs. 
Therefore they are negative if only if a > 0, b > 0. 

To show tha t  (iii) r let us remark that  the fundamental  theorem 
of algebra implies the following decomposition of the polynomial, with real 
coefficients c~, fl, 7: 

p(A) -- A 3 -I- aA 2 -I- b)~ + c - (A -I- c~)(A s -I-/~A + 7), A E C. 

It therefore follows from (i) and (ii) that  the polynomial p is stable if only 
if (~ > 0, fl > 0 and 7 > 0. Comparing the coefficients gives 

a = c ~ + f l ,  b = 7 + c ~ f l ,  c=c~7 ,  

and therefore a b -  c = ~(~2 + 7 + ~1~) = 1~(~ 2 + b). 
Assume tha t  a ) 0, b ) 0, c > 0 and a b -  c > 0. It follows from b > 0 

and a b - c  > 0 tha t  fl > 0. Since c =  ~3', ~ a n d 7  are either positive or 
negative. They  cannot,  however, be negative because then b = 7 + c~/~ < 0. 
Thus ~ > 0 and 7 > 0 and consequently r > 0, f~ > 0, 7 > 0. It is clear 
from the above formulae that  the positivity of r fl, 7 implies inequalities 
(iii)*. To prove (iv)c==~(iv)* we again apply the fundamental  theorem of 
algebra to obtain  the representation 

)~4 + aA3 + b)~S + c)~ + d = (A s + c~A + f~)()~s + 7)~ + ~) 

and the stabil i ty  condition a > O, f~ > O, 7 > O, 6 > O. 
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From the decomposition 

a = a + 7 ,  b=aT+~/+8,  c=a6+~/7 ,  d=/~6, 

we check directly that  

- - 6 )  + . 

It is therefore clear that  a > 0,/~ > 0, 7 > 0 and 6 > 0, and then (iv)* 
holds. Assume now that  the inequalities (iv)* are true. Then a 7  > 0, 
and, since a = a + 7 > 0, therefore a > 0 and ~ > 0. Since, in addition, 
d = / ~ 8  > 0  a n d c = a S + ~ 7 > 0 ,  s o / ~ > 0 ,  ~ > 0 .  F i n a l l y a > 0 , / ~ >  0, 
7 > 0, ~ > 0, and the polynomial p is stable. 

(2) By the fundamental  theorem of algebra, the polynomial p is a 
product  of polynomials of degrees at most 2 which, by (1), have positive 
coefficients. This implies the result. !:3 

E x e r c i s e  2.2.  Find necessary and sufficient conditions for the polynomial 

$:~ + a $ + b  

with complex coefficients a and b to have both roots with negative real 
parts. 

H i n t .  Consider the polynomial (,~2 +a,~ +b)(,~ ~ +~)~+b) and apply Theorem 
2.4. 

E x e r c i s e  2.3. Equation 

L 2 C T +  R L C ~  + 2L~, + R z  = O, R > O, L > O, C > O, 

describes the action of the electrical filter from Example  0.4. Check tha t  
the associated characteristic polynomial is stable. 

w  T h e  R o u t h  t h e o r e m  

We now give the theorem, mentioned earlier, which allows us to check, 
in a finite number of steps, that  a given polynomial p()~) = )~" + alA n-1  + 
�9 .. + a n ,  )~ E C, with real coefficients is stable. As we already know, a stable 
polynomial has all coefficients positive, but  this condition is not sufficient 
for stability if n > 3. Let U and V be polynomials with real coefficients 
given by 

U ( x )  + i V ( x )  = p ( i x ) ,  x E R. 

Let us remark that  deg U - n, deg V - n -  1 if n is an even number and 
deg U = n -  1, deg V = n, if n is an odd number.  Denote f l  = U, f2 = V if 
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degU - n, d e g V  = n -  1 and Ix = V, f2 = U i f d e g V  -- n, degU = n -  1. 
Let fa, f 4 , . . . ,  fm be polynomials obtained from fl ,  f2 by an application of 
the Euclid algorithm. Thus  deg fk+l < deg fk, k = 2 , . . . ,  m -  1 and there 
exist polynomials Xl, . . . ,  Xm such that  

Moreover the polynomial  .I'm is equal to the largest commun divisor of f l ,  f2 
multiplied by a constant .  

The following theorem is due to F.J. Routh [51]. 

T h e o r e m  2.5.  A polynomial p is stable if and only i f  m = n + 1 and the 
signs of the leading coefficients of the polynomials f l , . . . ,  f , + ,  alternate. 

P r o o f .  Let r ( r ) ,  r > 0 be an counterclockwise oriented curve composed of 
the segment I(r)  with ends ir and - i r  and the semicircle S(r),  S(r,O) = 
,~,o , _ �89 ~ <_ o <_ �89 ~. 

We will use the following result from elementary complex analysis: 

L e m m a  2.2.  I f  a polynomial p has no roots on the curve F(r)  and Dr is 
the number of all roots inside ofF(r),  taking into account their multiplicity, 
then 

1 J~r p'(A) dA - 27rOt 
i (r) p(A) 

Let us assume tha t  p is a stable polynomial. Then Dr = 0 for arbi trary  
r > 0. Let us remark tha t  

p'(A) n(1 - q(A)), 

where 
A " - 2  4" bl A " - 3  4" . . .  q- bn-2 

q(A) -- An_I + ClAn_2 - [ - . . .  "4" Cn--1 
, A E C ,  

for some constants  bl, . . . ,  b,_2, e l , . . . ,  Ca-2.  There exist numbers M > 0 
and r0 > 0 such tha t  

M 
sup [q(A)l ~ - - ,  

xes(~) r 
r > r o .  

Therefore 

l fs p'(A) dA_ n fs 1 n fs q(A) 7 (,)V(~) 7 ( , ) x d ~ - - ,  (,) ~ d~, 

lim 1 [  p'(A) d A _  tlTl'. 
rT+oo i J,(r) p(A) 

(2.4) 
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Let 7(r)  be the oriented image of I ( r )  under the transformation A 
p(A). Then  

I~ p'(A) d A _  if 1 
i (r) P(A) ~ (r) X dA. 

Let us assume that  the degree of p is an even number n - 2m. Con- 
siderations for n odd are analogical, with the imaginary axis replaced by 
the real one, and therefore will be omit ted.  Let x l < x2 < . . .  < xa 
be real roots of the polynomial fx - U. Then 0 _< I _< n, and points 
pl  - p ( i x l ) , . . .  ,pt  - p ( i x , )  are exactly intersection points of the arc 7(r )  
and of the imaginary axis. The oriented arc 7(r)  consists oforiented subarcs 
71(r), 7 2 ( r ) , . . . ,  71(r), 7t+l(r)  with respective endpoints  po(r)  - p ( - r i ) ,  
p l , . . . , p ; ,  p ( r i )  - pt+l(r) ,  and r > 0 is a positive number such that  
- - r  < Xl~ Xl < r .  

Denote by C+ and C_ respectively the right and the left closed half- 
planes of the complex plane C. If "r is an oriented smooth curve, not passing 
through 0, contained in C+, with initial and final points a and b, then 

ill l l n  + Arg b - Arg a, 

where Arg a, Arg b denote the arguments  of a and b included in [-�89 �89 
Similarly, for curves 3' contained completely in C_ 

1 ] ,  1 
i- X dA -- -t In + arg b - arg a, 

a-z]. It follows from the above formulae that  where arg a, arg b E [17r, 2 

L e m m a  2.3.  I f  the or iented  smoo th  curve  7 is con ta ined  in C+ and b - i~ ,  
13 # O, j3 E R, then 

1 f 1 dz 1 In m ~ ~ m 

i z i 

7r 
+ ~ sgn/3 - Arg a. 

If, in addi t ion ,  a - ia ,  a # O, a E R, then  

where 

1 f~ 1 d z -  1 In IBI 

1 

- o 

- 1  

f o r a < O ,  ~ > 0 ,  

f o r  ~ B  > O, 

for  ~ > O, / ~ < 0 .  
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I f  the curve 7 is in C_ then the above formulae remain true with Arg a 
replaced by arg a, 21 sgn ~ replaced by 7r - �89 sgn/~ and c replaced by - ~ .  

From Lemma 2.3 

l f ,  1 a+l l f ,  1 

~ (  ) l j r  1 _ 1 1 ' Ip~l + _ xdA, -~ (,') -~ dA + ej + In [pj_, [ i ,+,(,) 
l " .--  

where r = 1 , -  1 or 0 for j = 2 , . . . ,  i. 
Let us assume additionally that n -  2k, where k is an even number. 

Since 

po(r) = p ( - i r )  -- rn(1 + co(r)), 

Pt+l(r) -- p(ir) -- rn(1 + cl(r)), 

(2.6) 

(2.7) 

where lim co(r) - lim cl (r) - O, therefore po(r) 6_ C+, pt+l(r) 6_ C+ for 
ri+co rl'+oo 

sufficiently large r > 0 and 

lim Argp0(r) - lim Argpt+l(r )  - O. 
r T + cx~ rT+oo 

(2.8) 

From (2.5) and by L e m m a  2.3 

1 1 IPl.......~[ + ~r _ Arg p o ( r ) +  cj 7r + In iPi- [ (,) X d A -  in Ipo(,)l .= 

71" + In [Pl+l(r)[ + ez+ pt+l(r) lPll ~ 1 + Arg , 

= In [Pt+I (r)[ r t 
+ e0~ + Z r  + et+l 7 4- Argp/+,(r) ,  

Ipo(~)l j=~ 
r > 0 ,  

with ~1, . . . , e t+l  - O, 1 or -1 .  Using (2.6), (2.7) and (2.8) we have 

I 
lim 1 f 1 7r ~r 

,T+oo ~ J,(,) ~ d~ = ~, ~ + ~,+~ ~ + ~ ~j~. 
j=2 

Taking into account (2.4) 

I 
1 1 q _ E ~ j n = n ~ r .  ~a �9 ~ + ea+l  �9 

j=2 
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This way 1 -- n and el = . . .  = ~n+l - -  1. Similarly, we obtain the identical 
result for an odd number k. 

The  following considerations are analogous to those in the proof  of the 
classical S turm theorem or the number of roots of a polynomial contained 
in a given interval. 

If el - . . .  - en+l - 1 then for sufficiently large r > 0 the curve 
~'(r) crosses the imaginary axis passing either from the first to the second 
quadrant  of the complex plane or from the third to the fourth quadrant .  
Therefore for any number x close to but  smaller than xk, the signs of 
U(x), V(x) are identical and for any number x close to but greater than 
xk the signs of U(x), V(x) are opposite. Denote by Z(x)  the number of 
sign changes in the sequence obtained from f l ( x ) , . . . , fm(X)  by deleting 
all zeros (two neighbouring numbers, say fk, fk+l,  form a sign change if 
fkfk+l < 0). Let us remark that the function Z(x), x E R, can change its 
value only when passing through a root of some polynomial f l , . . . ,  fro. If, 
however, for some k - 2 , . . . ,  m -  1 and ~ E R, f~(~) - 0, then 

fk-~(~) - - fk+~ (~). 

Since polynomials fl and f2 have no c o m m o n  divisors the same is true for 
fk-1, fk+1 and, in particular, fk-1(~) ~ O, fk+1(~) i~ O. Consequently, 
fk - l (~ ' ) fk+l(X)  < 0, and for x r ~ but  close to ~" the sequence of the 
signs of the numbers fk- l(x) ,  fk(x), f~+l(x) can be one of the following 
types" +,  + , - ;  + , - , - ; - ,  +,  +; - ,  - ,  +.  Therefore, the function 
Z(z), x E It does not change its value when x passes through ~. Since the 
polynomial  fm is of degree zero, Z may change its value only at the roots 
of f i .  In particular, it takes constant values Z(-cx)) ,  Z(Tcx)) for x < xl  
and x > xn respectively. But for x close to but smaller than a root xk the 
signs of A (x) and f2(x) are the same, and for x close to but greater than 
xk, they are opposite. Therefore the function Z increases at xk by 1. So 
Z ( + o o ) -  Z ( - o o )  - n. Since for arbi trary  x, Z(x) > O, Z(x) <_ m -  1 <_ n, 
hence Z ( + o o )  - n + Z ( - o o )  >_ n and m - n + 1, Z (+oo)  - n, Z ( - o o )  -- 0. 
It is easy to see that  Z(+oo)  is equal to the number of sign changes in the 
sequence of the leading coefficients of the polynomials f l , . . . , f n + l ,  and 
since Z ( + o o )  - n, these signs alternate. This shows the theorem in one 
direction. 

To prove the opposite implication let us remark that  the equality m - 
n + 1 implies that U and V have no common divisors. In particular the 
polynomial  p has no purely imaginary roots, and Lemma 2.2 is applicable. 
From the first part of the proof 

lim 1 [ P'()~) dA -- 
rl+oo i Js(r) p()i) 

S O  

_1 
- -  ] P'('~) d,~ .- n r  - D+ 

i J t ( ~ ) p ( , ~ )  
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On the other hand, for z sufficiently large, Z(z) - Z (+oo)  - n, and, 
consequently, Z ( - o o )  - 0. Again, from the first part of the proof, the 
function Z can change its value only at the roots of the polynomial f l  -- U, 
and the change in fact takes place only when the signs of the pair f l ,  f2 
alternate. Each such change implies that the curve 7(r) passes either from 
the first to the second or from the third to the fourth quadrants  of the 
complex plane (we use here that  n is an even number). The number of 
such passages must be equal exactly to n, and the arguments of the initial 
and final points of the curve 7(r) tend either to 0 or ~r, as r T +oo, so 

l fr  P'(X) d X -  ! / l dz ,} n~r, 
i ('9 P(~) s (r) z 

rT +oo. 

Hence finally Dr = 0 for r > O. rl 

Let us apply the above theorem to polynomials of degree 4, 

p(A) -- A 4 4- aA  3 -{- bA 2 -[- cA -[- d, A 6 C. 

In this case 

U ( x )  - x 4 - b x  2 4- d - f l ( x ) ,  

V ( ~ )  = - a x  ~ + ~ = f 2 ( , ) ,  z E R .  

Performing appropriate divisions we obtain 

- - .  . . .  - -  X 1 

A ( ~ )  = d. 

The leading coefficients of the polynomials ]'1, f 2 , . . . ,  I"5 are 

1,_o, ( - -  , -  c - a d  b -  a , d. 
a 

We obtain therefore the following necessary and sufficient conditions 
for the stability of the polynomial p: 

a>O,  b _ C  ( c)  - > 0 ,  c - a d  b - -  > 0 ,  d > 0 ,  
a a 

equivalent to those stated in Theorem 2.4. 

We leave as an exercise the proof that the Routh theorem leads to an 
explicit stability algorithm. To formulate it we have to define the so-called 
Ronth array. 
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For arbitrary sequences (ak), (/~k), the Routh sequence (7~)is  defined 
by 

~ k - - B l d e t  BI /~k+l ' ' 

If al,  . . .  ,an are coefficients of a polynomial p, we set additionaly ak = 
0 for k > n - deg p. The Routh array is a matrix with infinite rows obtained 
from the first two rows: 

1 ,  a 2 ,  a 4 ,  a 6 ,  �9 �9 �9 , 

a l , a3 ,a s ,a7 , .  �9 �9 

by consequtive calculations of the Routh sequences from the two preceding 
rows. The calculations stop if 0 appears in the first column. The Routh 
algorithm can be now stated as the theorem 

T h e o r e m  2.6. A polynomial p of degree n is stable i f  and only i f  the n + 1 
first elements of the first columns of the Routh array are positive. 

E x e r e l s e  2.4. Show that, for an arbitrary polynomial p()~) - A n +al)~n-1 + 
�9 .. + an, )~ E C, with complex coefficients a l , . . . ,  an, the polynomial (,V ~ + 
al )~n-1 + - - - + a n ) (  )d~ +al)~ '~-1 + - - - + f i n )  has real coefficients. Formulate 
necessary and sufficient conditions for the polynomial p to have all roots 
with negative real parts. 

w 2 . 4 .  S t a b i l i t y ,  o b s e r v a b i l i t y ,  a n d  t h e  L i a p u n o v  e q u a t i o n  

An important role in stability considerations is played by the so-called 
matrix Liapunov equation of the form 

A* Q q- QA -- - R ,  (2.9) 

in which are given a symmetric matrix R E M(n,  n) and a matrix A E 
M(n,  n) and unknown is a symmetric matrix Q e M(n,  n). A connection 
between the equation (2.9) and the stability question is illustrated by the 
following theorem: 

T h e o r e m  2.7. (1) Assume that the pair (A, C) is observable and R = C*C. 
I f  there exists a nonnegative definite matrix Q satisfying (2.9) then the 
matrix A is stable. 

(2) I f  the matrix A is stable then for an arbitrary symmetric  matrix 
R the equation (2.9) has exactly one symmetric  solution Q. This solution 
is positive (nonnegative} definite i f  the matrix R is positive (nonnegative) 
definite. 

Proo f .  (1) It follows from (2.9) that 

ds *(t)QS(t)  - - S * ( t ) R S ( t ) ,  t > O. (2.10) 
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Let (see w 1.6) 

/o T /o T RT -- S* ( r ) R S ( r )  dr - S*(r)C*CS(r)  dr, T >_ O. 

In tegrat ing equation (2.10) from 0 to T we obtain that  

Q - RT T S* ( T ) Q S ( T ) .  

It follows from the observability of (A, C) that  the matr ix  RT is positive 
definite and therefore the matr ix  Q is also positive definite. Let z (5 II n be 
a fixed vector different from 0. Define 

v ( t )  - ( O z ~ ( t ) , z ~ ( t ) ) ,  t > o. 

It is enough to show that  v(t)  

Let us remark that  

, O a s t  1 +oo. 

d - - i ( t ) -  _ ( R z , ~ ( t ) ,  z " ( t ) )  

- - ICz~( t ) l  2, t > 0, 

< 0 .  

The  function v is nondecreasing on [0, +oo),  and therefore the t ra jec tory  
z~(t) ,  t >_ O, is bounded and sup(lz~(t )[; t  >_ 0) < +oo for arbi trary  z (5 R". 
This  implies easily that  for arbi trary A (5 a(A),  Re A _< 0. Assume tha t  
for a n w  (5 R, /w (5 a(A) .  I f w  - 0 then, for a v e c t o r  a ~ 0 with real 
elements, Aa - O. Then 0 - ( (A*Q + QA)a,  a) - - [ C a [  2, a contradict ion 
with Theorem 1.6(v). If w ~ 0 and al ,a2 (5 R n are vectors such tha t  
a l + ia2 ~ 0 and 

iw(al + ia2) - Aa ,  + iAa2, 

then the function 

za ' ( t )  -- al coswt - -a2s inwt ,  t > O, (2.11) 

is a periodic solution of the equation 

m A z .  

Periodicity and the formula 

d 
d- -7 (Qz ,~ ( t ) , z , , , ( t ) )  - _ ICz~,(t)l 2 _<0, t>_O, 
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imply that for a constant 7 _ 0 

(Qz",  (t) ,  z ~, ( t))  - 7,  t _> 0. 

Hence I C z ~ , ( t ) l -  0 for t >_ 0. However, by the observability of  (A, C) and 
(2.11),  a~ - a2 - 0, a contradiction. So Re A < 0 for all A 6 a (A)  and the 
matrix A is stable. 

(2) Assume that the matrix A is stable. Then the matrix 

f0 ~176 
Q -  S * ( r ) R S ( r ) d r -  lim RT 

TI+oo 

is well defined. Moreover 

j~O +~176 
A" Q + QA = (A* S* (r)RS(r) + S* (r)RS(r)A) dr 

~ + o o  d__s. 
= d , .  ( ~ ) n s ( ~ )  d~ 

= lim (S*(T)RS(T)-R) 
TT+oo 

and therefore Q satisfies the Liapunov equation. It is clear that if the 
matrix R is positive (nonnegative) definite then also the matrix Q is positive 
(nonnegative) definite. 

It remains to show the uniqueness. Assume that Q is also a symmetric 
solution of the equation (2.19). Then 

d ~ "~" hT(s ( t ) ( Q  - Q ) S ( t ) )  - o for t > O .  

Consequently 

. . ~  . v  

S* (t)(Q - Q)S(t) - Q - Q for t > o. 

Since S(t) -~ O, S*(t) 
theorem is complete. 

, 0 a s t  I +oo, 0 -  Q - Q .  The proof of the 
!-1 

R e m a r k .  Note that the pair (A, I) is always observable, so if there exists 
a nonnegative solution Q of the equation 

A * Q + Q A -  - I ,  

then A is a stable matrix. 

As a corollary we deduce the following result" 
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T h e o r e m  2.8. I f  a pair (A, C) is observable and for arbitrary z E H n 

w(t )  = C z  ~( t )  ~ 0, a8 t ! + o o ,  

then the matrix A is stable and consequently zX(t) , 0 as t T +oo for  
arbitrary z E R". 

Proof .  For arbitrary ~ > 0 a nonnegative matrix 

~0 + ~176 
Q ~ =  e -2~tS*(t)C*CS(t) dt 

is well defined and satisfies the equation 

(A - I~)'Q + Q(A - / 3 )  = - C * C .  

Since, for sufficiently small f / >  0, the pair ( (A - /~ ) ,  C) is also observable, 
therefore for a r b i t r a r y / / >  0, sup{Re )~; )i E tr(A)} _</~. One has only to 
show that  the matrix A has no eigenvalues on the imaginary axis. For this 
purpose it is enough to repeat the reasoning from the final part of the proof 
of Theorem 2.7(1). 121 

Exerc i se  2.5. Deduce from Theorem 2.8 the following result- 

If for arbitrary initial conditions 

dz d("- 1) 2, 

z(O) " -  ~ 1 ,  "~-(0) -- {2, . . . ,  dr(n_1 ) (0) -- {.  

solutions z(t), t > 0 of the equation (1.30) tend to 0 as t 
arbitrary k---- 1 , 2 , . . . , n -  1 

�9 +oo then for 

d(k)z 
dr(k) 

;0 ,  a s t  T +oo.  

w 2.5. Stabilizability and controllability 

We say that  the system 

ft = Ay  + Bu, y(O) - x E R", (2.12) 

is stabilizable or that  the pair (A, B) is stabilizable if there exists a matrix  
K E M(m,  n) such that  the matrix A + B K  is stable. So if the pair (A, B) 
is stabilizable and a control u(.  ) is given in the feedback form 

, , ( t )  = K y ( t ) ,  t >__ 0, 
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then all solutions of the equation 

it(t) - A y ( t )  + B K y ( t )  - (A  + B K ) y ( t ) ,  y(O) - z ,  t >_ O, (2.13) 

tend to zero as t T +oo. 
We say that  system (2.12) is complete ly  stabil izable if and only if for 

arbitrary w > 0 there exist a matrix K and a constant M > 0 such that  for 
an arbitrary solution y~(t), t >_ 0, of (2.13) 

ly (t)l _< Me- 'lxl, t > O. (2.14) 

By PK we will denote the characteristic polynomial of the matrix  A + B K .  
One of the most important  results in the linear control theory is given by 

T h e o r e m  2.9. The fo l lowing  condi t ions  are equivalent:  

(i) S y s t e m  (2.12) is completely  stabilizable. 
(ii) S y s t e m  (2.12) is controllable. 

(iii) For arbitrary po lynomia l  p()t)  - )t n + c~t)t n -1  + . . .  + c~n, )t G C, 
wi th real coefficients,  there exists a ma t r i x  K such that 

p(X) - rE(a )  fo,. c .  

P r o o f .  We start with the implication ( i i ) ~ ( i i i )  and prove it in three 
steps. 

Step I. The dimension of the space of control parameters m = 1. It 
follows from w 1.4 that  we can limit our considerations to systems of the 
form 

d(n)z d (n -1 ) z  
dt(n ) (t)  + a l  d t (n_ l  ) (t) + . . . -~ -  an z ( t )  = u ( t ) ,  t >__ O. 

In this case, however, (iii) is obvious: It is enough to define the control u 
in the feedback form, 

d(n-1)  z 
u ( t )  - -  (al -- C~l) dr(n._. 1)(t) + . . .  + ( a n  - o t n ) z ( t ) ,  t > O, 

and use the result (see w 1.4) that  the characteristic polynomial of the equa- 
tion 

d(n)z d (n -1 ) z  
dt(n ) + or1 d t (n_ l  ) + . . .  + C~nZ -- O, 

or, equivalently, of the matrix  

0 1 . . .  0 0 
0 0 . . .  0 0 

�9 ~ ~ 1 7 6  ~ ~ 

�9 ~ . 

0 0 . . .  0 1 
--Or n - - O t n _  1 . . .  --Or 2 --Or 1 
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is exactly 
p()~) = )~" + a~,~ "-~ + . . .  + a,)~, )~ E C. 

Step 2. The following lemma allows us to reduce the general case to rn = 1. 
Note that  in its formulation and proof its vectors from R" are t rea ted  as 
one-column matrices. 

L e m m a  2.4. I f  a pair ( A , B )  is controllable then there exist a matr ix  
L (5 M ( m , n )  and a vector v {5 R m such that the pair (A  + B L ,  B v )  is 
controllable. 

P r o o f  o f  t h e  l e m m a .  It follows from the controllability of (A, B)  tha t  
there exists v {5 R m such that  Bv  ~ O. We show first that  there exist vectors 
u l , . . . ,  u , - i  in R m such that  the sequence e l , . . .  , e ,  defined induct ively  

el = Bv ,  et+l = Aet + Buz f o r l = l , 2 , . . . , n - 1  (2.15) 

is a basis in R". Assume that  such a sequence does not exist. Then  for 
some k > 0 vectors e l , . . . ,  ek, corresponding to some u l , . . . ,  uk are linearly 
independent,  and for arbi trary  u {5 R m the vector Ae~ + B u  belongs to the 
linear space E0 spanned by e l , . . . ,  ek. Taking u = 0 we obtain Aek  {5 Eo. 
Thus  B u  {5 Eo for arbi trary  u {5 R m and consequently Aej  {5 Eo for j - 
1 , . . . ,  k. This way we see that  the space E0 is invariant for A and contains 
the image of B. Controllabili ty of (A, B) implies now that  E0 = R n, and 
compare the remark following Theorem 1.5. Consequently k = n and the 
required sequences e l , . . . ,  en and u l , . . . ,  u , - i  exist. Let un be an arb i t rary  
vector from R m. 

We define the linear transformation L setting Let = ul, for I - 1 , . . . ,  n. 
We have from (2.15) 

0+1 - Act + B L o  = (A + BL)et  

= (A + BL)ael  

= (A + B L ) I B v ,  I = O, 1 , . . . , n  - 1 .  

Since 
[A + BLIBv] = [e, , e2, . . . , %] , 

the pair (A + B L ,  B y )  is controllable, r-I 

Step 3. Let a polynomial  p be given and let L and v be the ma t r i x  and 
vector constructed in the Step 2. The system 

fl - (A + B L ) v  + (By)u ,  

in which u ( - )  is a scalar control function, is controllable. It follows from 
Step 1 that  there exists k E R" such that the characteristic polynomial  of 
(A + B L )  + (By)k*  = A + B ( L  + vk*) is identical with p. 
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The required feedback K can be defined as 

K - L + v k * .  

We proceed to the proofs of the remaining implications. To show that  
(iii) ~ (ii) assume that (A, B) is not controllable, that rank [AIB ] - l < n 
and that  K is a linear feedback. Let P E M(n,  n) be a nonsingular matrix 
from Theorem 1.5. Then 

pK(A) -- det[AI - (A + BK)]  

= det[AI - ( P A P  -1 + P B K P - 1 ) ]  

- det [ (AI-  (AII + 0 (AI-A12- A22)] 
= det[AI - (A,1 + B, K,)] dettAI - A22], AEC, 

where Kx E M(m, n). Therefore for arbitrary K E M(m,  n) the polynomial 
PK has a nonconstant divisor, equal to the characteristic polynomial of A~2, 
and therefore PK can not be arbitrary. This way the implication (iii) 
(ii) holds true. 

Assume now that condition (i) holds but that the system is not con- 
trollable. By the above argument we have for arbitrary K E M(m,  n) that  
a(A22) C a(A + B K ) .  So if for some M > 0, w > 0 condition (2.14) holds 
then 

w < - s u p  {ReA; A e a(A2~)}, 

which contradicts complete stabilizability. Hence (i) ~ (ii). Assume now 
that  (ii) and therefore (iii) hold. Let p(A) = A" + alA "-1 + . . .  + a , ,  A E C 
be a polynomial with all roots having real parts smaller than - w  (e.g., 
p(A) = (A + w + e ) n , e  > 0). We have from (iii) that there exists a matrix K 
such that  pK(" ) = p(" ). Consequently all eigenvalues of A + B K  have real 
parts smaller than -w. By Theorem 2.3, condition (i) holds. The proof of 
Theorem 2.9 is complete. E! 

w 2 . 6 .  D e t e c t a b i l i t y  a n d  d y n a m i c a l  o b s e r v e r s  

We say that a pair (A, C) is detectable if there exists a matrix L E 
M(n ,  k) such that the matrix A + LC is stable. It follows from Theorem 
2.9 that  controllability implies stabilizability. Similarly, observability im- 
plies detectability. For if the pair (A, C) is observable then (A*, C*) is 
controllable and there exists a matrix K such that A* + C*K is a stable 
matrix.  Therefore the matrix A + K * C  is stable and it is enough to set 
L = K * .  

We illustrate the importance of the concept of detectability by dis- 
cussing the dynamical observer introduced by Luenberger. 
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Let us consider system (1.1)-(1.2). Since the observation to = C y ,  it is 
natural to define an output stabilizing feedback as K 6. M(m,  k) such that  
the matrix A + B K C  is stable. It turns out, however, that even imposing 
conditions like controllability of ( A , B )  and observability of (A, C)  it is 
not possible, in general, to construct the desired K. In short, the outpu t  
stabilizability is only very rarely possible. 

Consider for instance the system 

d(n)z d ( n - ' ) z  (t) + + anz = u (2 16) 
dr(") (t)  + dr(n_1 ) . . . .  

with the observation relation 

~ ( t )  - z ( t ) ,  t >__ o. ( 2 . 1 7 )  

We know from earlier considerations that if system (2.16)-(2.17) is writ ten 
in the form (1.1)-(1.2) then pairs (A, B), (A, C) are respectively control- 
lable and observable. Let a feedback strategy u be of the form u = k w  
where k is a constant. Then the system (2.16) becomes 

d(n)z d(n-1)z  
dt(n ) F al dt(n_a ) + . . . + anz - - k z ,  

and the corresponding characteristic polynomial is of the form 

)~n-1 )~+a~ k, A EC.  p ( ) ~ ) _  xn + al + . . .  + an-1 -- 

So if some of the coefficients a x , . . . ,  a,,_l are negative then there exists no 
k such that the obtained system is stable. 

Therefore it was necessary to extend the concept of stabilizability al- 
lowing feedback based on dynamical observers which we define as follows: 
We say that matrices F 6. M(r ,  r), H 6. M(r ,n ) ,  D 6. M(r ,  m) define an r- 
dimens ional  dynamical  observer if for arbitrary control u ( - ) ,  solution z ( - )  
of the equation 

~(t) = F~(t) + Hw(t)  + O,,(t), t >_ O, (2.18) 

and the es t imator  

f~(t) - v , , , ( t )  + w ~ ( t ) ,  t >__ o, (2.19) 

one has 
y( t )  - ~( t )  .~ 0, ~ t T +~o .  ( 2 . 2 0 )  

The equation (2.18) and the number r are called respectively the equat ion 
and the dimens ion  of the observer. 
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The following theorem gives an example of an n-dimensional observer 
and shows its applicability to stabilizability. 

T h e o r e m  2.10. (1) Assume that the pair (A, C) is detectable and let L be 
a matrix  such that the matrix A + L C  is stable. Then equations 

- (A + L C ) z  - Lw + Bu ,  

[l - z 

define a dynamical observer of order n. 
(2) If, in addition, the pair (A, B)  is stabilizable, K is a matrix  such 

that A + B K is stable and a control u is given by 

(2.21) u -  K~), 

then y ( t )  , 0  as t T +oo .  

P r o o f .  (1) From the definition of the observer 

d 
d~([ t -  y) - (A + LC)fl  + B u  - L C y -  A y -  B u  

= (A + L C ) ( f l -  y). 

Since the matrix A + LC is stable, therefore ~(t) - y(t)  , 0  exponentially 
as t 1" +c~.  

(2) If the control u is of the form (2.21), then 

y = (A + B K)[I + L C ( f t -  y). 

Therefore 

where 

~(t)- s~c(t)y(0)+ s~c(t- ~)~,(~) d~, 

SK( t )  - exp t (A  + BK) ,  

~o(t) - LC([I(t) - y(t)) ,  t >__ O. 

There exist constants M > 0, w > 0, such that  

t > 0 ,  

ISK(t)l < Me -u~t, t > 0. 

Consequently for arbitrary T > 0 and t > T 

~0 T <_ M e  -wt e '~, I~0(s)l d~ + ~up I~,(~)1M ~ ~  

T < s < t  O~ 

So we see that  ~(t) ; 0 as t t +oo and by (1), y ( t ) ,  0 as t t +c~. m 
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R e m a r k .  The obtained result can be summarised as follows. If the pair 
(A,C) is detectable and the pair (A,B) is stabilizable then the system 
(1.1)-(1.2) is output  stabilizable with respect to the modified output  z(t), 
t >_ 0, based on the original observation w(t), t >_ O. 

Bibliographical notes 

In the proof of the Routh theorem we basically follow Gantmacher [28]. 
There exist proofs which do not use analytic function theory. In particular, 
in [43] the proof is based on Theorem 2.7 from w 2.4. For numerous mod- 
ifications of the Routh algorithm we refer to [61]. The proof of Theorem 
2.9 is due to M. Wonham [60]. The main aim of w 2.6 was to illustrate the 
concept of detectability. 



C h a p t e r  3 

R e a l i z a t i o n  t h e o r y  

This chapter is devoted to the input-output map generated by a linear 
control system. The input--output map is characterized in terms of the 
impulse response function and the transfer function. 

3 . 1 .  I m p u l s e  r e s p o n s e  a n d  t r a n s f e r  f u n c t i o n s  

The connection between a control u(-)  and the observation w(-)  of 
the system (1.1)-(1.2)is given by 

= c s ( t ) .  + c s ( t  -  )Bu(s) 

= CS( t )x  + nu ( t ) ,  t >_ O. 

(3.1) 

The operator Tr defined above is called the input-output map of (1.1)-(1.2). 
Thus 

7~u(t) - ~ ( t  - s ) u ( s )  ds ,  (3.2) 

where 
�9 (t) = C S ( t ) B  - CeAtB,  t > O. (3.3) 

The function ~ is called the impulse response function of the system 
(1.1)-(1.2). Obviously there exists a one-to-one correspondence between 
input-output mappings and impulse response functions. However, differ- 
ent triplets (A, B, C) may define the same impulse response functions. Each 
of them is called a realization of �9 or, equivalently, a realization of 7?.. 

The realization theory of linear systems is concerned with the struc- 
tural properties of input-output mappings Tr or impulse response functions 

as well as with constructions of their realizations. The theory has prac- 
tical motivations which we will discuss very briefly. 

In various applications, matrices A, B and C defining system (1.1)- 
(1.2) can be obtained from a consideration of physical laws. It happens, 
however, that the actual system is too complicated to get its description 
in such a way. Then the system is tested by applying special inputs and 
observing the corresponding outputs, and the matrices A, B, C are chosen 
to match the experimental results in the best way. 

Observed outputs corresponding to the impulse inputs lead directly to 
the impulse response function defined above. This follows from 
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P r o p o s i t i o n  3.1. Let v be a fized element of R m, Uk(' ) ,  k -- 1 ,2 , . . . ,  
controls of the form 

{t~ f o r t  e [o, i ), 
~ ( t )  = o for t >_ -~, 

and Yk(" ) the corresponding solutions of the equations 

d ~p~ = Ap~ + Bu~, p~(O) = z .  

Then the ~eq,,ence (yk) conver~s at,nost ~nifo~l~ o .  (0, +oo) to th~ f~n~- 
tion 

y(t) = S(t)ae + S( t )Bv ,  t > O. (3.4) 

Proof .  Let us remark that 

._ { S(t)z + k fo S(r)Bv dr for t 6- [0,, }], 
y~(t) S(~)z -I- S (t - ~) k flolk S(r)Bv dr for t > $. 

1 Therefore, for t _~ ~, 

1 s ( O a v d ~ -  S(~)Bv] I. Ipk(t) - p(t)l  = IS(t  - ~ ) [ k / l / k  
JO 

Moreover 

l/k 1)Bvl , O, as k T +oo, Ik s ( , ) a  ~ d,. - s ( - i  

and the lemma easily follows. 

The function 

El 

w(t) = CS( t ) x  + CS( t )av ,  t >_ O, 

can be regarded as an output corresponding to the impulse input u ( - )  = 
v6{0}(-), where 5{0}(-) is the Dirae distribution. If z = 0 then w(t) - 
~(t)v,  t __ 0, and this is the required relation between the observation w( - )  
and the impulse response function ~. 

It is convenient also to introduce the transfer function of (1.1) - (1.2) 
defined by 

�9 (A) = C(AI  - A) -1B ,  A 6. C \ r (3.5) 

Let us notice that if Re A > sup{Rep; p 6- o(A)}, then 
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[/o ] /o r  - c e - ~ ' S ( t )  dt B - e - x '@( t )d t .  

Hence the transfer function is the Laplace transform of the impulse response 
function, and they are in a one to one correspondence. 

The transfer function can be constructed from the observations of out- 
puts resulting from periodic, called also harmonic, inputs u( . ) :  

For them 

u( f  ) -- e itwv, v 6_ R m, to 6_ R, f >_0. 

t 

,o(t) - c s ( t ) x  + ~ '  e 

(3.6) 

- iwr C S ( r ) B v  dr, t >_ 0. (3.7) 

Practical methods are based on the following result. 

P r o p o s i t i o n  3.2. Assume that A 6 M ( n , n )  is a stable matrix. Let 
u" I{ , R m be a bounded, periodic funct ion with a period 7 and y~(t),  
t > O, the solulion of the equation 

~)( t ) -  Ay(t)  + Bu( t ) ,  t > O, y ( O ) -  x. 

There exists exactly one periodic function fl: It ~ R n such that 

l y e ( t )  - ~(t)l , o,  

Moreover, the period of fl is also 7 and 

as t T + o o .  

+co 
9(t)  = s ( , . ) e . ( t -  ~) d~, t ~ R. (3.8) 

The function 9(-)  is called sometimes a periodic component of the 
solution V. 

P r o o f .  The function ~)(-) given by (3.8) is well defined, periodic with 
period 7- Since 

/0' /0' ~ ( t )  - s ( t ) x  + s ( t  - . ) B u ( . ) d .  - S ( t ) x  + S ( ~ ) B u ( t -  ~)d~ 

= S( t )x  + S ( r ) B u ( t -  r ) d r -  S ( r ) B u ( t -  r ) d r  

= s ( t ) x  + . ) ( t ) -  s ( t )  s ( ~ ) B . . ( - ~ )  d~ 

= s ( t ) x  + f j ( t ) -  s ( t ) f j (o ) ,  t >_ o, 
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therefore 

l y e ( t ) -  ~(t)l _< IS(t)l I x -  ~ ( 0 ) 1 , 0 ,  as t 1' +oo .  

If Yz is an arbitrary function with the properties specified in the proposi- 
tion, then 

I~(t) - ~ ( t ) l  _< I~(t) - p~(t)l + IvY(t) - ~x(t)l, t >_ o. 

Consequently lY(" ) - ~)1 (")1 
~)( t)-  ~)z(t) - 0 for all t > 0. 

, 0 a s t  1"+oo. By the periodicity of ~), 
E1 

It follows from Proposition 3.2 that the observed outputs of a stable 
system, corresponding to harmonic controls e i''t v, t >_ O, are approximately 
equal, with an error tending to zero, to 

--eiwtC[ o'l'~176 q Bt), t > 0 .  

Taking into account that 

+oo e - i ~ s ( r )  d r -  ( i w I -  A) -1,  ~ C H, 

we see that the periodic component of the output w(-)  corresponding to 
the periodic input (3.6) is of the form 

Co(t) = ei~ t >__ O. (3.9) 

Assume that m - k - 1. Then the transfer function is meromor- 
phic. Denote it by ~p and consider for arbitrary w E R the trigonometric 
representation 

~o(iw)- I~,(iw)le"('~ 6(to)c [0,2~r). 

If v -- 1 then the output tb(.)  given by (3.9) is exactly 

~( t )  - I~ , ( ia , ) ) l  e~r162176 t > 0. 

Thus, if I~(i~)l i~ large then system (1.1)-(1.2) amplifies the periodic os- 
cillation of the period w and, if I~(i~)l i~ ~m~n, filter~ them off. 

Exerc i se  3.1. Find the transfer function for system (2.16)-(2.17). 
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A n s w e r :  

~o(A)- p- ' (A) ,  gdy p ( A ) -  A n + a l A n - l +  . . .  + an 5k O. 

E x e r c i s e  3.2. Consider the equation of an electrical filter, Example 0.4, 

L 2 - d3z d 2 z dz 
C - ~  + nLC-d- ~ + 2L-d- ~ + Rz  - u, 

where C, L, R are positive numbers. Find ~(/w), w E R. Show that  

CL2w 3 
lim I~,(iw)l - 1 lim I ~ ( i w ) l ~  = 1 
wl0 ' wT+oo R " 

w Realizat ions of the impulse  response funct ion 

A not arbitrary smooth function @(-) with values in M(k ,  rn), defined 
on [0, +oo),  is the impulse response function of a linear system (1.1)-(1.2).  
Similarly, a not arbitrary operator Td of the convolution type (3.2) is an 
inpu t -ou tpu t  map of a linear system. In this paragraph we give two struc- 
tural descriptions of the impulse response function and we show that  among 
all triplets (A, B, C) defining the same function @ there exists, in a sense, 
a "best" one. Moreover, from Theorem 3.1 below, the following result will 
be obtained" 

An operator ~ of the convolution type (3.2) is an input-output  map of 
a linear system (1.1)-(1.2) i f  and only if  it is of the form 

~0 t 7~u(t) = H( t )  G(s)u(s )  ds, t>__0, (3.~0) 

where H ( .  ) and G ( . )  are functions with values in M ( k , n )  and M(n,  m), 
for  some n. 

Let us remark that operator (3.10) is the product of an integration and 
a multiplication operator. 

Before formulating the next theorem we propose first to solve the fol- 
lowing exercise. 

E x e r c i s e  3.3. Continuous, real functions g, h and r defined on [0, +oo) 
satisfy the functional equation 

g ( t -  s) - h( t)r(s) ,  t >_ s >_ O, 

if and only if either g and one of the functions h or r are identically zero, 
or if there exist numbers a , /3  ~ O, 3' ~k 0 such that 

, , "~ - a t  g(t) -- Te at h(t) -- /3e at r(t) -- ~e  , t >_ O. 
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T h e o r e m  3.1. A function ~ of class C 1 defined on [0,+co) and with 
values in M(k, m) is the impulse response junction of a system (A, B,  C) 
if  and only if  there exist a natural number n and functions G: [0, +cr "- 
M(rn, n), H: [0, +oo) ~ M(n, k) of class C 1 such that 

~ ( t -  s) = H(t )G(s)  f o r  t >_ s > O. (3.11) 

Proof .  If ~(t)  - CeAtB,  t >_ O, then it is sufficient to define 

H(t)  - Ce At, t >_ O, and G(s) - e-ASB, s >__ O. 

The converse implication requires a construction of a number n and matri- 
ces A, B, C in terms of the functions G, H. We show first the validity of 
the following lemma: 

L e m m a  3.1. Assume that for some functions ~, G, H of class C 1, with 
values respectively in M(k,m) ,  M(n ,m) ,  M(k,n) ,  relation (3.11) holds. 
Then.. for arbitrary T > 0 there ezist a natural number h and functions 
G(t), H(t ) ,  t >_ 0 of class C ~ with values in M(a,m)  and M(k, h) such 
that 

r  - s)  = n ( t ) G ( s ) ,  s < t,  0 < s < T ,  

and the matrix 

oT~. .v 

is nonsingular and thus positive definite. 

P r o o f  o f  t h e  l e m m a .  Let h be the rank of the matrix 

w - a ( , ) a ' ( , ) d , .  

If W is nonsingular then we define fi = n, and the lemma is true. Assume 
therefore that fi < n. Then there exists an orthogonal matrix P such that 
the diagonal of the matrix P W P  -1 = P W P *  is composed of eigenvalues 
of the matrix W. Therefore there exists a diagonal nonsingular matrix D 
such that 

V -  [I'o O0] = ( D P ) W ( D P ) ' = P W P *  

where I E M(h,  fi) is the identity matrix and P is a nonsingular one. 
Consequently, for Q = (DP)  -1, 

QVQ* - W. 

This and the definition of W imply that 

~0 T ( Q V Q - 1 G ( s )  - G(s ) ) (QVQ-~G(s)  - G ( s ) ) *  ds - O. 



56 3. Realization theory 

Therefore Q V Q - 1 G ( s ) -  G(s), for s E [0,7']. 

Define G(t) - Q - 1 G ( t ) ,  H(t) - H(t)Q, t >_ O. Then 

q ~ ( t - s ) -  H( t )VG(s )  f o r t > _ s a n d s E [ 0 , T l .  

It follows from the representation 

where i~l(t) e M(k,f i) ,  H2(t) e M(k, n -  fi), Gl(S) e M(fi, m), 02(s) e 
M ( n -  fi, m), t, s >_ 0, and from the identity V 2 - V that 

= g ~ ( t ) a ~ ( . ) ,  t >_ s, s e [O,73. 

Hence 

and thus 

T /0T 
V - ~ (Q- IG(s ) ) (Q- 'G(s ) ) "  d s -  G(s)G(s)* ds, 

"" ~00 T'~ I - Gl(s)G*~(s)ds 

is a nonsingular matrix of the dimension ft. The proof of the lemma is 
complete. E! 

C o n t i n u a t i o n  of  t he  p r o o f  of  T h e o r e m  3.1. We can assume that 
functions H and G have the properties specified in the lemma. For arbitrary 
t > s , O < s < T  

Oq, Oq 
0 -  ~ (t - s) + =--(t - s) - [-I(t)G(s) + H( t )G(s)  

Us"  

In particular 

[-l(t)G(s)G* (s) - -H( t )G( s )G"  (S), 

and thus for t > T we obtain that 

Define 

t >  , ,  ~ e [0 ,T] ,  

fo T ]o T [-I(t) G(s)G* (s) ds - - H  (t) G(s)G" (s) ds. 

-1 
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Then /:/(t) -- H ( t ) A ,  t >__ T and therefore H(t )  - H ( T ) S ( t -  T) ,  t >_ T ,  
where S(r)  - erA, r >_ O. However, for arbitrary r >_ 0. 

@(r) = ~ ( ( r  + T)  - T)  = H ( r  + T ) G ( T )  = H ( T ) S ( r ) G ( T ) ,  r >_ O, 

Consequently, defining B = G(T)  and C -  H ( T ) ,  we obtain 

~(r)-BerAC, r > O, 

the required representation, rn 

We now give a description of impulse response functions in terms of 
their Taylor expensions. 

T h e o r e m  3.2. A funct ion ~: [0, + o o ) ~  M(k, m) given in the fo rm of 
an absolutely convergent series 

+oo tj 

j=O 
t>O,  

is the impulse response function of a certain system (A, B,  C) i f  and only 
i f  there exist numbers al,  a 2 , . . . ,  a, such that 

Wj+,. - a , W j + r _ ,  + . . .  + a,.Wj, j - 0, 1, . . . .  (3.12) 

Proof .  (Necessity.) If ~( t )  -- C ( e x p t A ) B ,  t >_ O, then 

+oo lj 
*(t)  = ~ CA j B-fi, 

j=o 
t>O,  

and therefore Wj - C A  j B ,  j - O, 1, . . . .  
,~r--1 Ifp(A) - A ' - a l  - . . . - a l ,  A E C, is the characteristic polynomial 

of A then, by the Cayley-Hamilton theorem, 

A r = a lA  r-1 - k . . .  q -ar I  (3.13) 

and 

Therefore 

A,'+j _ alAr+J-1 + . . .  + a,.A j.  

C A  r+j B - a l C A  "+j-I  B + . . .  + a,.CA j B,  j - 0 , . . . ,  

the required relationship. 
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(Sufficiency.) Define 

0 I . . .  0 0 
o o o o 

A =  " : "-. : " , B -  " , C - [ I , O , . . . , O ] ,  

0 0 . . .  0 I W;-1 
a, . I  a , . - l  I . . .  auI  a l  I 

where I is the identi ty matr ix  of dimension k. Permu t ing  rows and columns 
of the m a t r i x  A properly  we can assume tha t  it is of the form 

A 0 . . .  0 0 0 1 . . .  0 0 
0 A . . .  0 0 0 . . .  0 0 

�9 " "'. i where A -  " i " ' .  i i 

0 0 . . .  A 0 0 . . .  0 1 
0 0 . . .  0 al  a~ . . .  a~_t a ,  

�9 ( 3 . 1 4 )  

Since the characterist ic  polynomial  of A is )ff - alA r-1 - . . . -  a t ,  A E C, 
therefore A "~ - a l A  ~ - 1  + . . .  + a~I. The same equat ion  holds for ma t r i x  
(3.14) and consequently for A. We also check t ha t  

C A  j B -  Wj f o r j - 0 , 1 , . . . , r - 1 .  

By (3.12), 

C A r B  - a I C A  r - l  B + . . .  + a r C B  - al Wr-1  + . . .  + arWr - Wr. 

Similarly, CAJ B - Wj for j > r. 1:3 

The  next  theorem shows that  there exists a realization of an impulse 
response function with addit ional regulari ty  propert ies .  

T h e o r e m  3.3.  For arbitrary matrices A E M ( n ,  n),  B E M ( n ,  m),  C E 
i ( k ,  n) there exist a natural number fi and matrices A E M(fi ,  fi), B (5 
M(f i ,  m),  C e M(k ,  fi) such that the pairs (A ,  B )  and (A ,  C) are respectively 
controllable and observable and 

C S ( t ) B -  C S ( t ) B  f o r  t > O, 

where S ( t )  - exp tA ,  S ( t )  - exp tA ,  t >__ O. 

P r o o f .  Assume tha t  the pair ( A , B )  is not controllable and let 1 - 
rank[AIB ]. Let P ,  Al l ,  AI~, A22 and B1 be matr ices  given by Theorem 
1.5 and let S( t )  - exp tA ,  S t l ( t )  = exp(A~l t ) ,  $22(t)  - exp(A22t), t > 0. 
There  exists,  in addit ion,  a function $12(t),  t > O, with values in M(I ,  n - l ) ,  
such tha t  PS(t)p_,_[S,,(t) S,2(t) ] 

o s22( t )  ' t > o .  
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Therefore, 

CS(t)B=CP-' [ Sll(t) $12(t)] 
0 $22(t)  PB 

- CP-' [S" S,~(t) 
o ,,,,,,] [-']o 

0 ' 
t > 0 ,  

for some matrix C1. 

So we can assume, without any loss of generality, that the pair (A, B) 
is controllable. If the pair (A, C) is not observable and rank[AIC ] = i < 
n then, by Theorem 1.7, for a nonsingular matrix P ,  an observable pair 
(All, C1) 6- M(I, 1)x M(k,  I) and matrices B1 6- M(I, n), B2 6_ M ( n - l ,  m), 

[ ] p A p _ l  All 0 CP -1 - [CI 0] PB -- . 
-- A21 A22 ' ' ' B2 

It follows from the controllability of (A, B) that the pair (AI , ,B1)  is con- 
trollable as well. 

If S(t) - exp tA, Sic(t) - exptA~l, $22(t) = exp tA22, t > O, then for 
an M ( n -  l, I) valued function 5"21(t), t > O, 

CS(t)B -[Cx, 01PS(t)P-~PB- [CI, 0] r[Sll(t )S21(t) 

= C,S,,(t)Bx, t >__ O. 

0 

This finishes the proof of the theorem, r3 

The following basic result is now an easy consequence of Theorem 3.3. 

T h e o r e m  3.4. For any arbitrary impulse response function there exists 
a realization ( A , B , C )  such that the pairs (A ,B) ,  (A ,C)  are respectively 
controllable and observable. The dimension of the matriz A is the same 
for all controllable and observable realizations. Moreover, for an arbitrary 
realization (A, B, C), dim A >__ dim A. 

Proo f .  The first part of the theorem is a direct consequence of Theorem 3.3. 
Assume that (A, B, C) and (A ,B ,  C) are two controllable and observable 

, , v  

realizations of the same impulse response function and that dim A - fi, 
dim A - n. Since 

+oo tJ +oo _ t i 
q1(t) = E CAj B'fi. = E ~ j  B ~ ,  j=O j=O 

t>__O, 
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SO 
CA"3B = CAJB for j -- 0,1, . . . .  (3.15) 

Moreover, the pair (A ,B)  is controllable and (A ,C)  is observable, and 
therefore the ranks of the matrices 

s 
CA r- 

[B, AB,  . . . ,  Ar - IB]  

are n for arbitrary r >_ n. Consequently the ranks of the matrices 

C C B  C A B  .. .  CA"-XB  
CA [B, AB,  A'.-~B] = C A B  CA 2B . . .  C A " B  

CA "-1 CA  "-I B CA" B . . .  CAU"-2B 
(3.16) 

are, for r >_ n, also equal to n. On the other hand, by (a.15), (3.16), 

c c 

CA. [~, ~ ,  . . . ,  Ae'- 'B] - CA. 
�9 �9 

CArl-1 CAa-1 

[B, AB,  . . . ,  An-XB] , 

and therefore fi < n. By the same argument  n < fi, so n - ft. The proof 
that  for arbitrary realization (A, B, C), h >_ n is analogical. [3 

w  T h e  c h a r a c t e r i z a t i o n  o f  t r a n s f e r  f u n c t i o n s  

The transfer function of a given triplet (A, B, C) was defined by the 
formula 

4,(A) - C ( A I -  A)-XB, A E C \ a(A). 

Let (I)(A) = [~pq'.(A), q = 1 , . . . , k ,  r = 1 , 2 , . . . , m ] ,  A E C \ a ( A ) .  It 
follows, from the formulae for the inverse matr ix  ( A I -  A) -1 , that  functions 
tPqr are rational with real coefficients for which the degree of the numerator  
is greater than the degree of the denominator.  So they vanish as IAI - - ~  
-boo. Moreover, 

+oo 1 
' b ( A ) -  E M+i C A i B  for IA[ > IAI, (3.17) 

j=o 

and the series in (3.17) is convergent with its all derivatives. 
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T h e o r e m  3.5.  I f  qT( . ) is an M(k,  rn; C) valued function, defined outside of 
a finite subset of C, with rational elements having real coefficients vanishing 
as ] A ] -  * +oo, then the function ~ ( . )  is of the form (3.9). Consequently, 
0 ( .  ) is the transfer function of a system (A, B, C). 

P r o o f .  There exists a polynomial  p(,~) - ,~r + a1,~-1 + . . .  + ar,  ,~ E C, 
with real coefficients, such tha t  for arbitrary elements ~0r q - 1 , . . .  ,k, 
s - 1 , . . . ,  m, of the matr i x  4 ,  functions p~oq, are polynomials. Since ~ ( - )  
is rational for some 7 > 0 and arbi trary A, [A] > 7, 

+oo 1 
�9 = 

j=0 

The  coefficients by A -1, A - 2 , . . .  of the expansion of p(,~)&()i), A E C, are 
zero, therefore 

a,.Wo + a,._l W1 + . . .  + al W,.-1 + Wr = O, 

a,.W1 + a,.-a W~ + . . .  + al W,. + W,.+l = O, 

a,.W.i + a,._a Wj+I + . . .  + al W,.+j-1 + W,.+.i - O. 

Hence the sequence W0, W 1 , . . .  satisfies (3.12). Arguing as in the proof of 
Theorem 3.2, we obtain tha t  there exist matrices A, B,  C such tha t  

W j - - C A J B ,  j -  0,1, . . . .  

The  proof is complete. 

E x e r c i s e  3.4. Assume tha t  k = r n -  1 and let 

!-3 

1 1 
- + ( ~ _ b )  ~, ~ e C \ { a , b } ,  ~(~)  ~ _ ~  

where a and b are some real numbers. Find the impulse response function 
q,(. ) corresponding to ~o. Construct  its realization. 
A n s w e r .  qt(t) = e at + te bt, t >_ O. 
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C h a p t e r  4 

S y s t e m s  w i t h  c o n s t r a i n t s  

This chapter illustrates complications which arise in control theory 
when control parameters have to satisfy various constraints. Controllable 
systems with the set of controls being either a bounded neighbourhood of 
0 E R m or the positive cone R m + are characterized. 

w 4 .1 .  B o u n d e d  s e t s  o f  p a r a m e t e r s  

In the preceeding chapters sets of states and of control parameters were 
identical with R n and R m. In several situations, however, it is necessary to 
consider controls taking values in subsets of R m or to require that  the system 
evolves in a given subset of R n. We will discuss two types of constraints for 
linear systems. 

= Ay  + Bu ,  y(O) = x. (4.1) 

We start  from the null controllability. 

P r o p o s i t i o n  4.1. Assume that 0 E R m is an interior point of a control 
set U C R m. Then there exists a neighbourhood V of 0 E R" such that all 
its elements can be transferred to 0 by controls taking values in U. 

P r o o f .  Let T > 0 be a given number. By Proposition 1.1 the control 

fi(s) = - B *  S* (T  - s )Q T '  S ( T ) z ,  s ~. [0, 71], 

transfers the state x to 0 at the time T. Since the function t ~ S*(t) is 
continuous, therefore, for a constant M > 0, 

I,~(s)l ___ Mlzl for all s ~ [0, T], x e n". 

So the result follows. 1:3 

A possibility of transferring to 0 all points from R n is discussed in the 
following theorem. 

T h e o r e m  4.1. Assume that U is a bounded set. 
(i) I f  0 E R m is an interior point of U, ( A , B )  is a controllable pair 

and the matrix A is stable, then arbitrary x E R n can be transferred to 0 by 
controls with values in U only. 

(ii) I f  the matrix A has at least one eingenvalue with a positive real 
part then there are states in I1 ~ which cannot be transferred to 0 by controls 
with values in U only. 
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P r o o f .  (i) If the matrix A is stable then the control u(t)  - O, for all 
t > 0, transfers an arbitrary state, in finite time, to a given in advance 
neighbourhood U of 0 E It". It follows from Proposition 4.1 that  if the 
neighbourhood V is sufficiently small then all its elements can be transferred 
to 0 by controls with values in U. Hence (i) holds. 

(ii) Let A = a + ifl be an eigenvalue of A* such that  a > 0. Assume 
that  fl ~: 0. Then there exist vectorsel ,  e2 E R n, le~[ + le2l # 0, such that  

A*ex + iA*e2 = (or + ifl)(el + ie~) 

or equivalently 

A* el = a~ex - fie2, A'e2 = fie1 + a:e2. 

Let u( .  ) be a control taking values in U and y( .  ) the corresponding output:  

i l -  Ay + Bu, y(O)-  x. 

Let v be the absolutely continuous function given by the formula 

2 v ( t ) -  (u(t), ~ + (u(t), e2) ~, t ___ 0. 

Then, for almost all t > 0, 

/~(t) -- 2((y( t ) ,  e l ) ( y ( t ) ,  el) 4" (y(t),  e2)(y(t) ,  e2)) 

= 2((y(t) ,A*el)(y(t) ,el)  + (y(t),A*e2)(y(t),e2)) 

+ 2((Bu(t) ,e~)(y( t) ,e , )+ (Bu(t),e2)(y(t),e2)) 

= I I ( t )  + I2(t) .  

From the definition of el and e2, 11(t) - 2av(t).  Since the set U is bounded,  
therefore, for a constant K > 0, independent of u(.  ) and x, 

It:(t)l _< K ~ / ~ .  

Consequently, for almost all t >_ 0, 

~,(t) ___ ,r(v(t)), 

where q(~) - 2 a ~ -  Kv/~, ~ >_ 0. Since ~(~) > 0 for ~ > ~0 - (Y-d)K 2 
therefore if v(0) - (x, el) 2 + (x, e2) 2 > ~0 the function v is increasing and 
v(t)  7a 0 as t T +oo. Hence (ii) holds if fl # 0. The proof of the result if 
f l  - 0 is similar. D 



64 4. Systems with constraints 

Exerc i s e  4.1. System 

at(") d ( n - l )  
dt("-"-'~ z + a x dr(n_ 1) z + . . .  + an z - u, 

studied in w is controllable if U - R. It follows from Theorem 4.1 that 
it is controllable to 0 also when U - [-1 ,  1] and the polynomial p()~) - 
A n + al)~n-1 + . . .  + an, $ E C, is stable. In particular, the system 

d2z dz 
dt ~ + -d-~ + z - u, lul_<l, 

is controllable to 0 E It 2. Note however that the system 

d2z 
dt 2 = u ,  lul _< 1, 

is also controllable to 0 E II 2, see Example III.3.2, although the correspond- 
ing polynomial p is not stable. 

w  P o s i t i v e  s y s t e m s  

Denote by E+ and U+ the sets of all vectors with nonnegative coordi- 
nates from }l n and R 'n respectively. System (4.1) is said to be positive if for 
an arbitrary, locally integrable control u( - ) ,  taking values in U+ and for an 
arbitrary initial condition x E E+, the output y~'~ takes values in E+. 

Positive systems are of practical interest and are often seen in ap- 
plications to heat processes. In particular, see the system modelling the 
electrically heated oven of Example 0.1. 

We have the following: 

T h e o r e m  4.2. System (4.1) is positive i f  and only i f  all e lements  of  the 
matr ix  B and all elements of  the matr ix  A outside of the main diagonal are 
nonnegative.  

Proo f .  Assume that system (4.1) is positive. Then for arbitrary vector 
f i E U +  and t > 0  

1/0' -~ S ( s ) B f i d s  e E+, where S(s )  - e A' ,  s > O. (4.2) 

Letting t tend to 0 in (4.2) to the limit as t I 0 we get Bfi E E+. Since fi 
was an arbitrary element of U+, all elements of B have to be nonnegative. 
Positivity of (4.1) also implies that for arbitrary s E E+ and t > O, S ( t ) ~  E 
E+. Consequently all elements of the matrices S(t), t > 0, are nonnegative. 
Assume that for some i ~- j the element aij of A is negative. Then, for 
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sufficiently small t _> 0, the element in the i-th row and j - th  column of the 
matrix 

-is(t)= 1 + a  +t 
t kk=~ 

is also negative. This is a contradiction with the fact that all elements of 
S( t ) ,  t > 0, are nonnegative. 

Assume conversely that all elements of the matrix B and all elements 
of the matrix A outside of the main diagonal are nonnegative. Let z E E+ 
and let u ( - )  be a locally integrable function with values in U+. There exists 
a number A > 0 such that the matrix AI + A has only nonnegative elements 
and therefore also the matrix e( ~I+A)* has all nonnegative elements. But 

e ('~l+A)t -" eXtS(t),  t > O, 

and we see that  all elements of S(t), t >_ 0, are nonnegative as well. Since 

~0 t yX'U(t) = S(t)z  + S ( t -  s )Bu( s )  ds, t>_O, 

vectors y~,u (t), t >_ 0, belong to E+. This finishes the proof of the theorem. 
Q 

To proceed further we introduce the following sets of attainable points: 

0 + = {z E E+; z = y~ for some 8 E [O,t] and u e LI[o, s; U+]}, t >_ 0 

o+ = U o ,  +. 
t>O 

System (4.1) is called positively controllable at time t > 0 if the set O + 
is dense in E +. System (4.1) is called positively controllable if the set O + 
is dense in E +. 

T h e o r e m  4.3. Let e t , . . . , e n  and e l , . . . , e m  be standard bases in H n and 
H m respectively. 

(i) A positive system (4.1) is positively controllable at t ime t > 0 i f  
and only i f  for  arbitrary i = 1 , 2 , . . . ,  n there exists j = 1 , 2 , . . . ,  m and a 
constant p > 0 such that 

ei = ~ B ~ .  

(ii) A positive system (4.1) is positively controllable i f  and only i f  f o r  
arbitrary i -  1 , 2 , . . .  ,n there exists j = 1 , 2 , . . . ,  m such that either 

et = pB~,j f o r  some p > O 
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o r  

e i -  lim S(tk)B~j 
~T+o~ IS(tk)B~jl for  some tk T +cx~. 

We will need several lemmas. 

L e m m a  4.1.  A positive system (4.1) is positively controllable, respectively 
positively controllable at time t > 0 if the cone generated by 

S(s )BG,  s >_ O, j -  l , 2 , . . . , m ,  

respectively generated by 

s ( , ) B G ,  ~ e [0,t], j = 1 ,2 , . . . ,  m, 

are dense in E+. 

P r o o f  o f  t h e  l e m m a .  Fix s > 0. Then 

S(s)B G - lim y~ 
610 

where 

0 k 

for r ~ [ s -  6, s], 
for r E [0, s -  6]. 

On the other hand, piecewise constant functions are dense in La[0, s; U+], 
and vectors y~ where u ( - )  E LI[O,s;U+I, are limits of finite sums of 
the form 

s(k~) S(~)B~,~ d~, 
k 

where u6k E U+, for 6 > 0, k = 1,2, . . . .  Consequently, y~ is a limit of 
finite sums 

j = l  k 

with nonnegative numbers 76k. Hence tile conclusion of the lemma follows. 
El 

For arbitrary x E E+ define 

,(~) = {z ~ E+; ( ~ , z ) =  0}. 

The set s(x) will be called the side of U+ determined by z. 

L e m m a  4.2.  Let K be a compact subset of E+ and let z E E+, z :f: 0. I f  
~(~) ~o. t~i .s  ~ ~ o n ~ o  ~Um~nt of th~ c o . v ~  con~ C ( K ) ,  ~p~n~d by K,  
then s(x) contains at least one element of K. 
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P r o o f  o f  t h e  l e m m a .  We can assume that  0 r K. Suppose that  

. ~ (C(K) )n  ( ~ ( . ) ) . .  # 0 
k(i) 

Then lim ~ a j t z j t  = z for some aja > O, zjt E K,  j = 1 , . . . , k ( i ) ,  I = 
I j = l  

1,2, . . . .  Set t ing 

a ~ t -  ~zl*~zl > 0, yja - ~a l~z l  -~, 

we obtain 

Moreover 

k(t) 
o - (~,~) - l ip  ~,~,(~,~,> 

j=l  

k(O 
= l i m E / ~ j , ( z  Yj,). 

I 
j = l  

k(t) ~(t) I~ 
j = l  j = l  

, ,  Izl, 1 T +oo, 

and we can assume tha t  for I = 1 , 2 . . .  

[•/•,(z, y~t)] < ]f--J 
21' 

k(I) 

2 " 
j=l  

Therefore for arb i t rary  I = 1, 2 , . . .  there is j ( l ) ,  such tha t  (x, yj(O,t } < 1/!. 
Since the set K is compact,  there exists a subsequence (xj(t),t) convergent 
to x0 E K.  Consequent ly  there exists a subsequence (yt) of the sequence 
(yj(t),t) convergent to .01.01 -a. But 

(., ~ol.ol -~) li~n(z, yt) = O, 

so finally xo (5 s (z )  as required. 17 

P r o o f  o f  t h e  t h e o r e m .  Sufficiency follows from Lemma  4.1. To show 
necessity we can assume, without any loss of generality, tha t  B~j ~ 0 for 
j - 1 , . . . , m .  

(i) The  set { S ( s ) B ~ j ;  s E [0,t], j = 1 , . . . ,  m} does not contain 0 and 
is compact,  therefore the cone C1 = C { S ( s ) B ~ j ;  s E [0,t], j = 1 , . . . , m }  
is closed. So if sys tem (4.1) is positively controllable at t ime t > 0 then 
the cone C1 must  be equal to E+. Taking into account Lemma 4.2 we 
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get in particular that  for arbitrary i - 1 , 2 , . . . , n  there exist s E [0,/], 
j - 1 , 2 , . . . ,  m and # > 0 such that  ei - pS(s )BEj .  

Let X > 0 be a number such that  the matr ix  XI + A has all elements 
nonnegative. Then 

+oo 1 
eX'S(s)B~j - e(Xt+A)'B6 -- B~j + E ~ . (~ I  + A)kBG > B G. 

k = l  

Consequently for a positive u > 0 

S ( , ) B G  - ,,,BG, 

or equivalently 
ei -- ItuBej. 

(ii) Assume that  the system (4.1) is positive by controllable and denote 
by K the closure of the set { S ( , ) B ~ i / I S ( ~ ) B ~ r  s >__ 0, j - 1 , 2 , . . .  }. It 
follows from the positive controllability of the system that  C(K)  = E+. 
Therefore, by Lemma 4.2, for arbitrary i = 1 , 2 , . . . , n  there exists j = 
1 , 2 , . . . ,  m such that  either 

e i - p S ( s ) B ~ . j  for some p > O ,  s>_O 

o r  

ei - l i r a  S( tk )BG [S(tk)Be~l for some t~ I +oo. 

Repeating now the arguments from the proof of (i) we obtain that  the 
conditions of the theorem are necessary, r-I 

We propose now to solve tile following exercise. 

E x e r c i s e 4 . 2 .  A s s u m e t h a t n - 2  fl, 7 >  0 a n d t h a t m -  [ - a  /~ ]  
' - 7 - 6  ' 

see Example  0.1. Let S(t) - e At, t > O. Prove that  for arbitrary z E E+,  
x # 0, there exists 

lim S(t )x  = e 
,T+oo IS(t)xl  

and e is an eigenvector of A. 

H i n t .  Show that the eigenvalues A1, A2 of A are real. Consider separately 
the cases A1 - X2 and X I ~ X2. 

E x a m p l e  4.1. Continuation of Exercise 4.2. Let 

m [-~ [1] 
7 - ,  ' 0 ' ~ '  ~ - > ~  (4 .3)  



w 4.2. Positive systems 69 

It follows from Theorem 4.3 that  system (4.1) is not positively controllable 
at any t > 0. By the same theorem and Exercise 4.2, the system is positively 
controllable if and only if 

il (4.4) 

In particular' see Exercise 4"2' the vect~ [ 0 ]1 

and so/~ - 0. Consequently 

must be an eigenvector of A 

e at 0 ] 
S(t)  - "l'te-~t e-St ' 

e_~t 
( ~ e  - o f t  _ e-6 t ) (~_  og) -1 

i f0r - 6 ,  

0] 
e_6t , i f c ~ # 6 .  

We see that (4.4) holds if 7 > 0,/~ = 0 and 6 < ~. These conditions are 
necessary and sufficient for positive controllability of (4.3). Let us remark 
that  the pair (A, B) is controllable under much the weaker condition 7 ~ 0. 

The above example shows that positive controllability is a rather rare 
property. In particular, the system from Example 0.1 is not positively 
controllable. However in situations of practical interest one does not need 
to reach arbitrary elements from E+ but only states in which the system 
can rest arbitrarily long. This way we are led to the concept of a positive 
stationary pair. We say that  (~, fi) E E+ x U+ is a positive stationary pair 
for (4.1) if 

+ = 0. (4.5) 

It follows from the considerations below that n transfer to a state ~ for 
which (4.5) holds with some fi E U+ can be achieved for a rather general 
class of positive systems. 

T h e o r e m  4.4. Assume that system (4.1) is positive and the matriz A is 
stable. Then 

(i) for arbitrary fi E U+ such that Bfi ~ 0 there exists ezactly one 
vector ~ E E+ such that 

A~ + B fi = 0; 

(ii) if  ($,fi) is a positive stationary pair for (4.1) and fi(t) - fi for 
t >_ 0 then, for arbitrary x E E+ 

, t T + o o .  
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P r o o f .  (i) If A is a stable matrix then for some w > 0 and M > 0 

le At ] <_ M e  -~ t >_ O. 

Therefore the integral f : o o  eA t dt is a well defined matrix  with nonnegative 
elements. Since 

fO ~176 
- A  -1 - e At dr, 

the matr ix  - A - *  has nonnegative elements. Consequently the pair 

(~, fi) - ( - A - '  Bf i ,  ~) 

is the only positive stationary pair corresponding to ~. 

(ii)  If ~( t )  - fi for t > 0 and 

[1 - A y  + Bf~ 

- A y -  A~,  y(O) - x, 

then d ( y ( t ) -  ~) -- A ( y ( t ) -  ~) and y( t )  - ~c - S ( t ) ( z  - ~), t > O. Since 
the matr ix  A is stable we finally have S ( t ) ( z  - ~) , 0 as t T +co  and 
v ( t )  , ~ ~ t  l + o o .  o 

Conversely, the existence of positive s tat ionary pairs implies, under 
rather weak assumptions, the stability of A. 

T h e o r e m  4.5. A s s u m e  that fo r  a posit ive sys tem (4.1) there exists a sta- 
t ionary  pair  (~, fi) such that vectors ~ and Bf i  have all coordinates positive. 
Then m a t r i x  A is stable. 

P r o o f .  It is enough to show that  S ( t ) ~  , 0 as t T +oo. Since 

f t+r d 
S(t + r)~ - S(t)~ + -~sS(S)~.ds 

, d r  

f 
t + r  

= S ( t ) ~  + S(s)A~c ds 
J r  

t + r  

- s ( t ) ~  - S ( ~ ) B ~  d~ 

< S ( t ) ~ ,  t ,  r > O, 

the coordinates of the function t ~ S ( t ) ~  are nondecreasing. Conse- 
quently  lim S( t )~  - z exists and S ( t ) z  - z for all t > O. On the other 

tI+co 
t 

hand, for arbitrary t > 0, the vector f S ( r ) B f i d r  has all coordinates posi- 
0 

tive. Since 

I' ~ - ~ >_ ~ -  s ( t ) e  - S ( ~ ) B ~ , a ~ ,  
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for a number p > 0, 

Finally 

< ~ ( ~ -  z ) .  

o <_ s ( t ) ~  <_ t , ( s ( t ) ~ -  ~) , o, 

and S(t )~ , 0  as t T +oo. This finishes the proof of the theorem. 121 

The question of attainabili ty of a positive stationary pair is answered 
by the following basic result: 

T h e o r e m  4.6. Assume that (~,fi) is a positive stationary pair for  (4.1) 
such that all coordinates of  f~ are positive, and let (A, B)  be a controllable 
pair. For an arbitrary x E E+ and an arbitrary neighbourhood I / C  U§ of 
fi there ezists a bounded control fi(. ) with values in V and a number to > 0 
such that 

y ~ " a ( s ) -  ~ for s >_ to. 

Proo f .  Let 6 > 0 be a number such that  {u; I ~ -  u] < / i }  C V. It follows 
from formula (1.12) that  for arbitrary tl > 0 there exists 7 > 0 and that  for 
arbitrary b E 11", Ibl < "r, there exists a control vb(.), Ivb(t)J < /i, t E [0, tl], 
transferring b to 0 at time t l .  Assume first that Iz-~l  < ~ and let z - ~  - b, 
~(t) - vb(t) + f4 and y(t) - y~'a(t), t E [O,tl]. Then 

d d 
d~(Y(t) - ~) - -~y ( t )  

= Ay( t )  + Bvb(t) + Bft 

= A ( y ( t ) -  ~:)+ Bvb(t), t E [O,t~], 

a n d  y (O)  - ~ = z - ~ .  H e n c e  y ( t l )  - �9 = 0 or  y ( t l )  = ~ .  I t  is  a l s o  o b v i o u s  
that  fi(t) E V for t E [0, t~]. Setting fi(t) - ~ for t > tl  we get the required 
control. 

If x is an arbitrary element of E+ then, by Theorem 4.5, there exists 
t2 > 0 such that  the constant control fi(t) - fi, t E [0,t2] transfers z into 
the ball {z; I ~ -  z I < 71 at the time t2. By the first part  of the proof all 
points from the ball can be transferred to ~ in the required way. D 

E x a m p l e  4.1. (Continuation.) Let a , ~ ,  7, 6 > 0. The matr ix  A is stable 
if and only if a / ~ -  ~'y > 0. A positive stationary pair is proportional to 

[ ] [0]  u s i n g ~ 1 7 6  So i r a 6  >/~7  then the state 6 is attainable from 0 
7 

negative controls. 
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B i b l i o g r a p h i c a l  n o t e s  

Results on positive systems are borrowed from the paper [53] by 
T. Schanbacher. In particular, he is the author of Theorem 4.3 and its 
generalizations to infinite dimensional systems. 



P A R T  I I  

N O N L I N E A R  C O N T R O L  S Y S T E M S  

C h a p t e r  1 

C o n t r o l l a b i l i t y  a n d  o b s e r v a b i l i t y  o f  n o n l i n e a r  s y s t e m s  

This chapter begins by recalling basic results of nonlinear differential 
equations. Controllability and observability of nonlinear control systems 
are studied next. Two approaches to problems are illustrated: one based 
on linearization and the other one on concepts of differential geometry. 

w 1 .1 .  N o n l i n e a r  d i f f e r e n t i a l  e q u a t i o n s  

The majority of the notions and results of Part I have been generalized 
to nonlinear systems of the form 

it = f(Y, u), p ( 0 ) -  z E R n, (1.1) 

w -  h(y). (1.2) 

Functions f and h in (1.1) and (1.2) are defined on R n x R m and R n and 
take values in R n and R k respectively. 

In the present chapter we discuss generalizations concerned with con- 
trollability and observability. The following two chapters are devoted to 
stability and stabilizability as well as to the problem of realizations. 

As in Part  I by control, strategy o r  input we will call an arbitrary locally 
integrable function u( - )  from [0, +cx~) into R 'n. The corresponding solution 
y ( - )  of the equation (1.1) will be denoted by y~,~(t) or y=(t, z), t > O. The 
function h(9(.  )) is called the output or the response of the system. 

To proceed further we will need some results on general differential 
equations 

- -  f ( z ( t ) , t ) ,  z ( t o )  - -  z ~_ a n, (1.3) 
where to is a nonnegative number and f a mapping from R n x R into R n. A 
solution z(t), t E [0, T], of equation (1.3) on the interval [0, T], t o  < T, is an 
arbitrary absolutely continuous function z(. ): [0, 7] , R" satisfying (1.3) 
for almost all t E [0, T]. A local solution of (1.3)is an absolutely continuous 
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function defined on an interval [to, r) ,  r > to, satisfying (1.3) for almost all 
[to, r) .  If a local solution defined on [to, r)  cannot be extended to a local 
solution on a larger interval [to, rl) ,  rl > r,  then it is called a maximal 
solution and the interval [to, r)  is the maximal interval of existence. An 
arbitrary local solution has an extension to a maximal one. 

The following classical results on the existence and uniqueness of solu- 
tions to (1.3) hold. 

T h e o r e m  1.1. Assume that f is a continuous mapping from H n x R into 
R n. Then for  arbitrary to >__ 0 and :c E R n there exists a local solution to 
(1.3). I f  z(t) ,  t E [to, r), is a mazimal solution and r < +oo then 

lim Iz(t)l = +o~.  
t i t  

T h e o r e m  1.2. Assume that for  arbitrary z E H n the function f ( . ,  x): [0, T] 
, H n is Borel measurable and for  a nonnegative, integrable on [0,T l, 

funct ion c( . ) 

If(z,t)l  ~< ~(t)(l=l + 1), 

If(=:, t) - f(y, t)l _< ~(t)l=: -- Yl, = , y  ~ a" ,  t e [0,T].  

(1.4) 

(1.5) 

Then equation (1.3) has exactly one solution z(., :c). Moreover, for  arbitrary 
t E [0, T] the mapping :c ~ z ( t , z )  is a homeomorphism of R n into R n. 

Proofs of the existence and uniqueness of the solutions, similar to those 
for linear equations (see [46]) will be omitted. The existence of explosion, 
formulated in the second part of Theorem 1.1, we leave as an exercise. 

The above formulated definitions and results can be directly extended 
to the complex case, when the state space R n is replaced by C n. 

The following result is a corollary of Theorem 1.2. 

T h e o r e m  1.3. Assume that the transformation f :  R" x R m ~ R n is 
continuous and, for a number c > O, 

If(=, u)l ~ ~(1=1 + lul + 1), 

If(x, u )  - f(y, u)l <_ cl= - !/I, 

(1.6) 

z, y E R  n, u E R  m. (1.7) 

Then for  an arbitrary control u ( . )  there ezists ezactly one solution of the 
equation (1.1). 

P r o o f .  If u( . ) :  [0,T] ----. R "  is an integrable function then f ( x ,  u(t)), 
x E R n, t E [0, T], satisfies the assumptions of Theorem 1.2 and the result 
follows. U! 
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C o r o l l a r y  1.1. I f  conditions (1.6), (1.7) hold then the control u( . ) and the 
initial condition x uniquely determine the output yu( . ,z ) .  

In several proofs of control theory a central role is played by theorems 
on the regular dependence of solutions on the initial date. 

T h e o r e m  1.4. Assume that the conditions of Theorem 1.2 hold that for  
arbitmry t G [0,7] the function f ( . , t )  has a continuous derivative f x ( . , t )  
and that the functions f ( . , . ) ,  f~(. , .)  are bounded on bounded subsets of 
[0, T] • R n. Then the mapping z , z(., x) acting from R" into the space 
of continuous functions C(O, T; R n) is FrJchet differentiable at an arbitrary 
point zo and the directional derivative in the direction v E R" is a solution 
~( . ) of the linear equation 

- f~(z(t ,  zo), t)~, ~(to) - v. (1.8) 

In particular, the function t , z~(t, xo) is absolutely continuous and sat- 
isfies the equation 

d 
----z~(t x o ) -  f:~(z(t xo),t)z~(t,  xo) f o r  a.a. t e [0,71 
dt ' ' 

(1.9) 

z,(t0,x0) = I. (1.10) 

Theorem 1.4 is often formulated under stronger conditions, therefore we 
will prove it here. We will need the classical, implicit function theorem, 
the proof of which, following easily form the contraction principle, will be 
omitted. See also Lemma IV.4.3. 

L e m m a  1.1. Let X and Z be Banach spaces and F a mapping from a 
neighbourhood 0 of a point (Xo, zo), with the following properties: 

(i) F(xo,  Zo) = O, 
(ii) there exist Gateaux derivatives F~(., .), F~(.,.) continuous at 

(0,0), and the operator Fz(xo,zo) has a continuous inverse F71(x0,z0).  
Then there exist balls O(xo) C X and O(zo) C Z with centres respec- 

tively at xo, zo such that for arbitrary x E O(xo) there exists exactly one 
z E O(zo), denoted by z(x), such that 

(iii) F ( x ,  z) - 0. 
Moreover the function z( .  ) is differentiable in the neighbourhood O(xo) 

and 
z~(z) = -F~-I (x, z(z))F~(x,  z(z)).  

P r o o f  o f  T h e o r e m  1.4. Let X = R n, Z = C(0,T; R n) and define the 
mapping F: X • Z , Z by the formula 

f2 F(x ,  z ( .  ))(t) - x + f ( z ( s ) ,  s) ds - z(t), t E [0, T]. 
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The mapping Fr(x ,  z) associates with an arbitrary vector v E R" the func- 
tion on [0, T] with a constant value v. The Gateaux derivative F~(z,  z) in 
the direction ~ E Z is equal to 

( F ~ ( ~ ,  ~)~)  ( t )  - S ~ ( z ( s ) ,  ~ ) ~ ( , )  d s  - ~ ( t ) ,  t e [0,T]. (1.11) 

To prove (1.11), remark that if h > 0 then by Theorem A.6 (the mean 
value theorem) 

sup IF(x, z + hE,)(t) - F ( x  z) ( t )  - f x ( z ( s ) ,  s)hE,(s) dsl 

< -~ I f ( z ( s )  + hE,(s), s) - f ( z ( s ) ,  s) - f x ( z ( s ) ,  s )h{(s ) l  ds 

< ~up IS~(0,  ~) - s ~ ( ~ ( s ) ,  ~)1 d~. 
ne t(~(,),~(s)+ht~(s)) 

By the assumptions and the Lebesgue dominated convergence theorem 
we obtain (1.11). From the estimate 

j~0 T IIr~(~, z)~ - F~(~, e)~ll < IlY~(~(s), s) - S . ( ~ ( . ) ,  s)ll d .  < !1r 

valid for x, ~ E R n and z, ~ E Z, ~ E Z and again by the Lebesgue domi- 
nated convergence theorem the continuity of the derivative Fz(.,-) follows. 

Assume that 

Xo + f ( zo ( s ) ,  s) ds - zo(t) - z(t ,  xo),  t z [0,73. 

To show the invertability of Fz(x0, z0) assume r/(. ) (5 Z and consider 
the equation 

=o + S ~ ( ~ o ( s ) ,  s ) r  - r  - ~ ( t ) ,  t e [0,T]. 

Denoting ~(t) = r / ( t )+ ~(t), t E [0,T], we obtain the following equivalent 
differential equation on ~(. ): 

- L ( ~ o ( t ) , t ) r  - L(~o(t),t)o(t), 
r  = ~o,  

t E [0, T], (1.12) 
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which, by Theorem 1.1.1, has exactly one solution. Therefore, the trans- 
formation F satisfies all the assumptions of Lemma 1.1, and, consequently, 
for all z 6- R n sufficiently close to z0, the equation (iii) - -  equivalent to 
( 1 . 3 )  - -  has the unique solution z(-,z) 6- Z, with the Fr~chet derivative at 
z0 given by 

= z , ( zo ) v  = - F 7 1 ( z o ,  zo)Fz(zo,Zo)v.  

Since ~/(t) = Fz(zo,  zo)v = v, t 6. [0,71, by (I.1.7) and (1.12): 

~(t) = ~(t) = .f. (zo(t). t)(~(t) + ,,) - j'. (~o(t). t),, 
= f~ ( zo ( t ) ,  t )~ ( t ) ,  ~ ( to )  = v.  

[2] 
Let us finally consider equation (1.3) which depends on a parameter 

7 6- Ra and denote by z(., 3', z), 3' 6- Ra - ,  a solution of the equation 

= f ( z , 7 , t ) ,  z(to) = z. (1.13) 

We have the following: 

T h e o r e m  1.5. Assume  that a function f ( z , 3 , , t ) ,  ( z ,7 )  6- R " x  R t, t 6- 
[0,T l, satisfies the assumptions of Theorem 1.4 with R n replaced bp Rnx  R t. 
Then for  arbitrary t 6- [0, T], 3'0 6- R a, x0 6- R n, the function 3" , z(t ,  3', z0) 
is Frgchet differentiable at 3"0 and 

d 
d - ~ ( t '  ~0, ~0) =/~(~( t ,  ~0, ~0), ~0, t ) ~ ( t ,  ~o, ~o) 

+/~(~(t ,~0,~o) ,~0,0,  t ~ [0,T]. 

(1.14) 

Proo f .  Consider the following system of equations: 

= f ( z , v , t ) ,  "~= 0, z(to) = z,  7(to) = 7- (1.15) 

The function (x, 3,,t) ~ ( f ( z ,  3,, t), 0) acting from R n x R t x [0,T] into 
R n x R a satisfies the assumptions of Theorem 1.4 with R" replaced by 
R ~ x R t. Consequently the solution t , (z(t ,  "r, z) ,  7) of (1.15) is Fr~chet 
differentiable with respect to (x,'r) and an arbitrary point (z0, "r0). It is 
now enough to apply (1.9). 12] 

w 1 . 2 .  C o n t r o l l a b i l i t y  a n d  l i n e a r i z a t i o n  

Let B(a ,  r) denote the open ball of radius r and centre a contained 
in R n. We say that  the system (1.1) is locally controllable at ~ and at 
time T if for arbi trary ~ > 0 there exists 6 6- (0, ~) such that  for arbitrary 
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a, b E B($, 6) there exists a control u ( - )  defined on an interval [0,t] C [0, T] 
for which 

ya ' " ( t )=b ,  (1.16) 

ya'U(s) e K(~,e) ,  for all a e [0,t]. (1.17) 

We say also that the point b, for which (1.16) holds, is attainable from 
a at time t. 

Exerc i se  1.1. Assume that the pair ( A , B )  where A E M(n,n) ,  B E 
M(n, m), is controllable, and show that the system 

[t = Ay + Bu, y ( 0 ) =  x, (1.18) 

is locally controllable at 0 E R'* at arbitrary time T > 0. 

Hin t .  Apply Proposition I.l.1 and Theorem 1.1.2. 

The result formulated as Exercise 1.1 can be extended to nonlinear 
systems (1.1) using the concept of linearization. Assume that the mapping 
f is differentiable at (~, fi) E R" x Rm; then the system (1.18) with 

A = f~(~,fi), B = fu(~,fi)  (1.19) 

is called the linearization of (1.1) at (~, fi). 

T h e o r e m  1.6. Assume that the mapping f is continuously differentiable 
in a neighbourhood of a point (~, ft) for which 

f(~,  fi) = O. (1.20) 

/ . / the linearization (1.19) is controllable then lhe system (1.1) is locally 
controllable at the point ~ and at arbitrary time T > O. 

Proof .  Without any loss of generality we can assume that ~ = 0, fi -- 0. 
Let us first consider the case when the initial condition a = 0. Controllabity 
of ( A , B )  = (f~(0, 0), f , (0,  0)) implies, see Chapter I.l.1, that there exist 
smooth controls u l ( .  ) , . . . ,  u"( .  ) with values in R m and defined on a given 
interval [0, T], such that for the corresponding outputs y l ( .  ) , . . . ,  y , ( .  ) of 
the equation (1.1), with the initial condition 0, vectors yl (T), . . . ,  yn (T) are 
linearly independent. For an arbitrary 7 - (71 , . . . ,  %)* E R" we set 

U(t ,7)  -- , l ( t ) V  1 + . . .  + un(t)"~'n, t e [0,T]. 

Let y(t, 7, x), t E [0, T], 7 E R", x e R", be the output  of (1.1) correspond- 
ing to u(-,7). Then 

du(t,-y, - y ( y ( t ,  v ,  , , ( t ,  "r)), 

= 

t E [0,T], (1.21) 
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By Theorem 1.5 applied to (1.21), with z0 = 0, 70 = 0, t 6- [0, T], we obtain 

d 0 f  ~7 y~ (t, 0, 0) - ~ (v(t, 0, 0), ~(t, 0))y~ (t, o, 0) 

Of Cgu + ~ ( v ( t ,  0, 0), ~(t, 0 ) ) ~  (t, 0) 

= Ay.r(t, O, O) + B [ u l ( f ) , . . . ,  t in( t )]  . 

Consequently the columns of the matrix y~(t, 0, 0) are identical to the vec- 
tors v l ( t ) , . . . ,  vn(t),  t 6. [0,T], and the matrix y~(T, 0, 0 ) i s  nonsingular. By 
Lemma 1.1, the transformation 7 ~ y(T,'y, 0) maps an arbitrary neigh- 
bourhood of 0 6. Rn onto a neighbourhood of 0 E Ha, so for ~ > 0 and 
r > 0 there exists 6 6. (0,e) such that  for arbitrary b E B(0, 6) there exists 
7 6- R", 171 < r, and 

v(T, 7, O) = b. 

This proves local contollability if a = 0. To complete the proof let us 
consider the sys tem 

.~ --  - - f ( .~ ,  6) ,  .0(0) -- O, ( 1 . 2 2 )  

and repeat the above arguments.  If 

~(t) = a ( T -  t), y(t)  = ~ ( T -  t), t ~ [0, 71, 

then 
~l(t) = f (v( t ) ,  u(t)), t 6.[0,T l, 

and y(0) = ~(T). Taking into account that  the state a = y(T)  could be an 
arbitrary element from a neighbourhood of 0 we conclude that  system (1.1) 
is locally controllable at 0 and at time 2T, the required property, r3 

Condition (1.20) is essential for the validity of Theorem 1.5 even for 
linear systems. 

T h e o r e m  1.7. System (1.18) is locally controllable at ye 6. I] n if and only 
if 

the pair (A, B) is controllable, and (1.23) 

AYe + Bfi = O for  some fi 6. R m. (1.24) 

P r o o L  Taking into account Theorem 1.6 it remains only to prove the 
necessity of conditions (1.23)- (1.24). 

To prove the necessity of (1.23) assume that  AYc+ B u  # 0 for arbi trary 
u E R m. Let v be a vector of the form AYe + B u with the minimal norm. 
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Then Ivl > 0 and, for arbitrary u G II ra, (A~. + B u - v ,  v) - O. Consequently,  
for x E R n R m , u E  

(Ax  + Bu, v) - (A~, + Bu + A(x  - ~), v) 

= I,,I 2 + ( A ( x -  i'), v) >_ I,,I 2 - IAI I~ - ~1 I,I. 

If 6 is a number  such that  0 < 6 < Iv] 2, then 

(A~ + Bu, v) >__ ~ for x e B ( ~ ,  0 ,  u e R m, 

where F -  ( Iv l  ~ - 6)/(IA [ I~1) > 0. Therefore for arbi t rary  control u ( - )  and 
the o u t p u t  yr,U we have 

d 

dt ' - 
provided t G [0,?], 

where i = inf( t;  ly~,-(t)- ~1 >_ ~}. So an arb i t rary  state b = s - ~v/Ivl, 
f~ (5 (0, ~) can be at tained from ~ only after the ou tpu t  exits from B(s ~). 
The sys tem (1.1) can not be locally controllable at  s 

Assume now that  the system (1.1) is controllable at s E R" and (1.24) 
holds. If y(-, s is the output  corresponding to u(-  ) then ~(., 0) = y(-, s  s 
is the response of (1.1) to fi(-) = u ( - ) -  ft. Therefore we obta in  tha t  
the sys tem (1.1) is locally controllable at 0 and tha t  the pair ( A , B )  is 
controllable,  see 1.1.2. 121 

E x e r c i s e  1.2.  Let a function g(~1,~%,.-. ,~ , , ,~n+l) ,  ~r G R be of 
class C 1 and satisfies the condition" g ( 0 , . . . , 0 )  - 0, cOg/O~,,+~(O,..., O) # 
0. Show tha t  the system 

dn z ( dn- l z ) 
dr" (t) - g d l n _  1 ( t ) , . . . ,  z ( t ) ,  u ( t )  , f >__ 0, (1.25) 

treated as a system in R n is locally controllable at 0 G It n. 

H i n t .  Show first that  the linearization (1.2) is of the form 

d ~-  lz 0g dnz cog (0,. .  O) (t) + + (0 O)z(t) 
dr" - 0~1 "' d t n - i  " '"  - ~ n  ' ' ' ' '  

cog 
+ b~,+, (o, . . .  ,O)u(t), t >__ o. 

(1.26) 

r-1 
There exist important ,  locally controllable sys tems whose linearizations are 
not  controllable. A proper tool to discuss such cases is the Lie bracket 
introduced in the next section. 
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w 1.3.  Lie bracke t s  

A vector field of class C k we define as an arbitrary mapping  f ,  from 
an open set D C R'* into R n, whose coordinates are k - t i m e s  continously 
differentiable in D. Let f and g be vector fields of class C 1, defined on D, 
with coordinates f l ( x ) , . . . ,  f " ( x )  and g 1 (x), . . . ,  gn(x), x E D, respectively. 
The Lie bracket of f ,  g is a vector field denoted by [f, g] and given by 

[f , g](x) = f~ (x )g(x )  - g~(x)f(x), x E D.  

Thus,  the i - t h  coordinate, [f, g]i(z), of the Lie bracket is of the form 

'* (Of  i 

k = l  

o,i ) 
( x ) g k ( x ) -  ~-~-~xk(x)J'k(z) , (1.27) 

[.1] 
x -  " E D .  

Xn 

A subset P of R" is called a k-dimensional surface, k = 1 , 2 , . . . ,  n, in 
short, a surface, if there exists an open set V C R k and a homeomorphism 
q mapping V onto P with the properties: Iqll 

- " is of class C 1 (1.28) 
q qn 

IV1] Oq Oq 
vectors ~-v  ( v ) , . . . ,  (v) are linearly independent, v - -  " E V. 

Ovk 
Vk 

(1.20) 

The transformation q is called a parametrization of  the surface and the 
linear subspace of R n spanned by vectors ~ (v )  aq (v) is called the 0vt  ' ' ' ' '  avk  
tangent space to the surface P at the point q(v). 

We will need the following proposition. 

P r o p o s i t i o n  1.1 (i) I f  q(.  ) is a mapping of class C 1 from an open set 
V E R k into a Banach space E such that the derivative qv(~):R k .~ g 
at a point f, is o n e - t o - o n e  then there ezists a neighbourhood W of  f, such 
that the mapping q restricted to W is a homeomorphizm. 

(ii) If, in addition, E - R t ,  then the image q (W)  of  an arbitrary 
neighbourhood W of ~ contains a ball with the centre q(~). 

P r o o f .  (i) Wi thou t  any loss of generality we can assume that  ~ = 0, 
q(~) = 0. Let A = q~(~). Since the linear mapping A is defined on a finite 
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dimensional linear space and is o n e - t o - o n e ,  there exists c > 0 such tha t  
IIAvll _> ely I for v ~ R k. Define q(v) - q(v) - Av, v ~ R k. Then q~(~) - 0, 
and by Theorem A.6 (the mean value theorem), for arbitrary e > 0 there 
exists 6 > 0 such that  

I I#(u) -  q(v)ll _< e l u -  ~1, if lul, I~1 < a. 

Let e E (O,c) and W - B(0,6).  For u ,v  E W 

clu- vl-  Ilq(u) - q(v)ll _< IIm(u - v ) l l -  IIq(u) - q(v)ll 
< I Iq(u)-  r _< ~ l u -  vl. 

So 
( c -  ~)lu - vl _~ IIq(u) - q(v)[[, u, v E W, 

and we see that  q restricted to W is o n e - t o - o n e ,  and the inverse transfor- 
mat ion satisfies the Lipschitz condition with the constant (c-  e) -x .  This 
finishes the proof of (i). The latter part  of the proposition follows from 
Lemma 1.1. El 

As far as Lie brackets are concerned, we will need the following basic 
result. 

T h e o r e m  1.8. Let q(v), v E V, be a parametrization of class C 2 of  the 
surface 7~ in Ha. Let f and g be vector fields of class C 1 defined in a 
neighbourhood of P.  I f  for arbitrary v E V vectors f (q(v) ) ,  g(q(v)) belong 
to the tangent space to 7 9 at q(v), then for  arbitrary v E V the Lie bracket 
[f ,g](q(v))  belongs to the tangent space to 7 9 at q(v). 
P r o o f .  Let ql(v) , .  . . ,qn(v) ,  f l ( q ( v ) ) ,  . . ., fn (q(v ) ) ,  gl(q(v)) ,  .. . ,gn(q(v) )  
be coordinates respectively of q(v), f ( q ( v ) ) ,  g(q(v)),  v E V. By (1.29) and 
Cramer 's  formulae, there exist functions c~l (v) , . . . ,  c~k(v), f~ l (v ) , . . . ,  f~k(v), 
v E V, of class C 1 such that  

k Oq 
f(q(v)) -- j~1"= '~vj (v)~ (v), 

k Oq 
g(q(v)) - ~._ g/~-(v)~J (~), 

(1.30) 

Therefore 

v E V. (1.31) 

Ovt ( f i (q(v)) )  -- ~ 
j - I  

k 02 qi k Oqi OoJ 

---- j~x'= ~----OvtOvj (v)~J (v) + ~.= -~vj (v) ~,~,~ (v) , 

(1.32) 
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Ir 02 qi 
0 (gi(q(v)))  _ j~ l  

Ovt OvaOv,i ~  

On the other hand 

j •  Oq i , , O/~ (v) 
~ 

0 n Off Oq r , , 
Ovl (fi(q(v))) "- E -~x~ (q(v))-~vt (v)' 

r---- 1 
0 n Og ~ Oqr " 

Ovt (gi(q(v))) -- Z (q(v)) v E V .  

(1.33) 

(1.34) 

(1.35) 

Taking into account definition (1.27) 

n ( o f i  Og i . ) 
[f , gli(q(v)) -- E -~xr (q(v))gr(q(v)) -- ~zr (q(v))fr(q(v)) ' 

r - -1  

v E V .  

From (1.30), (1.31) and (1.34), (1.35) we have 

[f,g]'(q(v)) = y~ [0= (q(v)) b--~va (v)#'(v) 
r :  1 I :  1 

~ ( 
o=~ (q(")) ~ ~ (,,)~,t(,,) 

k 0 k 0 i 
-- Z j3t(V)~vt (fi(q(v))) - Z c~'(v)-~vt (g (q(v))). 

I : 1  I : 1  

Hence by (1.32), (1.33) 

[f,g]i(q(,~)) _ ~#t(v  ) ~ ( O'q' Oq', ,o~i 
, : ,  : ,  ko~,o~) (v)~#(~) + b-~ t~J~-g-~, (~) 

" [ O'q' Oq' O#~ ] 

Since functions q i ,  i : 1 , . . . ,  n are of class C 2 we obtain finally 

, ( ) [f,g]i(q(v)) -- ~ Oqi _ 0/3j (v)c~t(v) , 

I=1  

i = 1 , 2 , . . . , n ,  v E V .  

Therefore the vector If, g](q(v)) is in the tangent space to P at q(v). The 
proof of the theorem is complete, o 
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E x e r c i s e  1.3. Let A1,A2 6_ M ( n , n ) ,  a l , a2  (5 R n and f ( x )  - A l z  + al, 
g(z)  - A2x + a2, z (5 R n. Show that  

[f, g](z) - (A,  A2 - A 2 A , ) x  + A,a2 - A~al,  �9 (5 R". 

w 1 .4 .  T h e  o p e n n e s s  o f  a t t a i n a b l e  s e t s  

Theorem 1.9 of the present section gives algebraic conditions for the 
set of all at tainable points to be open. The property  is slightly weaker 
than  tha t  of local controllability. Under additional conditions, formulated 
in Theorem 1.10, the local controllability follows. 

Let U be a fixed subset of R m and assume tha t  mappings f ( . ,  u), 
u (5 U, from [I n into }l n, defining system (1.1), are of class C k. By elemen- 
tary control we understand a right continuous piecewise constant  function 
u: R+ : .~ U, taking on only a finite number of values. Denote by s the 
set of all vector fields defined on R n of the form f(-,  u), u (5 U, and by s  
j = 1 , 2 , . . . ,  the set of all vector fields which can be obtained from vector 
fields in s by an application of the Lie brackets at most j times: 

~o - { f ( ' , u ) ;  u (5 U},  

~j - -  Cj-1 U {[f, g](" ); f ( "  ) (5 Ej_ 1 and g ( - )  (5 s 

o r f ( . ) ( 5 s  and g( - ) (5 /~j_, }, j -  1,2, . . . .  

Let us define additionally for x (5 R n and j - 0, 1 , 2 , . . .  

/ ~ j ( z ) -  { f (x ) ;  f (5 s  }, 

and let dim s be the max imum number of linearly independent  vectors 
in s  

The  following result holds. 

T h e o r e m  1.9. Assume that fields f ( . ,  u), u (5 U, are of class C k for  some 
k >_ 2 and that for some x (5 R" and j < k 

dim s  ( x ) - n. ( 1.36) 

Then the set of all points attainable from z by elementary controls, 
which keep the system in a given in advance neighbonrhood D of  x, has a 
nonempty  interior. 

P r o o f .  Since the fields f ( . ,  u), u (5 U, are smooth, we can assume that  
condition (1.36) is satisfied for any x (5 D. For arbi trary  parameters  
u l , . . . , u t  (5 U, for a fixed element u + (5 U and for positive numbers 
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vz,  v 2 , . . . , v t ,  1 -- 1 , 2 , . . . ,  denote by u(t;  ux , . . . , uz ;  v z , . . . , v t ) ,  t > 0, a 
control u( .  ) defined by" 

I / 1 ,  

U + , 

if 0 < t < vl, 
i f v z + . . . + v r _ z  < t < vz + ..  . + vr,  r - 2 , .  . . , I ,  
i f t  E vz + . . . +  vt. 

(1.37) 

Let us fix parameters  u z , . . . ,  ua and element z 6- R n and let 

q ( v z ,  . . . , v t )  - -  y U ( ' ; u '  . . . . .  u,;vt , . . . ,v , )(v  z + . . . + v z , x ) ,  v z , . . . , v z > 0 .  

Note that  

�9 . , - -  ~ ~ Z ul-2 q ( v z , ,  vt) zUl(T)l zu t -z ( t l i -1  ( .  �9 �9 , z u '  ( tY l ,  X )  �9 �9 . ) ) ) ,  (1.38) 

where zU(t ,  y ) ,  t >_ O, y 6_ R "  denote the solution of the equation 

s -- f ( z ,  u) ,  z(O) - y. (1.39) 

Let 1 < n be the largest natural  number for which there exist control 
parameters  u l , . . . ,  ut 6- U and positive numbers c~1 < / ~ l , . . . ,  c~t < ~/z such 
tha t  the formula (1.38) defines a parametric representation, 

{iv1] 
V ~  

Vl 

; Oti < V i  < ~ i ,  i - 1 , 2 , . . . , i } ,  

of a surface of class C ~, contained in D. 
W e  show first that  I _ 1. Note that  there exists u z E U such tha t  

f ( z ,  uz )  =t(= O. For if f ( z ,  u) - 0 for all u E U, then the definition of the 
Lie bracket implies that  g ( z )  - 0 for arbitrary g E s and more gener- 
ally g(z) - 0 for arbitrary g E s  j = 1,2, . . . .  This contradicts  the 
assumption that  d i m s  = n. If, now, f ( z ,  u l )  ~ 0 then, by Proposi t ion 
1.1(i), for small az > 0 the function z " ' ( v ,  z), v 6- (0, or1), is a parametr ic  
representation of a one-d imens ional  surface contained in D. 

Assume tha t  1 < n and let P be a surface given by (1.38). There exist 

v ' -  " EV,  u ' E U ,  

such that  the vector f ( q ( v ' ) ,  u ' )  is not included in the tangent  space to 
at q(v ' ) .  This follows from Theorem 1.8 and from the assumption tha t  

d i m s  - n > I for v E V. Since the function f(- ,  u') is continuous, 
there exists/5 > 0 such that  if or} - 6  < vj < a} + 6, j - 1 , . . . ,  i then vector 
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f (q(v) ,  u') is not in the tangent space to 7 ~ at the point q(v). It follows 
from Proposition 1.1(i) that  for some positive numbers at+x < /3t+1 the 
transformation q'(. ), 

qt (v l , . . . ,  vt, VI+I ) -" Z u' (t~l+ 1, q ( V l , . - . ,  UI)), 

i - - 6 <  < I aj vj aj + 6, j -  1, . . . ,1 ,  0q+l <~ 17/+1 <~ /~/+1, 

is a parametric representation of an (I + 1)-dimensional surface included in 
D. By the regular dependence of solutions of differential equations on initial 
conditions (see Theorem 1.4), the transformation q'( .  ) is of the same class 
as q( - )  and consequently of the same class C t as fields f(- ,  u), u E U. This 
contradicts the definition of the number I, so I - n. Hence, by Proposition 
1.1(ii), the image q(v) has a nonempty interior. This finishes the proof of 
the result. 0 

E x a m p l e  1.1. Consider the system Yl - 1, Y2 - u(yl)  2 with the initial 
condition x - 0 and U - R. In this case 

[11[01 f ( x , u ) - -  O + u  (xl) 2 , u e R ,  

and the fields 

[1] [1] 
f ( x ) - -  O ' g ( x ) -  (xl)  2 , x =  x2 6_R 2, 

belong to s By direct calculations, 

[01 [o] 
Hence d ims  = 2 for arbitrary x E It 2. By Theorem 1.7, the set of 

a l l a t t a i n a b l e p ~ 1 7 6  [0 lO h a s a n o n e m p t y i n t e r i o r .  However, since 

Y x > O ' p ~  x l ]  [ ] , xl < O, can not be attained from 0 Therefore in 
x2 0 " ' 

general, the conditions of Theorem 1.9 do not imply local controllability at 
X. 

E x a m p l e  1.2. Let f ( x ,  u) = A x + B u ,  x E R", u E H m. Then (see Exercise 
1.3), 

[f(-, u), f(-,  v)] = AB(v  - u). 

We easily see that 

s = {Ax + Bu; u ~_ H"} ,  

s - s  {AJBuj;  j = 1 , . . . , k ,  uj 6_ Rm}. 
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So d im/ :n_l (0)  = n if and only if the pair (A, B) is controllable. If the pair 
(A, B) is controllable then 

d ims  = n for arbitrary x E [I n. 

This way condition (1.36) generalizes Kalman's condition from Theorem 
1.1.2. 

Under additional assumptions, condition (1.36) does imply local con- 
trollability. We say that  the system (1.1), with U C R m, is s y m m e t r i c  if for 
arbitrary u E U there exists u ~ E U such that 

f (x ,  u) -- - - f (x ,  ut), x E a n. (1.40) 

T h e o r e m  1.10. I f  sys tem (1.1) is s ymme t r i c  and condit ions of  Theorem 
1.9 hold, then sys t em (1.1) is locally controllable at z .  

Proo f .  Let us fix a neighbourhood D of x. By Theorem 1.7, there exists a 
ball B(~, r) E D such that  arbitrary b E B(~, r) can be attained from x at 
a time r(b)  using elementary controls ub(t), t E [0, r(b)], and keeping the 
system in D. In particular there are numbers vi > 0 and parameters ui E U, 
i = 1, 2 , . . . ,  I, such that  strategies u~(t)  = u(t ,  u l , . . . ,  ut; v l , . . . ,  vt), t >_ O, 
transfer x to ~ at time r(~) = vx + v2 + . . .  + vt. 

I Let u ~ . . . ,  u~ E U be parameters such that f ( x ,  ui) - - f ( x ,  ui) and 
z i :  It n ; It n - -  transformations given by 

Z i ( x )  - z u: (vi ,  x ) ,  x ~_. R n, i - 1 , 2 , . . . ,  I, 

compare (1.39). It follows from Theorem 1.2 that these transformations are 
homeomorphic. 

For b E B(s r) we define new controls 

/ I 
r ? ( t )  - u ,  , 

if t E [0, 
if v(b) + vi+l + . . .  + vt < t < r(b) + vi + vi+l + . . .  + vt, 

i = 1 , 2 , . . . , I ,  vt+x = O. 

Then the set 

{ya '  (r(b) -I- v, + . . .  + vt, *); b E K(~, r )}  

consists of states attainable from x and is equal to the image of the ball 
B(~, r) by the transformation composed of Z z, z t - 1 , . . . ,  Z 1. Therefore, 
this set contains a nonempty neighbourhood of z and local controllability 
of (1.1) at x follows. E! 
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E x a m p l e  1.3. Consider the following system (compare also w 2.8)" 

Yl "--B, 

Y2 -- 111 

u] R~. ~/3 - yl  v -  y~u 6: U - 
1 11 

Let us remark that the linearization of the system at (x, 0) is of the 
form [ ] [ ] 0 0 0  1 0 

A -  0 0 0 , B -  0 1 , 
0 0 0 --X2 X 1 

so the linearization is not controllable and Theorem 1.6 is not applicable. 
On the other hand, the system is symmetric. Let [1] [o] 

f ( x ) - -  0 , g (x ) - -  1 . 
--X2 Xl 

Then f ( x ) , g ( z )  6: s and 

[ f , g ] ( x ) - -  , x - -  x2 6 : R  a. 
- -  X 3 

Therefore d imEl(x)  -- 3, z 6: R 3, and the system is locally controllable at 
arbitrary point of H a. 

w 1 .5 .  O b s e r v a b i l i t y  

We will now extend the concept of observability from w 1.1.6 to nonlin- 
ear systems. Let us assume that the stated equation is independent of the 
control paremeter 

s - f ( z ) ,  z ( O )  - x 6:_. [I n ,  (1.41) 

and that the observation is of the form 

w( t )  - h ( z ( t ) ) ,  t >_ O. (1.42) 

We say that the system (1.41)-(1.42) is observable  at a poin t  z if there 
exists a neighbourhood D of z such that for arbitrary xl 6: D, zl ~ x, 
there exists t > 0 for which 

h ( z ( t ,  x ) )  ~ h ( z ( t ,  Xl) ). 



w 1.5. Observability 89 

If, in addition, t _< T then the system (1.41)-(1.42) is said to be observable 
at point x and at the time T. 

We start  from a sufficient condition for observability at an equilibrium 
state, based on linearization. To simplify notation we assume that  the 
equilibrium state is 0 E R n. 

Theorem 1.11. Assume that transformations f :  R n ~. R n and h" R" 
R k are of class C 1. I f  the pair (f~(0), hx(0)) is observable then the system 
(1.41)-(1.42) is observable at 0 and at any time T > O. 

Proo f .  Let us fix T > 0 and define a transformation K from R n into 
C(0, T; R") by the formula 

(K~)( t )  - h(~(t ,~)),  ~ ~ a", t E [0,71. 

It follows from Theorem 1.4 that  the transformation K is Fr~ehet differen- 
tiable at arbitrary s E R '~. In addition the directional derivative of K at 
and at the direction v G R n is equal to 

(K,(~; v))(,) - h.(z( t ,  ~))z . ( , ,  ~)~, 

and 
d 

-~zx( t ,  ~) -- f x (z ( t ,  ~))zx(t ,  ~), t ~. [0, T], 

~ ( o , ~ )  = t .  

In particular, for ~ = O, v E R n, 

Kx(0; v)(t)  = hr(O)e/'(~ t E [0, T]. 

Since the pair (/~(0), h~(0))is observable therefore the derivative Kx(0,-) is 
a o n e - t o - o n e  mapping onto a finite dimensional subspace of G(0, T; R"). 
By Proposition 1.1 we have that the transformation K is o n e - t o - o n e  in a 
neighbourhood of 0 and the system (1.41)-(1.42) is observable at 0 at t ime 
T. t3 

We will now formulate a different sufficient condition for observability, 
often applicable if the linearization is not observable. Assume that  the 
system (1.41)-(1.42) is of class C r or equivalently that  the mappings f 
and h are of class at least C r, r >_ 1. Let 

I f1(x) 
�9 ) 

f(x)= fn im)  I 
hl(x) 

�9 ) 

h(~ )=  hki~) 
z E R", 

and let H0 be the family of functions h i , . . . ,  h k" 

Ho- {hl,...,hk}. 
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Define families Hi,  1 < j < k, as follows" 

,=,  =,gc H _I , 

and set 

d H j ( x )  - " ; g 6_ H.i , z G R  n, j - O , . . . , r - 1 .  

Let d i m d H j ( x )  be the maximal number of linearly independent vectors in 
dHj (x ) .  

E x a m p l e  1.4. Assume that  f ( x )  = Ax ,  h (x )  = Cx ,  x E It n, where 
A E i ( n , n ) ,  C E M ( k , n ) .  Then f ' ( z )  - (a~,x) ,  h i ( x )  - (c~,z),  i -  
1,2, . . . . . .  , n, j = 1, 2, ,k, z E It '=, where a l , . . . , a n ,  c x , . . . , c k  are the rows 
of matrices A and C respectively. Thus for arbi trary x E It n 

dHo(x)  = { c ; , . . . ,  c~}, 

dHx(x)  = dHo(x)  O { A ' c ; ,  . . . ,  A*c~:}, 

d H j ( z )  - d H j _ l ( x ) U  { ( A * ) J c I , . . . , ( A * ) J e k ,  j - 1 ,2 , . . . } .  

T h e o r e m  1.12. Assume that system (1.41)-(1.42) is of  class C r, r ~_ 1, 
and 

d i m d H r _ x ( z )  = n. (1.43) 

Then the system is observable at x at arbitrary time T > O. 

P r o o f .  Assume that  condition (1.43) holds but  the system (1.41)-(1.42) 
is not observable at x and at a time T > 0. Then, in an arbitrary neigh- 
bourhood D of x there exists a point xl such that  

g(z~(t))  = g(z='(t)) ,  t E [0,T], g E H0. (1.44) 

By an easy induction argument (1.44) holds for arbitrary g E Hr-1 .  Since 
d i m d H r _ l ( x )  - n, there exist in H~-I functions ~ l , . . . , ~ n  such that  the I 1'1 derivative of G( - )  - at z is nonsingular. In particular, for ar- 

) 
bitrary x~ sumeiently dose to x, G(x)  ~: G(x~) and, for some j < n, 
~/(z~(O)) r ~/(z~'(O)), a contradiction with (1.44). [21 
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E x a m p l e  1.4. (Continuation.) Condition dimdHn_~ (z) = n is equivalent 
to the rank condition of Theorem 1.1.6. 

B i b l i o g r a p h i c a l  n o t e s  

Theorem 1.6 is due to E. Lee and L. Markus [36] and Theorem 1.9 to 
H. Sussman and V. J urdjevic [54]. The proof of Theorem 1.9 follows that of 
A. Krener. Results of w 1.4 and 1.5 are typical for geometric control theory 
based on differential geometry. More on this topic can be found in the 
monograph by A. Isidori [31]. Example 1.3 was introduced by R. Brockett 
[11]. 



C h a p t e r  2 

S t a b i l i t y  a n d  s t a b i l i z a b i l i t y  

Three types of stability and stabilizability are studied: exponential, 
asymptotic and Liapunov. Discussions are based on linearization and Lia- 
punov's function approaches. When analysing a relationship between con- 
trollability and stabilizability topological methods are used. 

w 2 . 1 .  D i f f e r e n t i a l  i n e q u a l i t i e s  

The basic method of studying asymptotic properties of solutions of 
differential equations in I1 n consists of analysing one dimensional images 
of the solutions by appropriately chosen transformations from [I n into R. 
These images do not satisfy, in general, differential equations but very often 
are solutions of differential or integral inequalities. This is why we start  
with such inequalities. We consider first the Gronwall lemma. 

L e m m a  2.1. Let k be a nonnegative, bounded, Borel measurable func- 
tion on an interval [to, ix] and l a nondecreasing one. Let v be a function 
integrable on [to, tl] such that .for almost all t E [to, tl] 

f2 v(t) <_ t(t) + k ( ~ ) ~ ( , )  d , .  (2 .1)  

Then for those t e [to, t,] for which (2.1) holds one has 

(fl ) v(t) < exp k(s) ds I(t). (2.2) 

In particular, (2.2) holds almost surely on [t0, t~]. 

Proo f .  Assume first that I(t) = I(to) for t E [t0,tl] and define 

f2 u(t )  - t(to) + k(~) , , (~)  d~, 

( f l )  w(t)  - ~xp - k(~) ds u( t ) ,  t e [to, t~]. 

Functions u and w are absolutely continuous and 

i~(t) = k( t )v( t )  < k(t)u(t), 

dv(t) - i~(t)exp ( -  ~ i  k(s) ds ) - k( t )u( t )exp ( -  ~tl k(s) ds ) <0 ,  
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almost surely on [to, t 1]. Therefore, 

w(t) _< w(to) _< ,(to) _< t(to), 

//o //o u(t) -- w(t) exp k(s)ds < I(to) exp k(s)ds,  

and, consequently, 

(J:) v(t) <_ u(t) <_ exp k(s) ds I(to) almost surely on [to, t 1]. 

I f / i s  an arbi trary  nondecreasing function on [to, t l] and t2 (5 (to, t 1), 
then I(t) <_ I(t2) on [to, t~]. Moreover 

v(t) < l(t2) + k ( s )v ( s )ds  almost surely on [to, t2]. (2.3) 

Assume addit ionally tha t  (2.1) holds for t = t2. Then (2.3) holds for t = t2, 
as well. By the above reasoning, 

(/,i" ) v(t2) < exp k(s) ds I(t2). 

The proof of the l emma is complete. 0 

The following result will play an important  role in wha t  follows. 

T h e o r e m  2.1.  Assume that ~o: [to, tl] • R - ~ R is a continuous function 
such that for some M > 0 

I~,(t,x) - ~,(t, ~)1 _< Mix - yl, t e [to, td ,  z , p  e R. (2.4) 

I f  v is an absolutely continuous function on [to, tl] such that 

1)(t) ~ t~(t, 1)(t)) a . 8 .  o n  [to.tl] , (2.5) 

o r  

then 

or, respectively, 

6(t) >_ ~( t ,  v( t))  , . , .  o .  [to, t~], (2.6) 

v(t) <__ u(t) f o r  all t E [to,t1] 

v(t) >__ u(t) f o r  all t E. [t0, t,], 

(2.7) 

(2.8) 
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where u is a solution of the equation 

6(t) - ~,(t, u(t)) ,  t e [to, t,], (2.9) 

with the initial condition 

or, respectively, 

=(to) > v(to) 

=(to) _< ~(to). 

P r o o f .  By Theorem 1.2 there exists exactly one solution of the equat ion  
(2.9) on [to, tl]. Assume that  i~(t) < ~o(t, v(t))  a.s. on [t0, t~] and consider 
a sequence u , , ( - ) ,  n -  1 , 2 , . . . ,  of functions satisfying 

1 
i , . ( t )  - so(t, u . ( t ) )  + - ,  t e [to, t~], 

n 

u n ( t o ) - u ( t o ) ,  n - -  1,2, . . . .  

Let K > 0 be a number such that  I~p(s, 0)l < K,  s e [to, tl]. From (2.4), 

I~,(s, x)J < J~,(s, x) - ~,(s, o)J + J~,(s, o)1 < MlxJ + K, 

s ~ [to, t~], x ~ R. 

(2.10) 

Since 

- - +  (p(s, un ( s ) )ds ,  un(t)  -- u(to) + (t tO) n t e [to, t l],  (2.11) 

therefore 

l u . ( t ) l  _< lu(to)l + (K + - ) ( t  - to) + M lu.(s)l ds,  
71 

t e [to, t ,].  

Hence, by Lemma 2.1 

1 
I==(t)l _< I=(t0)l + (K + - ) ( t ,  - to)~ M('-'o) 

I1 
t ~ [to, t ,],  

and funct ions u,,(t), t ~_ [t0, tl], n - 1 , 2 , . . .  , a r e  uniformly bounded.  They  
are also equi-continuous as 

f t 1 1 lug(t) - u,,(s)l < I~(r, Un(r))l dr + -(tn - s) < (L + n ) ( t  - s), 

t o < s < t < t l ,  

for a cons tan t  L > 0, independent  of n. 
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It follows from Theorem A.8 (the Ascoli theorem) that  there exists 
a subsequence of (u~(- ) )  uniformly continuous to a continuous function 
fi(.).  Letting n in (2.11) tend to +co we see that the function fi(-) is 
an absolutely continuous solution of the equation (2.9) and therefore it is 
identical with u( .  ). To prove (2.7) it is sufficient to show that  

un(t) ~_ v(t) for n -  1,2,...,  t E [t0, tl]. 

Assume that  for a natural number m and for some t~ E (to, t~), u,,,(t2) < 
v(t~). Then for some t E [to, t2), 

urn(t) = v(t) and u,,( t)  < v(t) for t e [t, t2). 

Taking into account the definitions of v(-)  and urn(')  and the continuity 
of ~(.,-) we see that  for some 6 > 0 and arbitrary t E (t, t + 5) 

v ( t ) -  v(t)~ < l ~ f t  
t - t  - t - t  

1 
~(s, v(s)) ds _< ~(~, v(~)) + ~-~, 

urn(t)- v(~) > ~,(~, v(~))+ 1 
t - i  - 2-m~ 

Therefore urn(t) > v(t), t E ( t , t +  ~), a contradiction. This proves (2.7). In 
a similar way (2.6)implies (2.8). n 

C o r o l l a r y  2.1. l f v ( . )  is an absolutely continuous function on [to, t1] such 
that for some ~ E R 

i)(t) < ~v(t) a.s. on [to, t,], 

then 
v ( t )  <_ e~ t e [to, t ,].  

Similarly if  i)(t) > av(t)  a.s. on [to,t1] then 

tl(t) > eCt(t-t~ t ~_. [tO, tl]. 

w 2 . 2 .  T h e  m a i n  s t a b i l i t y  t e s t  

In the present section we study the asymptotic behaviour of solutions 
of the equation 

;~ = Az  + h(t ,z) ,  (2.12) 

z(O) - z e C" ,  
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where A is a linear transformation from C" into C",  identified with an 
element of M ( n ,  n; C), and h is a cont inuous mapping  from R+ x C" onto  
C" satisfying 

sup Ih(t,x)l , o ,  i f  I x l  , 0.  (2.13) 
,>o (~I 

As in Par t  I (see w 1.2.7), we set 

w ( A ) -  max{ReA;  A E a(A)} ,  

and if x, y are vectors with complex coordinates ~ t , . . .  ,~,  and r / i , . . . ,  r/,, 

n n 

y )  - - I ,t 
i = 1  i = 1  

Under the imposed conditions, for arb i t rary  z E C" there exists a maximal  
solut ion z(t) ,  t E [0, r) ,  z(0) - z of (2.12). 

The  following theorem is of basic importance  in the theory of nonl inear 
systems.  

T h e o r e m  2.2. (i) / f  (2.13) holds and co(A) < O, then for arbitrary w > 
w(A)  there exist M > 0,6 > 0 such that an arbitrary maximal solution 
z ( - )  of (2.12), with initial condition z(O) satisfying [z(O)l < 6, is 
on [0, +oc)) and 

I z ( t ) l  < Me~'lz(O)l, t >_ O. 

(ii) I f  (2.13) holds and w(A)  > 0 then there exists r > 0 such that 
for  arbitrary 6 > 0 one can find a solution z(t) ,  t E [0, r) with an initial 
condi t ion z(O), Iz(0)l < ~, and a number  s ~ [0, r), such that 14s)l > ~- 
If, in addition, transformations A and h( t , . ) ,  t > O, restricted to R n take 
values in R" then there exists a solution z ( .  ) with values in R" having the 
described properties. 

Before proving the result we prove a lemma on Jordan blocks. Let us 
recall (see Theorem 1.2.1) that  a complex Jordan block corresponding to a 
number  A - a + iB, B #- 0, or A - a ,  a , B  E R, is a square matr i x  of 
arb i t rary  dimension m -  1, 2 , . . .  or of dimension 1, of the form 

X 7 0 . . .  0 0 O" 
0 X 7 .- .  0 0 0 
0 0 A . . .  0 0 0 

j ~ �9 . . - .  " . . 

0 0 0 . . .  A 7 0 
0 0 0 . . .  0 A 3' 
0 0 0 . . .  0 0 A. 

o~ y - [ ~ ] ,  

respectively, where 7 is a number  different from 0. 
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L e m m a  2.2. For arbitrary complez Jordan block J and for  arbitrary z 6_. 
C" 

(Re)i - I~l)lxl 2 ___ Re(Jz ,  z) _< (Re)~ + 171)1~12. 

P r o o f .  It is sufficient to consider the case of matrix J with the parameter 
~ 0. Then 

(J~,  ~) - .Xl~l ~ + " r ( , ~ x  + . . .  +,~,,,L.,,-,.) 

and therefore 

Re(Jx ,  x) - rte Xlzl 2 + rte(7(~2~, + . . .  + ~mim-1))- 

By the Schwartz inequality 

I Re(')'('~:~'l + - . .  + '~,',,~,,,-1))1 _< I'rl Ixl ~, 

and the required inequality follows, r-! 

P r o o f  o f  t h e  t h e o r e m .  (i) By Theorem 1.2.1 there exists a nonsingu- 
lar matrix P such that  the m a t r i x / , -  P A P  -1 consists of only complex 
Jordan blocks J 1 , . . . ,  Jr corresponding to the eigenvMues of A and to each 
eigenvalue )~ E o (A )  corresponds at least one block. Parameters 7 ~ 0 can 
be chosen in advance. 

Function ~(t) - Pz ( t ) ,  t E [0, r), is a solution of the equation 

z - / L ~  + h(t, ~), ~(0) - Pz(O), 

in which the transformation h ( t , x )  - P h ( t , P - I z ) ,  t >_ 0, x E C", satisfies 
also the conditions of the theorem. Since the matrix P is nonsingular, 
therefore, without any loss of generality, we can assume that the matr ix  A 
consists of Jordan blocks only with parameters 7 r 0 chosen arbitrarily. 
Since w(A) < 0 we can assume that  w < 0. It follows from Lemma 2.2 that  

Re(Ax, x) < (~(A) + 7)lzl 2, �9 ~ c " .  

For arbitrary maximal solution z(t) ,  t E I = [0, r), define 

v(t)- I~(t)l 2, t e z. 

Then 

d 
" v(t)  - 2 Re ( Az ( t )  z(t)) + 2 Re(h(t z(t))  z( t ) )  
dt ' ' ' 

< 2(~(A)  + -r)lz(t)l 2 + 21h(t, z(t))l Iz(t)l, t e l .  
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By (2.13) there exists 6 > 0 such that  

Ih(t,x)l _< ~1~1 for t >_ 0, I~1 _< 6. 

Let I~(0)1 < a and r - i n f { t  e [0, r); I~ ( t ) l_  6} be the first exit time of 
the solution from the ball B(0, 6), (inf r  +oo). Then (see Theorem 1.1) 
either r  +oo or r < r and 

d 
--v(t) < 2(w(A) + 7 + r dt t c  i - [ 0 , ~ ) .  

By Corollary 2.1 of Theorem 2.1 

~(t) _< ~2~',(o), t e l, 

or equivalently 

If f < +oo, then 

lz(t)l _< e"~*lz(0)l, t e i.  (2.14) 

/i _< limlz(t)l _< ~"~'1~(o)1 < a, 
tTr 

a contradiction. Thus ~ - +oo and inequality (2.14) completes the proof 
of part (i). 

(ii) We can assume that  the matrix A is of the form 

A -  [ BO C ] '  (215) 

where matrices B e M(k, k, C), 6" E M(I, i ,C),  k+l -- n, consists of Jordan 
blocks corresponding to all eigenvalues of A with positive and nonpositive 
real parts. Let 

a -  min{Re A; )~ E a(B)} .  

Identifying C n with the Cartesian product of C ~ and C l, we denote by 
Zl( . ) ,  z2(-)  and hi, h2 projections of the solution z ( - )  and the function h 
on C k and C t, respectively. Define 

Vl(t) --I~,(t)l  2, ~2(t)--Iz2(t)l  2, t e [o, r) - [. 

Then for t E I 

d 
d--~vl(t) - 2 Re(BZl(t), Zl(~)) -~- 2 R,e(hl(t,  z), Zl(t)) ,  

d 
~ ( t )  - 2 a~(Cz~(t), z~(t)) + 2 rt~(h~(t, ~), z~(t)). 
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It follows from Lemma 2.2 and the Schwartz inequality that  

d 
d~vl( t)  > 2(a - 7)v~(t) - 2vl l /2( t) lhl( t ,z( t )) l ,  

d . 112 
d~V2(t) < 2-rv2( t )+ zv2 (t)lh2(t, z(t))l, t e I. 

We can assume that  a > 7 > 0. For arbitrary e > 0 there exists 6 > 0, 
compare (2.13), such that  for z E C n, Izl < 8, 

Ih~(t,~)l _< EI~I, Ih2(t, z)l _< ~lxl. 

Assume that  Iz(0)l < ~ and let 

- i n f { t  E [0, r); Iz(t)l >_ 6}. 

For t E I -  [0, e) 

Ihl (t, ~(t))l _< c ( ~  (t) + ~(t)) ~/~, 
Ih2(t, z(t))l < ~(vl (t) + v2(t)) 112, t 6_ i.  

This and the inequality (v~ 12 + v~ 12) < V/'2(Vl + v2) 112 imply 

d 
~ ( ~ ( t )  - ~ ( t ) )  ___ 2(~  - ~)~,  (t) - 2~v~(t) - c(~/~(t) 

+ v~12( t ) ) (v l ( t )+ v~(t)) 11~ 

>__ 2(a - 7)vl( t)  - 27v2(t) - 2ev/2(vl(t) + v2(t)), fort  E i.  

Selecting e > 0 and 7 > 0 properly, we can find c > 0 such that  for all t E I 

d 
d-i(Vl (t) - v2(t)) >_ C(Vl (t) - v2(t)). 

By Theorem 2.1 

Vl(t ) - - v 2 ( t  ) ~ e e t ( 1 ) l ( 0 ) -  1)2(0)) , t e i .  

Therefore, if 

V l ( 0 ) -  v 2 ( 0 ) =  Iz~(0)l 2 >_ Iz~(0)l 2 and Iz(0)l < ~, (2.16) 

then r < + o o  and Iz(t)l > 6 for some t ~ (0, r). 
This way part  (ii) of the theorem has been proved for the complex 

case. To show the final part of (ii), we apply the representation theorem 
from w 1.2.1. Since the matrix A is real, one can find invertible matrices 
P0 E M(n ,  n), P1 E M(k,  k; C), P2 E M(I , / ;  C)such that  A - P A P  -1 and 

p_[P1  01 0 p~ , P0 is of the form (2.15). It is therefore dear,  for arbi trary 

/i > 0 one can find z E R n such that (2.16)holds for / z ' ( 0 ) l  - Pz .  The 
P -ll 

' z2(0) t J 
proof of (ii) is complete. 12:! 
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E x e r c i s e  2.1. Find a matrix A C M ( n , n )  with to(A) - 0, n _> 3 and 
vectors x l , x 2 , x 3  E [i n, such that  

l im  I ~ A ' ~ , I -  + o o  0 < lira I~A'~21 < + o o  l i m  l eA ' z s l  -- 0. 
tT+oo ' tT+oo ' tT+oo 

E x e r c i s e  2.2.  A continuous mapping f" R n , II n is called dissipative if 

( f ( x )  - f ( y ) , x -  y) ~_ 0 for arbitrary x, y E a n, (2.17) 

where (-,-) is the scalar product on [I ~. 

Show that  if f is a dissipative mapping then an arbitrary maximal 
solution of the equation 

s -- f ( z ) ,  z ( O ) -  x ,  ( 2 . 1 8 )  

is defined on [0, +oo),  and for arbitrary x C R n equation (2.12) has exactly 
one solution z~(t) , t  > O. Moreover 

Iz~'(t)- z'(t)l < I z -  yl for t ~ 0, ~, y e a" .  (2.19) 

Conversely, if f :  R n , II n is a continuous mapping and equation (2.18) 
has for arbitrary z E R n exactly one solution zX( �9 ) for which (2.19) holds, 
then f is dissipative. 

H i n t .  If z ( . )  is a solution to (2.19) defined on [0,7-) then function 
v(t) = Iz(t)[ 2, t E [0, v), satisfies inequality ~ < If(O)lv~/2 on [0, v). For two 
arbitrary solutions zl( t) ,  t E [0, vl), and z2(t), t E [0, ru), of (2.18), investi- 
gate the monotonic character of the function I z l ( t ) -  z2(g)l 2, t E [0, rl A r2). 

w 2 . 3 .  L i n e a r i z a t i o n  

Let us consider a differential equation: 

- I ( z ) ,  ~(0) - �9 e a" .  (2.20) 

Assume that  f (~)  - 0 or equivalently that  ~ is an equilibrium state for 
(2.20). We say that  the state s is exponentially stable for (2.20) if there 
exist to < 0, M ) 0, 6 > 0 such that  arbitrary maximal solution z ( - )  of 
(2.20), with the initial condition z(0), I z ( 0 ) -  ~1 < 6, is defined on [0, +oo) 
and satisfies 

Iz(t) - ~1 < Ue~tlz(O) - ~1, t > O. (2.21) 

The infinum of all those numbers to < 0 for which (2.21) holds will be called 
the exponent of ~. 
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The next theorem gives an effective characterization of exponentially 
stable equilibria and their exponents. 

T h e o r e m  2.3. A s s u m e  that a continuous funct ion f is differentiable at an 
equilibrium state s Then �9 is exponentially stable for  (2.20) i f  and only i f  
the Jacobi matr ix  

A - .fz(~,) 

is stable. Moreover  the ezponent of  ~ is w(A) .  

Proof .  We can assume, without any loss of generality, that ~ = 0. Define 

h ( x ) -  f ( x ) -  a z ,  z 6_ a n . 

It follows from the assumptions that 

[h(z)[ 
Ixl 

,0 ,  when Izl ~ 0. 

If matrix A is stable then the equation 

i: = f ( z )  = A z  + h(z) ,  z(O) = x,  

satisfies the conditions of Theorem 2.2 (i). Therefore the state 0 is expo- 
nentially stable and its exponent is at least equal to w(A). The following 
lemma completes the proof of the theorem. 
L e m m a  2.3. A s s u m e  that condition (2.21) holds for  some w < 0, 6 > 0, 
M > O and ~. = O. Then for  arbitrary N > M and'y > w 

[eArl < Ne  ~t, t >_ O. (2.22) 

Proof .  We show first that (2.22) holds for some and then for arbitrary 
N > M. We can assume that 7 < 0. Let r/be an arbitrary number from 
the interval (w, 7) and let 

y ( t )  -- e - n t z ( t ) ,  t >_ O. 

Then 

Since 

y(t) - ( - ,  + A)y(t)  + ~-" 'h(~"'~(t)) .  t > O .  

sup le- ' l 'h(e ' '=)l  = sup Ih(e"=)l ,0 ,  if I=1 ~ o 
.>o I=l .>o I~"'=l 

m 

therefore, by Theorem 2.2 (ii), w(-r / I  + A) < 0 and consequently w ( A )  <_ 17. 
There exists N1 > 0 such that, for arbitrary t >_ 0, 

leAtl <_ N1e ~t. 
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Moreover, for the solution z ( - )  of (2.20), 

z ( t ) -  ~A,~(o) + ]0' ~A( ' - ' )h (~(s ) )  d , ,  t > o, 

and, assuming that  x -  z(0), 

I~ '~1  _< Iz(t)l+ I~A('-')I Ih(z(s))] ds, t > O. 

For arbi trary  e > 0 there exists/51 > 0 such that  if I x [ -  [z(0)[ </ i l  then 

Ih(~(t))l < el~(t)l, t _> o. 

Hence, for Ix I </ f l  

(/o' ) [eAtx[ <_ Me' t [x[  + MNle e'r(t-')e "" ds Ix] 

( (Me"n + MNle 1 ) r I~1 

< M + - - - - -  e*'l~l,  t >__ 0. "1'--~ 

Number ~ > 0 was arbi trary and the lemma follows. 121 

Theorem 2.3 reduces the problem of stabili ty of an equilibrium state 
~: E R n to the question of stability of the matr ix  A obtained by the lin- 
earization of the mapping f at ~. The content of Theorem 2.3 is called 
the linearization method or the first method of Liapunov of stability theory. 
The practical algorithm due to Routh allowing one to determine whether 
a given matr ix  A is stable was given in w 1.2.3. 

E x e r c i s e  2.3.  
equations 

Wat t ' s  regulator (see Example  0.3) is modelled by the 

- a c o s  y - b ,  x ( 0 )  - z0, 

- cz 2 sin y cos y - d sin Y - e~), y(0) - v0, v ( 0 ) -  ,0, 

where a, b, c, d, e are some positive constants, a > b. Show that  there exists 
exactly one equilibrium state for the system, with coordinates ~, > 0, # E 
(0, }Tr), ~ - 0. Prove that  if e v / ~  > 2 c v ~  then the equilibrium state  

is exponentially stable and if e ~  < 2 c ~ ' ~  then it is not stable in the 
Liapunov sense; see w 2.4. 

H i n t .  Apply Theorems 2.3, 2.2 and 1.2.4. 
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w 2 . 4 .  T h e  L i a p u n o v  f u n c t i o n  m e t h o d  

We say tha t  a s ta te  ~ is stable in the Liapnnov sense for (2.20), or 
that  ~ is Liapnnov stable, if for arbitrary r > 0 there is 5 > 0 such tha t  if 
[z(0) - ~1 < 8 then [z(t) - ~1 < r for t > 0. It is clear tha t  exponential ly 
stable equilibria are stable in the Liapunov sense. 

Assume tha t  a mapping  f:  I] n ) II n is continuous and G C I] n 
is a neighbourhood of a s tate  ~ for which f (~ )  = 0. A real function V 
differentiable on G is said to be a Liapnnov function at the state ~ for 
equation (2.20) if 

V ( ~ ) - 0 ,  V ( x ) > 0  f o r z 6 - G ,  x :~s  (2.23) 

n a V  
= _< o, �9 E G.  (2 .24)  

The function V! defined by (2 .24) is  called the Liapunov derivative of V 
with respect to f .  

T h e o r e m  2.4.  (i) I f  there exists a Liapunov function at s for (2.20), then 
the state ~. is Liapnnov stable for (2.20). 

(ii) I f  ~ is exponentially stable at ~ and f is differentiable at ~, then 
there exists a Liapnnov function at ~ for (2.20), being a quadratic form. 

For the proof  of par t  (i) it is convenient to introduce the concept of 
an invnriant set. We say that  a set K C R n is invariant for (2.20), if for 
arbi trary solution z(t), t E [0, r) ,  then z(O) E K, z(t) 6_ K for all t E [0, r) .  

We will need the following lemma: 

L e m m a  2.4.  I f  for an open set Go C G and for an ~ > 0 the set 

Ko - {x E Go; V(x) < a} 

is closed, then it is also invariant for (2.20). 

P r o o f .  Assume tha t  the lemma is not true and that  there exists a point 
x E K0 and a solution z(t), t E [0, r),  of the equation (2.20), with values in 
G, z(0) = x such tha t  for some s E [0, r) ,  z(s) E K~. 

Let 
to = inf{s_> 0; s < r, z(s) E K~} < +co. 

Since the set K0 is closed z(to) E Ko and to < r. 
V(z(s)) > V(z(to)). Since 

For some s E (to, r ) ,  

dV(z( t ) )  
dt 

= V1(z(t)) < 0 for t < r, 

the function V(z ( .  )) is nonincreasing on [0, r) ,  a contradiction.  121 
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P r o o f  o f  t i le  t heorem.  (i) Let r > 0 be a number such that the closure 
of Go = B($,  r) = {x; I x -  ~l < r} is contained in G. Let fl be the minimal 
value of the function V on the boundary S of the ball B($, r). Let us fix 
a e (0, fl) and define 

Ko - {z E B(~,r);  V(z) <_ a}. 

Let ~ be the limit of a sequence (Xm) of elements from K0. Then 
V(~) < a < fl and consequently ~ e B($ , r )  and ~ e K0. The set K0 
is closed and, by Lemma 2.4, is also invariant. Since the function V is 
continuous, V(~) = 0 and there exists 6 e (0, r) such that Y(z) _< a for 
x e B(~,6) .  This implies (i). 

(ii) Matrix A = f , ( ~ ) i s  stable by Theorem 2.3. It follows from The- 
orem 1.2.7 that there exists a positive definite matrix Q satisfying the Lia- 
punov equation 

A * Q + Q A  = - I .  

To simplify notation we set ~ - 0 and define 

V(x) - (Qx,x), h ( x ) -  f ( x ) -  Ax, x ~_ R n. 

It is clear that the function V satisfies (2.23). To show that (2.24) holds as 
well remark that 

VI(x ) - 2(Qx, f (x ) )  - 2(Qx, Ax  + h(x)) 

= ( (A 'Q + Q A ) x , x )  + 2(Qx, h(x)) 

< - I= l  2 + 2IQI I=11h(z)l, z e a" .  

Since f is differentiable at O, there exists a number 6 > 0 such that Ih(z)l < 
1 u provided Izl < 6. Consequently 

1 12 Vj( ) < , for < 6. 

Hence the function V is the required Liapunov function in the ball G = 
B(0, 0 .  

O 
Exerc i s e  2.4. Let j': R n , R n, f (0)  = 0, be a continuous mapping 
differentiable at 0 such that all eigenvMues of A = fx(0) have positive real 
parts. Show that there exists a number r > 0 such that, for arbitrary 
maximal solution z(t), t ~_ [0, r), of the equation (2.20), one can find to E 
[0, r)  such that, for hi l t  E [to, r), ]z(t)l > r. 

H in t .  Matrix - A  is stable. Follow the proof of part (ii) of Theorem 2.4. 

Exerc i s e  2.5. Let a matrix A E M(n,  n) be stable and a continuous 
mapping F: R n ~- R" be bounded. Then, for arbitrary solution z(t), 
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t E [0, r) ,  of the equation ~ = Az + F(z), there exists M > 0 such t ha t  
I=(t)l _< M for t E [0, r) .  

H i n t .  Examine the behaviour of V(x) = (Qx, x}, z E H n, where A*Q + 
QA = - I ,  along the trajectories of the equation. 

A closed invariant set K for the equation (2.20) is called nonattainable 
if one cannot  find a solution z(t), t E [0,1"), of (2.20) such that  z(0) ~ K 
and z(t) ~ K for some t E [0, r). 

E x e r c i s e  2.6.  (i) Assume that  the mapping f :  R n ~ R n satisfies the 
Lipschitz condition in a neighbourhood of a point ~ E R ", f (~ )  = 0. Show 
that  the set K = {~} is nonattainable for (2.20). 

(ii) Construct  a mapping f:  R n , R n satisfying the Lipschitz condi- 
tion and an invariant compact set K for (2.20) which is not nonat ta inable .  

(iii) Assume tha t  f :  R n , R n satisfies the Lipschitz condition and 
K is a closed invariant set for (2.20). Let moreover for arbi trary y E K 
there be x E K and a solution z(t), t >_ 0, of (2.20) such that  z(0) = x and 
z(s) = y for some s > 0. Prove that  K is nonattainable for (2.20). 

(iv) Let z(t), t >_ O, be a solution of the following prey-predator equa- 
tion in R 2" 

~,l - ~ z l  - ~zl z2, ~2 - - T z ~  + t i z l  z ~ ,  

in which c~,/3, 7, 6 are positive numbers. Show that if zl(O) > O, z2(O) > 0 
then Zl(t) > 0, z2(t) > 0 for all t > 0. 

w La Salle's theorem 

Besides exponential stability and stability in the sense of Liapunov it 
is also interesting to s tudy asymptotic stability. An equilibrium s tate  ~ for 
(2.20) is asymptotically stable if it is stable in the sense of Liapunov and 

there exists 6 > 0 such that,  for any maximal solution 

z(t), t E [0, v), of (2.20), with I z ( 0 ) -  ~1 < 6, 

one h a s ~ - - - o o a n d  lim z ( t ) = ~ .  
t T + ~  

(2.25) 

For the following linear system on H 2 

zl - z2, z 2 - - z l  (2.26) 

the origin is stable in the sense of Liapunov but it is not asymptot ica l ly  
stable. The function V(x) = [xl 2, x E R 2, is a Liapunov function for (2.26) 
and Vy(x) - 0, x E R 2. Hence the existence of a Liapunov function does 
not necessarily imply asymptotic stability. Additional conditions, which we 
discuss now, are needed. 
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We will limit our considerations to equations (2.26) with the function 
f :  R" ~ R n satisfying the local Lipschitz condition. Let us recall that  a 
function f :  G ~ ~ R n satisfies the Lipschitz condition on a set G C R n if 
there exists c > 0 such that  

I f ( x ) -  f(y)] ~ c ] x -  y[ far all x, y E G. 

If the Lipschitz condition is satisfied on an arbi trary bounded subset of R '~ 
then we say that it is satisfied locally. 

E x e r c i s e  2.7. If a function f :  R" .~ R n satisfies the local Lipschitz 
condition then for arbitrary r > 0 the function 

I 
f (x ) ,  for Ixl < r, 

satisfies the Lipschitz condition on R n. 

It follows from Theorem 1.1 and Theorem 1.2 that  if a mapping 
f :  R n , R n satisfies the local Lipschitz condition then for arbitrary x E 
R n there exists exactly one maximal solution z ( t ,x )  = zZ(t), t E [0,v(x)), 
of the equation (2.20). The maximal solution (see Exercise 2.7 and The- 
orem 2.2) depends continuously on the initial state: If lim xk = x and 

kT+oo 
t E [0, v(x)) then for all large k, ~'(xk) > t and lira z(t xk) - z(t x). 

kT+oo ' 
If r ( z )  = +oo, then the orbit O(z)  and the limit set K(x)  of z are 

given by the formulae, 

o(~)  = { y  e a"; y = ~(t,~), t > o}, 
g ( z )  ={y  e R"; l imz( tk , z )  - y for a sequence tk T +oo}. 

It is clear that  the limit set K(x)  is contained in the closure of O(z).  

L e m m a  2.5. If  O(x)  is a bounded set then 
(i) ~h~ ~ t  K(~)  i~ i ~ o . i ~  fo~ (2.20), 

(ii) the set K(:c) is compact, 
(iii) lim O(z( t , z ) ,K(z ) )  = 0 where 0(" ") denotes the distance be- 

tT +oo ' ' 

tween a point and a set. 

P r o o f .  (i) Assume that  y E K( z )  and t > 0. There exists a sequence 
tm T +cx~ such that ym = z(tmz) , y. The uniqueness and the continuous 
dependence of solutions on initial data imply 

z(t + tin, z) = z(ym, t) ~ z(y, t), when m , +co.  

H~.c~ ~(y,t)  ~ K(~).  
(ii) Assume that  (ym)is  a sequence of elements from I f (x)converging 

t o y  E R". There exists asequence tm T +oo such that  I z ( t ~ , z ) - p ~  I , 0. 
Consequently z( tm,z)  ~ y and !/E I f (z ) .  
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(iii) Assume tha t  e ( z ( t , x ) , K ( z ) )  ~ 0 when t I +co .  Then there exists 
> 0 and a sequence (t,n), to, T +co, such that 

Iz(t~, x ) -  v)l > 0 for arbitrary y 6_ K(x) ,  m = 1,2, . . . .  (2.27) 

Since the set O(x)  is bounded,  one can find a subsequence ( t t )  of (tin) and 
an element ~ E G such tha t  z ( t t , z )  - - -  ~. Hence ~ E K ( x )  and, by (2.27), 
IV-  Vl _> ~ for arbi trary V 6_ I f (x) .  In particular for y = ~, 0 = I.~- Vl > e, 
a contradiction. This  way the proof of (iii) is complete. 123 

We are now in a position to prove the La Salle theorem. 

T h e o r e m  2.5.  Assume that a mapping f:  R n ~ R n is locally Lipschifz, 
f(Yc) = 0 and there ezists a Liapunov function V for (2.20) in a neighbour- 
hood G of ~. If, for  an z 6_ G, O(x) C G, then 

K(~) c {v ~ G; v~(y) = 0}. 

P r o o f .  Let v(t) = V(z ( t ,  x)), t > O. Then v(- ) is a nonnegative,  decreasing 
function and 

lim v(t) = 0 > O. 
tT+c~ 

If y 6_ I f ( x )  then for a sequence t m t  +co,  Z(tm,X) ~ y. Thus V(y)  = O�9 
It follows from Lemma 2�9 that  for an arbitrary y 6_ I f ( z )  and t > 0, 
V(z(t ,  y)) - V(y) .  Hence 

�9 1 Vz(y)- l,Tm 7 ( v ( v ) -  v (~( t ,v ) ) )  - o. 

17 
We will now formulate a version of Theorem 2.5 useful in specific ap- 

plications. 

and 

Let 
L = {y 6_ G; Vj(y) = 0} (2 .28)  

K be the maximal,  invariant for (2.20), subset of L (2.29) 

Since the sum of invariant subsets for (2.20) is also invariant for (2.20) as 
well as the set {~} is invariant, therefore K is a well defined nonempty  
subset of G. 

T h e o r e m  2.6.  (i) Under conditions of Theorem 2.5, 

e(~(t, ~ ) , g )  , O, for  t T +oo. 
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(ii) If, in addition, VI(y ) < 0 for y E G \ {~1, then ~ is an asymptoti- 
cally stable equilibrium for (2.20). 

P r o o f .  (i) Since I f ( z )  C K, it is enough to apply Lemma 2.5(iii). 
(ii) In this case L = {~} = K. 

[3 

E x e r c i s e  2.8. Show that maximal solutions of the Li~nard equation ~i + 
(2a+(&)~)&+v:z  - 0, v ~ 0, exist on [0, +oo).  Find the unique equilibrium 
state for this system and prove that 

(i) if a >_ 0, then it is asymptotically stable, and 
(ii) if a < 0, then it is not stable. 

H i n t .  Let V ( z , y ) -  1, 2_~ ~(v x + y2), z , y  G R. Show that  d v ( z , ~ )  <_ [a[ 2 
To prove (i) apply Theorem 2.5. Base the proof of (ii) on Theorem 2.3. 

w  T o p o l o g i c a l  s t a b i l i t y  c r i t e r i a  

We proceed now to stability criteria based on the concept of the degree 
of a vector field. They will be applied to stabilizability of control systems 
in w 2.8. 

Let S be the unit sphere, i.e., the boundary of the unit ball B(0, 1) = 
{y (5 }In; [y[ < 1}. With an arbitrary continuous mapping F: S , S one 
associates, in topology, an integer called the degree of F,  denoted by deg F,  
see [25]. Intuitively, if n = 1, the degree of F is the number of times the 
image F ( z )  rotates around S when x performs one oriented rotation. We 
will not give here a precise definition of the degree of a map but gather 
its basic properties in the following proposition. For the proofs we refer to 
[291. 

Let us recall that if F0 and F1 are two continuous mappings from S 
into S and there exists a continuous function H: [0, 1] x S ~ S such that  

H ( 0 ,  - - e S ,  

then F0 and F1 are called homotopic and H is a homotopy which deforms 
F0 to F1. If F0 and F1 are homotopic we symbolically write F0 "" F1. 

P r o p o s i t i o n  2.1. (i) For arbitrary continuous mappings Fo, F1 from S 
onto S: 

I f  Fo ~- F1, then deg F - deg F1. 

(ii) I f  a mapping F is constant: F(x )  - ~ for some ~ E S and all 
x ~. S, then deg F -  0. 

(iii) I f  F is an antipodal mapping: F ( z )  - - x ,  x G S, then deg F = 
( - 1 ) " .  
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Assume that f is a continuous mapping from a ball B(s 6) C [l" onto 
a n, f (~)  = 0 and f ( z )  # 0 for z # $. For arbitrary r 6 (0,6) define a 
mapping Fr from S onto S by the formula 

f(rm 4- z) 
F~(x) - If(rx 4- ~)l' zES. 

If 0 < r0 < rl < 6 then the transformation 

H(s x) = f((ro 4- s ( r l  -- ro))z 4- 
' I f ( ( r0  4- 8(r l  -- r0) )x  4- z l '  

s 6 [0, 1], x E S ,  

defines a homotopy deforming Fro to Fr,. By Proposition 2.10) , all the 
mappings F~, r 6 (0, 6), have the same degree, which is called the index of 
f at ~ and denoted by Indr f .  Thus 

I n d r f = d e g F r ,  0 < r < 6 .  

The following theorem concerns asymptotically stable equilibria and 
attracting points. A point ~ is attracting for (2.20) if an arbitrary maximal 
solution z ( - )  of (2.20) is defined on [0, +oo) and lira z(t) = ~. 

tT+oo 

Exerc i se  2.9. Construct an equation with an attracting point which is 
not asymptotically stable. 

Hin t .  See [15, page 59, picture 1.7.9]. 

T h e o r e m  2.7. I f  a point �9 is either asymptotically stable or attracting 
for equation (2.20) with the right hand side satisfying the local Lipschitz 
condition then 

Indr f = ( -1 )" .  

Proo f .  Without any loss of generality we can assume that  ~ = 0. It 
follows from the assumptions that f(0) = 0 and f ( z )  ~ 0 for all z # 0 in a 
neighbourhood of 0. 

We show first that  there exist numbers R > r > 0 and to > 0 such 
that for all solutions z(., z), Izl = R, of (2.20) 

I (t0, )l < 

Moreover, in the case of an asymptotically stable point, the numbers R > 0 
and r > 0 can be chosen arbitrarily small. 

It follows from the assumptions of the theorem that there exist numbers 
R,  > rl > 0 such that for all x 6 R", Ix[ = R,: 

Tr, (z) = inf{t >_ 0; Iz(t, z)[ < rl } < +oo. 
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Fix r2 E (rl ,R1).  If I~1 = nx, then T,.2(z ) < T,., (z). Since the solutions 
of (2.20) depend continuously on initial data, for arbitrary z, Iz[ = R1 
one can find /i > 0 such that T,.2(y ) < Trt (z) < +c~ provided [Yl - R1 
and l Y -  xl < 6. Consequently the function Tr2(. ) is locally bounded on a 
compact set {y; lY l -  R1} and therefore it is globally bounded: 

5b -  sup{T~2(y); l y l -  n~} < +oo. (2.30) 

If O is an asymptotically stable equilibrium, numbers R = R1 > r2 > 
rl and r E (r2,R) can be chosen arbitrarily small and such that 

Iz(t, ~)1 < ~ for t > 0 and I~1- ~2. 

It is therefore enough to take as to an arbitrary number greater than 7 ~. 
If O is an attracting point then for arbitrary R1 > 0 the set-theoretic 

sum K of all orbits O(x), I~1-  R~, is bounded and invariant. To see this 
choose a number T > T. Then 

K C {y; lyl < r2} u {y; y - z(~, ~ ) , ,  < T, I ~ 1 -  R1}. 

Since the sets K1 and K2 are compact, the boundedness of K follows. It 
is also obvious that the set K is invariant. Let R be an arbitrary number 
such that  

g c { y ;  I x l < R }  

and let 

Then 

r - sup{Ivl; y e K } .  

= sup{Tn , ( x ) ;  Ixl = R} < +oo .  

It is therefore clear that it is enough to choose as to an arbitrary number 
greater than 7 ~. 

The proof of the theorem follows immediately from the following 
lemma. 

L e m m a  2.6. Assume thai for  some R > r > O, to > O, 

lim Iz(t,z)l < R, where Ix I ___ R, (2.31) 
t l  +oo 

Iz(to, z)l < r, where Izl = R. (2.32) 

Then  
Ind0 f - ( - 1 ) " .  

P r o o f  o f  t h e  l emma.  Define for t E (0, t0] 

z( t ,  R,y) - R y  
Ft(y)  - I ' ~ :  n y )  - n y l '  y E S. (2.33) 
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It follows from (2.31) that  solutions z(-, x), = R,  are not  periodic func- 
tions. Consequently the formula (2.33) defines continuous t rans format ions  
from S onto S which are clearly homotopic. Taking into account the fol- 
lowing homotopy 

= az(to, Ry) - Ry 
laz(to, Ry) - Ry[' a e [0,1l,  y E S ,  

we see that  the transformation H(1, .) = Fro is homotopic to the ant ipodal  
map U(O,y) = - y ,  y E S. So degF,  o - ( - 1 ) " .  On the other hand,  
l (z( t  R y ) -  Ry) , f ( R y )  uniformly on S, when t I 0 so for sufficiently T 
small t > 0, Ft _~ f(R.)/II(R.)I. Consequently by Proposition 2.1 the result 
follows. O 

As a corollary from Theorem 2.7 we obtain that  the vector field f 
defining a stable system is "rich in directions". 

T h e o r e m  2.8. Assume that the conditions of Theorem 2.7 are satisfied. 
Then for sufficiently small r > O, the transformation Fr" S ~. S given by 

f(rx -F ~,) 
F~(x)-  lf(rx + ~)l' 

z E S ,  r > O ,  

transforms S onto S. In addition, the mapping f transforms an arbitrary 
neighbourhood of Y~ onto a neighbourhood of O. 

P r o o f .  It follows from Theorem 2.7 that  deg Fr ~ 0 for sufficiently small 
r > 0. Assume that  the transformation Fr is not onto S and tha t  a point  

E S is not in the image of Ft. One can easily construct a homotopy  
deforming S \ {~} to the antipodal point ~. Consequently the transfor- 
mation Fr is homotopic to a constant transformation and, by Proposi t ion 
2.1.(ii), degFr  - 0, a contradition. Thus Fr is a transformation onto  
S. To prove the final s ta tement  of the theorem assume tha t  �9 - 0. Let 
r > 0 be a number such that  f ( x )  ~ 0 for all x E B(O,r) \ {0}. If 
0 < 6 < rain(If(x)[, Ix[ -- r) then for arbitrary )~ E [0, 1] and y E R", 

lyl < 6, 

[A(f(x) - y) + (1 - A ) f ( x ) [ -  If(z) - Ay[ >__ I f (x)[-  IYl _ o. 

Let us fix y E R n, O < Iv[ < 6 and define 

(I -- A)f(rx) + A(f(rx) - y) 
H()~, x) - l(I - A)f(rx) + A(f(rx) - Y)[' 

)~ G [0,1], x E S .  

Then H is a homotopy deforming G(x) - /(rx) to G,(x)  - l ( , x ) -u  I/(r=)l II(r~)-yl ' 
x E S. Since deg G ~ O, deg Gr ~ 0 as well. Assume that for arbitrary 
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homotopic to all, defined analogically, transformations G,,  s E (0, r]. Since 
f (0 )  = 0 and f is continuous, for sufficiently small s > 0 the image G, is 
included in a given in advance neighbourhood o f -Y / lY l .  Hence for such 
s > 0 the transformations G, cannot be onto S and therefore deg G,  = 0, 
contrary to deg G, = deg Gr ~ 0. This finishes the proof. 13 

w  E x p o n e n t i a l  s tab i l i zab i l i t y  and  t he  
r o b u s t n e s s  p r o b l e m  

In this section we begin our discussion of the stabilizability of nonlinear 
systems 

~1 -- I(Y, u), y(O) -- x, (2.34) 

Let U C R m be the set of control parameters and assume that  the contin- 
uous function f: }l n x U , R n is such that  f (~ ,  ~) = 0 for some ~ E R n 
and ~ E U. Then a feedback is defined as an arbitrary continuous function 
v: R n .~ U such that v(~) = ft. Feedbacks determine closed loop systems 

= g(~), z(O) = �9 ~ R ", (2.3~) 

where 
g(x) = f ( x ,  v(x)), x 6_ R n. (2.36) 

A feedback v is stabilizing if ~ is a stable equilibrium for (2.35). A feedback v 
stabilizes (2.34) exponentially or asymptotically or in the sense of Liapunov 
if the state ~ is respectively exponentially stable or asymptot ical ly  stable 
or stable in the sense of Liapunov for the closed loop system. If for system 
(2.34) there exists a feedback with one of the specified properties, then 
system (2.34) is called stabilizable exponentially, asymptotically or in the 
sense of Liapunov. 

The stabilization problem consists of formulating checkable conditions 
on the right hand side of (2.34) implying stabilizability and of constructing 
stabilizing feedback. 

To simplify notation we assume that  ~ - 0, ~ - 0. 
We first examine exponential stabilizability and restrict considerations 

to the case when 0 E R m is an interior point of U and the function f as well 
as admissible feedbacks are differentiable respectively at (0, 0) G R n • R m 
and 0 E R ". According to our definitions, system (2.34) is ezponentially 
stabilizable if there exists a feedback v and numbers ta < 0, ~5 > 0 and M 
such that  for arbitrary solution z(t), t E [0, r) ,  of (2.34), with Iz(0)l < 6, 

Iz(t)l < Me"~tlz(O)l, t e [0, r). (2.37) 

The infimum of all w < 0 from (2.37) is called the exponent of stabilizability 
of (2.34). Let us recall that  the linearization of the system (2.34) is of the 
form 

- Ay  + Bu, (2.38) 
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where 
A = fx(0, 0), B = fu(0, 0). (2.39) 

The following theorem gives a complete solution to the question of 
exponential stabilizability. 

T h e o r e m  2.9. (i) System (2.34) is exponentially stabilizable if and only if  
the linear system (2.38)-(2.39) is stabilizable. 

(it) An exponentially stabilizing feedback can always be found to be 
linear. 

(iii) System (2.34) and its iinearization (2.38)-(2.39) have the same 
stabilizability exponents. 

P r o o f .  Assume that  v is a feedback such that  (2.37) holds. It follows from 
the differentiability of f and v that  

= (A(0 ,  0 ) +  f (0, + �9 a 

where 
Ih(x)l 

Ixl 
, 0 ,  if Ixl---  0. 

By Lemma 2.3 the matrix  A - A(0 ,  0 ) +  fu(O, 0)vx(0) is stable, and, 
for arbitrary N > M and ~ < 7 < 0, 

leAt l < Ne ~t, t >_ 0. (2.40) 

Therefore the linearization (2.38)-(2.39) is exponentially stabilizable by 
the linear feedback x ; v~(0)x and the stabilizability exponent of the 
linearization is not greater than the stabilizability exponent of (2.34). 

Assume that  a feedback v is of the form v ( z ) =  Kz ,  x E K, and that  
(2.40) holds for the matrix A - f~(0, 0) + fu(0, 0)K. Then the derivative 
of ~( - )  - f ( . ,  v ( - ) )  at 0 is identical with A. By Theorem 2.3 the state 
0 has identical exponent stability with respect to the following linear and 
nonlinear systems: 

s  and ~ - ~ ( z ) .  

Consequently the stabilizability exponent for (2.34) is not greater than the 
stabilizability exponent of its linearization, and a linear feedback which 
stabilizes the linearization of (2.34) also stabilizes the system (2.34). This 
way the proof of the theorem is complete. 12] 

It follows from the proof of Theorem 2.9 that 

C o r o l l a r y  2.2. I f  the pair (fz(0, 0), fu(0, 0)) is stabilizable and for a matrix 
K the matrix fx(O, O) + fu(O, O)K is stable then the linear feedback v(x) -- 
Kx ,  x E R r', stabilizes (2.34) exponentially. 



114 2. Stability and stabilizability 

C o r o l l a r y  2.3. / f  the pair (f~(0, 0 ) ) , f  u(0, 0)) is not stabilizable then for 
arbitrary (differentiable at O)feedback there exist trajectories of the closed 
loop system which start arbitrarily close to 0 but do not tend to 0 exponen- 
tially fast. 

We will now discuss the related problem of the robustness of exponen- 
tially stabilizable systems. 

Assume that (2.37) holds for the closed-loop system (2.35)-(2.36) 
and let r be a transformation from [i n into R'* of class C 1 and such that 
r(0) = 0. We ask for what "perturbations" r the system 

= g ( z ) +  r(z), z(0) = x, (2.41) 

remains exponentially stable. The following lemma holds. 

L e m m a  2.7. Assume that 

I /(~1) I~1 lim l < - - .  (2.42) 
~--.0 M 

Then system (2.41) is exponentially stable. 

P r o o f .  Let A - g~(0), C - r~(0). The linearization of (2.41) is of the form 

- (A + C)z.  (2.43) 

Note that  ICI < lim o I~1(~)1 and therefore 

Icl < I~/ (2.44) 
N '  

where f/ > w and N > M are numbers sufficiently close to w and M 
respectively. By Lemma 2.3 

I~A*I < Ne st for t > 0. (2.45) 

It follows from (2.44) and (2.45) that for a solution z ( - )  of (2.43) 

- 

z ( t ) -  ~A'~(0) + ~A('-')Cz(s) ds, t > 0 ,  z ~ R " ,  

and 

~0 t Jz(t)l _< NeOtlz(O)[ + WIG[ eO(t-')lz(s)l ds, 

e-O'lz(t)l _< NIz(O)l + Nit[ e-~'lz(s)l ds, t >_ O. 
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Taking into account Lemma 2.1 we see that 

e-Otlz(t)l <_ NeNlCIt]z(O)l , 

Iz(t)l _< Ne(a+NlCl)tlz(O)l, t > O. 

Since/3 + g i G  I < 0, system (2.43) is exponentiably stable. 
The supremum of Iwl/M, where w and M are arbitrary numbers from 

the definition (2.37) of exponential stabilizability, will be called the robust- 
ness indez of system (2.34). 

The following theorem gives an upper bound on the robustness index. 
In its formulation, 

6 = sup{o(x, Im A); x e Im B, I~1 = 1}, 

where ImA and I m B  are the images of the linear transformations A = 
/~(0,0) and B =/u(O,O).  

T h e o r e m  2.10. If, for a feedback v, relation (2.37) holds, then 

I~1 < IA!. 
M -  6 

Proof .  Taking into account Lemma 2.3, we can assume that system (2.34) 
and the feedback v are linear, v(x) = Kx, x E R n. The theorem is trivially 
true if 8 = 0. Assume that  8 # 0 and let ~ be a vector such that A~+ Bu #: 0 
for MI u E R " .  Define the control fi(. ) by the formula 

~(t) = g ( v ( t ) -  ~), t >_ o, 

where 

i t -  A y +  B~, y ( O ) -  ~. 

Let O(t) - y(t) - ~. and A - A + B K .  Then 

ft = (A + BK)~  + A~, 

= A ~  + a ~ ,  ~(0)  - 0. 

It follows from (2.37) and (2.46) that 

I v ( t ) -  ~1 = 19(t)l = 

M 
< i-gi IA~ I, 

o' eA-(t-~ dsl 

t > 0 .  

(2.46) 

(2.47) 

one has 
sup,>o ly ' ( t ) -  ~1 > ( la l -~1) IAI - I '  (2.48) 

i t -  Ay + Bu, y ( O ) -  ~, 

On the other hand, repeating the arguments from the first part of the 
proof of Theorem 1.7, we obtain that for an arbitrary control u( - )  and the 
corresponding output yu ( . )  satisfying 
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where a is the vector of the form A~, + Bu  with the minimal norm and 
3' e (0, lal~). Comparing formulae (2.47) and (2.48) we have 

7 ) M IA~I IAI . 

Taking into account constraints on 7 and ~ and the definition of 6 we easily 
obtain the required estimate. C:l 

It follows from the theorem that the robustness index is in general 
finite. Hence, if all solutions of the closed-loop system tend to zero fast 
then some of the solutions will deviate far from the equilibrium on initial 
time intervals. 

C o r o l l a r y  2.4. I f  lm A is not contained in Im B then 

< IAI < 
M -  

C o r o l l a r y  2.5. The robustness index of (2.34) is bounded from above by 
IAI/ . 

w 2 . 8 .  N e c e s s a r y  c o n d i t i o n s  f o r  s t a b i l i z a b i l i t y  

We will now deduce necessary conditions for stabilizability. The follow- 
ing theorem is a direct consequence of the result from w 2.6 and is concerned 
with systems (2.34), (2.35) with f and v satisfying local Lipschitz condi- 
tions. 

T h e o r e m  2.11. I f  system (2.34) is asymptotically stabilizable then the 
mapping f ( . , . )  transforms arbitrary neighbourhoods of (0,0) E R n • R m 
onto neighbourhoods 0 E R n. 

Proo f .  If v is a feedback stabilizing (2.34) asymptotically then the closed- 
loop system (2.35)-(2.36) satisfies all the assumptions of Theorem 2.8. 
Hence the mapping x ; f (x ,  v(x)) transforms an arbitrary neighbourhood 
of 0 E R n onto a neighbourhood of 0 E R n. 13 

Taking into account Theorem 2.11 one can show that for nonlinear 
systems local controllability does not imply, in general, asymptotic stabi- 
lizability. Such implication is of course true for linear systems, see Theorem 
1.2.9. 

E x a m p l e  2.1. Consider again the system 

~]1 - -  U ,  

Y2 - -  V~ 

il3 -- yl v - y2 u, u] E U _  R2. 
V 
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We know, see w 1.4, Example 1.3, that the system is locally controllable at 
an arbitrary point, in particular, at 0 E R 3. Let us remark, however, that [~ the image of f(-,  .) does not contain vectors of the form 0 , 7  r 0, so the 

7 
necessary condition for stabilizability is not satisfied. Hence the system is 
not asymptotically stabilizable. This is a suprising result as it concerns a 
system which differs only slightly from a linear one. 

The following theorem is also an immediate consequence of Theorem 
2.8. 

T h e o r e m  2.12. Assume that there exists a feedback which either asymp- 
totically stabilizes (2.34) or for which 0 E R" is an attracting point for 
the closed-loop system (2.35)-(2.36). Then, for sufficiently small r > O, 
transformations Fr: S x U - , S given by 

f ( r x ,  U) 
F~(x, u) - ]f(rxl u)[' z E S, u E U, (2.49) 

are onto  S .  

E x a m p l e  2.2. It is not difficult show that the following system on R 2 

~ - ( 4 -  y~)~, ~ - ~ - ~ - ~ , ~ ,  (2.~o) 

an arbitrary state in R 2. Let us also remark that the first coordinate of 
the right side of (2.50) is nonnegative for state vectors close to 0 E H 2. 
Therefore, for sufficiently small r > 0, transformation (2.49) cannot be 
onto S. Thus, although system (2.50) is exactly controllable to 0 E R ~, 
one cannot find a feedback v such that the state 0 is attracting for the 
closed-loop system determined by v. 

w 2 . 9 .  S t a b i l i z a t i o n  o f  t h e  E u l e r  e q u a t i o n s  

We will now apply the obtained results to an analysis of an important 
control system described by the Euler equations from Example 0.2. 

Let us recall that  the stated equation was of the form 

J~  = s ( ~ ) J ~  + B . ,  ~(0) c a ~, (2.51) 

where 

J -  0 12 0 , S(w) = -w3 0 wl , w 6 R  a, 
0 0 /3 w2 - w ,  0 
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b l i ]  
B - [bl, b2, b3], bi - b2i 6 H 3, i - 1,2,3. 

b3i 

The control set is U -- R 3. We assume that  h # 0, h i~ Ii, i , j  - 1,2,3, 
i ~ j .  Vectors hi, i -  1, 2,3 will be called the control axes. 

We will look for conditions under which system (2.51) is stabilizable 
and for formulae defining stabilizing feedbacks v" R 3 --~ R a, v(0) - 0. 

The closed-loop system corresponding to v is given by the equation 

& -  F(w), (2.52) 

where 
f ( w )  - J -*S(w)gw + g-1 By(w). 

The question of exponential stabilizability has, in the present case, a 
simple solution. The linearization of (2.51) is given by 

& -  J - ~ B u .  (2.53) 

Since the pair (0, J - * B )  is stabilizable if and only if the matrix J - 1 B  is 
invertible therefore, by Theorem 2.9, system (2.51) is exponentially stabi- 
lizable if and only if det B r 0. 

Let 

= 1 .  = w E R  3. 

Then W is the kinetic energy of the system and the Liapunov derivative 
WF of W, see (2.24), is given by 

WF(w) - w* J J -  1S(w)Jw + w* J Y - '  B v(w) 

= det[Jw, w, w] + w* By(w) 

= ~ * B v ( ~ ) ,  ~ e R 3. 

If v -- 0 then WF _< 0 and W is a Liapunov function for (2.52). By 
Theorem 2.4, the constant feedback v _-- 0 stabilizes system (2.51) in the 
sense of Liapunov. 

Let us remark that if a feedback v is given by 

v(w) - - B ' w ,  w 6 R 3. (2.54) 

then 
wF( ) - - -IB' l 2 < 0,  e e 3 

and W is a Liapunov function for (2.52) also in this case. 



w 2.9. Stabil ization of the Euler equations 119 

The following theorem shows that for a large class of systems (2.51) 
feedback (2.54) is asymptotically stabilizing. 

T h e o r e m  2.13 Feedback v(w) = - B ' w ,  w E I13, stabilizes sys tem (2.51) 
asymptotically i f  and only i f  every row of the matrix B has a non-zero 
element. 

P r o o f .  By (2.55) the closed-loop system 

- j - 1 S ( w ) J w -  J - I B B * w  (2.56) 

is stable in the sense of Liapunov. It follows from the La Salle theorem 
that  an arbitrary trajectory (2.56) converges, as t T +oo, to the maximal 
invariant set K contained in 

L = {w E R3; WF(W) - O} = kerB*. 

In particular the set M of all stationary points for (2.56) is in L" 

M - { w e R 3 ;  F(w)  - O} - {w e L; S(w)gw - o} = g N L, 

where N = {w e ha; S ( w ) J w  = 0}. 
Let us denote by qi the i-th coordinate axis and by Pj the hyperplane 

orthogonal to the j - th  control axis bj, i , j  - 1,2,3. Then L - ker B* = 
3 
f] Pj and 

.i=1 

M -- N PJ f3 qi - Pj f3 qi. 
j 1"= i=1 j = l i = l  

Moreover 

f q q i = f  {0}' i f b i d # O ,  Pj ( qi, i f  bid = O, 

Therefore, if bid -- 0 for j -- 1,2,3, then M = qi. Consequently M - {0} if 
and only if for arbitrary i - 1, 2, 3 there exists j - 1,2, 3 such that  bij ~ 0. 

If system (2.56) is asymptotically stable then M = {0} and therefore 
every row of B has a non-zero element. This proves the theorem in one 
direction. 

To prove the converse implication assume that M -- {0}. We will 
consider three cases. 

(i) rank B = 3. Then L = {0} and since It" C L we have It" = {0}. 
(ii) rank  B - 2. In this case L is a straight line. If w(- ) is an arbitrary 

trajectory of (2.56), completely contained in It', then, taking into account 
that  K C L, 

2 = O, t > O, 
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and, consequently, for a constant c 

- c -  t > o. 

Since the trajectory w(. ) is contained in the line L and in the ellipsoid 
{w E 1t3; W(w) - c}, it has to be a s tat ionary solution" w(t) - w(0), t >__ 0. 
Finally we get that  c -  0 and 

M C K C  L f ' l { 0 } -  {0}. 

We see that  K -  {0}. 
(iii) rank B - 1. Without  any loss of generality we can assume tha t  

bl # 0, b2 - b3 - 0. Note that  

K C. P -  {w F. L; F(w) E L} 

- {w ~. L; b* l ( j -1S(w)Jw - J - '  BB*w)  - 0} 

= {w q. R3; b*lJ-1S(w)gw - 0  and b*lw- 0}. 

Therefore the set P is an intersection of a cone, defined by the equation 

b11123w2r "4" b21/31693w1 4- b31112wlW2 - O, 

where 123 < (/2 - I3)/I1,131 - (/3 - I~)/I2, I12 = (I1 - I2)/Ia and of the 
plane 

bl lwl + b~lw2 4" b31w3 -- 0, r E R 3- 

Consequently P can be either a point or a sum of two, not necessarily 
different, straight lines. As in case (ii), we show that  

K C P f ' I { w E R 3 ;  W ( w ) - c }  f o r c - 0 ,  

and finally K - {0}. El 

B i b l i o g r a p h i c a l  n o t e s  

The main stability test is taken from E. Coddington and N. Levinson 
[15]. The content of Theorem 2.4 is sometimes called the second Liapunov 
method of studying stability. The first one is the linearization. Theorem 
2.7 is due to M. Krasnoselski and P. Zabreiko [351; ~ ~lso [701. A similar 
result was obtained independently by R. Brockett,  and Theorem 2.11 is due 
to him. He applied it to show that,  in general, for nonlinear systems, local 
controllability does not imply asymptot ic  stabilizability. Theorem 2.9 is 
taken from [70], as is Theorem 2.10. Theorem 2.13 is due to M. Szafrahski 
[55] and Exercise 2.9 to H. Sussman. 
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R e a l i z a t i o n  t h e o r y  

It is shown in this chapter how, by knowing the input-output  map 
of a control system, one can determine the impulse-response function of 
its linearization. A control system with a given input-output map is also 
constructed. 

w 3 . 1 .  I n p u t - o u t p u t  m a p s  

Let us consider a control system 

-- f ( y ,  u), y(0)-  x E R n, (3.1) 

to = h(y) ,  (3.2) 

with an open set of control parameters U C R m. Assume that  the function 
f satisfies the conditions of Theorem 1.3 and that h is a continuous function 
with values in R k. Let us fix T and denote by B(0,T; U) and C(0, T; R k) 
the spaces of bounded, Borel and continuous functions respectively de- 
fined on [0,T] and with values in U and in R k. For an arbitrary function 
u(.  ) E B(0,T;  U) there exists exactly one solution yU(t, x), t E [0, T], of 
the equation (3.1), and thus for arbitrary �9 E H n the formula 

= = t e [0,T],  (3.3) 

defines an operator from B(0, T; U) into C(0, T; Rk). As in the linear case 
(compare w 1.3.1, formula (3.2)), the transformation/r  will be called the 
input-output map of the system (3.1)- (3.2). Realization theory is concerned 
with the construction of a system (3.1)-(3.2) assuming the knowledge of 
its input-output  map. The linear theory was discussed in Chapter 1.3. The 
nonlinear case is much more complicated, and we limit our presentation to 
two typical results. 

The same input-output  map can be defined by different linear systems 
(3.1)-(3.2).  On the other hand, input-output maps determine uniquely 
several important  characteristics of control systems. One of them is the 
impulse-response function of the linearization we now show. 

Assume that U = R m and that a state s and a parameter fi E R m form 
a stationary pair, f (~ ,  fi) = 0. Let us recall (see (1.19) and Theorem 1.11) 
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that  if the mappings f and h are differentiable at (~, ~) and �9 respectively, 
then the linearization of (3.1)-(3.2) at (~, ~) is of the form 

il = A y  + Bu,  y(0) = z, (3.4) 

w = Cy,  (3.5) 

where A = f=(~,  fi), B = fu($ ,  a),  C = hz(~) .  

The function 

�9 (t) = c e t A B  = hz(~)e t I f (~ 'a) fu(~, f i ) ,  t >_ O, (3.6) 

is the impulse-response function of the linearization (3.4)-(3.5).  

T h e o r e m  3.1. I f  mappings f :  R n x R m ~ R n, h: [t n -~ [~k are of  
class C 1 and f satisfies the linear growth condition (1.6), then the input- 
output map 7~ of (3.1)-(3.2) is well defined and uniquely determines  the 
impulse-response function (3.6) of  the linearization (3.4)-(3.5).  

P r o o f .  Let u: [0, T] , R m be a continuous function such that  u(0) = 0. 
For an arbitrary number 7 and t E [0, 7"] 

+ = = h ( z ( t ,  7 ) ) ,  

where z( t)  = z(t, 7), t e [0, 71, is a solution to the equation 

~(t) = f ( z ( t ) ,  fi + "yu(t)), t e [0, T], z(0) = ~'. 

By Theorem 1.5, solution z(.,-) is differentiable with respect to 7- Moreover 
derivatives z.r(t ) = z.r(t , 0), t E [0, 71, satisfy the linear equation 

d 
d--~z~(t) -- f~(i:, fi)z~(t) -I- fu(~ ,  fi)u(t), z-r(O ) - O. 

Consequently 

lim 1 ( ~ ( ~  + 7u)(t) - "R(~)(t)) = h~(~.)z.y(t) 
-y---, 0 "t' 

= hx(~)e ( ' - ' ) l f (~ 'a ) fu (~ ,  fi) u(s)  ds, t E [0,T], 

and we see that ~ determines ~ ( - )  uniquely. 121 

w  P a r t i a l  r e a l i z a t i o n s  

Given an input-output map 7~, we construct here a system of the type 
(3.1)-(3.2) ,  which generates, at least on the same time intervals, the map- 
ping 7Z. To simplify the exposition, we set k = 1. 
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Let 

u(t) -- u(t; vl, . . . ,  v,; u , , . . . ,  u,), (3.7) 
e . .  v~; t u' ( t )  -- u(t;  v , , .  , u , , . . . , u ~ ) ,  t >_ O, (3.8) 

be inputs  defined by (1.37); see w We define a new control funct ion u'  ou  
set t ing 

( ~ ( t )  fo~ t ~ [0, v, + . . .  + v,),  
U/O U ( t )  "-- Ut( t  --  (Vl "~" . . . - I "  1)1)) for t > 1) 1 -~ - . . . -~ -  v 1. 

Hence 

' ' . .  u;), t > 0  ~ ' O U ( t )  - -  U( t ;  V l , . . .  , / ) I , 1 ) I , . . . , v ~ ;  U l , . . .  , t / I , B I , .  , --  �9 

Let us fix parameters  ( U l , . . . ,  ut) and inputs  

uJ(.) - u(.;~,... ,~,; u{,...,u{,), j -  l, . . . ,r. (3.9) 

Define, on the set A = {(v,,  .. . ,v,)*; v, + . . . + v t  < T, vt > 0 , . . . , v t  > 0}, 

a mapp ing  G -  " with values in R" in the following way: 

gr 

g~(v~,...,~,) - ~ ( , J  o , ) ( ~  + . . .  + ~, + ~ + . . .  + ~{~) 

= h(yUiOU(v, -I-...-I- v,-I- v~ + . . . - I "  v~j,~)), 

iv,] v =  " E A ,  j -  1 , . . . , r .  

T)i 

The mapp ing  G is a composit ion G - G2G ] of t rans format ions  
G 1- A ,, [I n and G~: I1 n .* R r, given by 

G ' ( v )  - yU(.,~, .... ,v,;~, .... 'u')(v, + . . . +  v, ,~),  v = " e A, (3.10) 

vl 

( ) -- . . .  , x E R  n. (3 .11)  c~(~) h(y ~" (v~ + + v;~ =))  j=~,~, , , 

T h e  f o l l o w i n g  l e m m a  holds .  

L e m m a  3.1 .  I f  h and f are o f  class C 1, then 

r a n k G v ( v ) < n ,  v -  " E A . 

1)l 

P r o o f .  The  derivative G~(v)  of G at  v E A is the composi t ion of the 
derivatives G~(v)  and G ~ ( G I ( v ) )  which have ranks not  greater than  the 
dimension of R " .  El 
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An input-output map 7~ is said to be regular if there exist parameters 
u l , . . . ,  u ,  E U, controls u l , . . . ,  u" of the form (3.9) and ~ E H n such that  

rank Gv(~) = n. 

In addition, coordinates ~1,'--, ~n of 6 should satisfy the constraints 

<T, 

Controls ~(-)  = u(.; v l , . . . ,  v,;  u l , . . . ,  un), .1(. ) , . . . ,  un( .  ) and the 
sequence (Vl , . . - ,  Vn) are called reference inputs and a reference sequence. 

Let D be a boundedopen subset ofRn, ~ E R", f a continuous mapping 
from D • U in II ~ and h a real function on D. Assume that  there exists a 
constant c > 0 such that  I/(v, u)J _< c(l~l + I"1 + 1), I/(v, u) - / ( w ,  u)l _< 
c [ v -  w[, v, w E D, u E U. Let T >  O b e a p o s i t i v e n u m b e r .  Then for an 
arbitrary bounded control u(t), t > O, there exists a unique maximal in D 
solution .~(t)= ~"(t, v), t E [T, of 

Y = ](~0(t), u(t)), t E IT, r (u) ) ,  (3.12) 

~(T) = v; 

see Theorem 1.3 and Theorem 1.1. 
If there exist a bounded control fi(t), t > 0, a vector ~ E D and a 

number T < T such that,  for all controls u(- ) E B(0, T; U) which coincide 
with fi(. ) on [0, T], one has 

7~(u)(t) -- h()j"(t,~)), t E [T, min(T,~-(u)), (3.13) 

then one says that the system 

- i(f,, ,,) 

~( t )  - h(.O(t)), t E [0, r (u)) ,  (3.14) 

is a partial realization of the input-output map 7~. 
If a partial realization of an input-output map ~ can be constructed, 

then one says that the map 7Z is partially realizable. 

The following theorem holds. 

T h e o r e m  3.2. Assume that all transformations f ( . ,  u), u E U, are of class 
C 2 and that an input-output map 7~ is regular. Then the map 7~ is partially 
realizable. 
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Pro o f .  Assume that  ~ is regular. Let ~(-) ,  u l , . . . ,  u n and ( ~ I , . . . ,  ~n) be 
the corresponding reference inputs and the reference sequence. Define 

~ -  " , T =  ~ 1 + . . . + ~ ,  

and fix a neighbourhood D of ~ in which the mapping G is a homeomor- 
phism. For z - Gl(v),  v E D, u E U and sufficiently small r/ > 0 the 
equation 

y'~(t,z) - G l ( f t ' ( t , v ) ) ,  t ~. [0,r/), 

determines a function .~u(., v) which satisfies the differential equation 

d ~ ( t  v ) -  [G~(~( t , v ) ) ]  -1 f ( ~ ( t  v) u), t E [0 I/). (3.15) 
dt ' ' ' ' 

We claim that  the formulae 

f(v ,  u) - [G~(v)] -~ y(G~(v) ,  u), (3.16) 

h(v) - h(G~(v)) ,  v E D, u E U, (3.17) 

define a partial realization of 7~. 
To show this note first that  

h ( G l ( v ) )  = h (y  u ( ' v '  ..... v " ' u t ' " " u ' ) ( v l . . .  + Vn,~))  [V'] 
= ~(~(.; ~ , . . . , ~ , ;  ~ , , . . . ,~ , ) ) (~ ,  + . . . +  ~,), ~ = �9 . 

13 n 

Hence the function h can be defined in terms of the mapping 7~ only. 
Let uJ(v; s; u ) ( . )  be a control identical to u(-; u .1 , . . . , u , ;  v l , . . . ,  v , )  

o 

on the interval [0, vl + . . .  + v,) ,  and to u ,u~ , . . . ,u~ i ,  j - 1 , 2 , . . . , n ,  on 

consequtive intervals of lengths s, ~ , . . . , v ~ j  respectively. Let us remark 
that  

~ ( ~ ( v ;  ~; u))(~, + . . .  + ~. + �9 + ~ + . . .  + 4 , )  

-- h(yU~(v{ + . . .  + v~j ,yU(s ,y  u( ';v' ' ' ' ' 'v ';u'  ..... u')(vl  + . . .  + vn, x)))). 

Therefore, for sufficiently small s > 0 and all u E U, the transformations 
G2(y"(s ,  GX(v))), v E D, are also given in terms of 7g. Moreover, denoting 
by G -  1, (G 1)- 1 the inverses of G and G 1 respectively, we obtain that  

G-'(G~(y"(s ,  G'(v))))  - ( G ' ) - '  (y"(s, G'(v))). (3.18) 
The derivative at s = 0 of the function defined by (3.18) is identical with 
f .  Hence the function j~ is expressible in terms of the transformation 7~. It 
follows from (3.15) and (3.17) that the functions ] and h define a partial 
realization of Td. Ul 
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We finally show that the family of all regular input-output maps is 
rather large. 

P r o p o s i t i o n  3.1. Assume that h ( . )  and f ( . , u ) ,  u (5 U, are of class C 1 
and C ~, k > 2, respectively, and that for  some j < k, d ims  - n. I f  
f(~:, ft) - 0 for some ft (5 U and the pair ( f~(~ , f t ) ,hx(~ , ) )  is observable, 
then the input-output map T~ corresponding to the sys tem (3.1)- (3.2), with 
x - ~, is regular. 

Proo f .  We see, using similar arguments to those in the proof of Theorem 
1.9, that for arbitrary neighbourhood V of the point ~, there exist parame- 

ters u l , . . . , u n  (5 U and a point v - " , such that the derivative Glv(v) 

Vn 

of the transformation G 1 defined by (3.10) is nonsingular and Gl(v) (5 V. 
Define uJ (t) - u(t; fi; vJ), t >_ 0 and j - 1 , . . . ,  n. It is enough to show that 
the derivative of G2( �9 ) at ~ is nonsingular as well. However this derivative 
is of the form 

= �9 . 

hx(~.)eV,,lz(~, a) 

Consequently, to complete the proof of the theorem, it remains to establish 
the following lemma. 

L e m m a  3.2. I f  a pair (A,  C),  A (5 M(n,  a), C (5 M(n , k ) ,  is observable, 
then for  arbitrary ~ > 0 there exist numbers vJ, 0 < vJ < 6, j = 1 , . . . , n  
such that 

rank " - n. 
Ce;'A 

Proof .  Taking into account that the pair (A*, C*) is controllable, it is 
enough to show that for an arbitrary controllable pair (A, B), A (5 M(n,  n), 
B (5 M(n ,m) ,  there exist numbers vJ, 0 < v j < 6, j - 1 , . . . , n  such 

that rank [e v t A B , . . . , e  vnAB] - n. Denote by b l , . . . , b m  the columns of 
I.  A 

the matrix B. It easily follows from the controllability of (A, B) that the 
smallest linear subspace containing {e'Abr; s (5 (0,8), r = 1 , . . . , m }  is 
identical with R n. Hence this set contains n linearly independent vectors. 

El 

Bibliographical notes 

Theorem 3.2 is a special case of a theorem due to B. Jakubczyka [32]. 
The construction introduced in its proof applies also to nonregular systems, 
however, that proof is much more complicated. 



P A R T  III  

O P T I M A L  C O N T R O L  

Chapter 1 
Dynamic programming 

This chapter starts from a derivation of the dynamic programming 
equations called Bellman's equations. They are used to solve the linear 
regulator problem on a finite time interval. A fundamental role is played 
here by the Riccati-type matrix differential equations. The stabilization 
problem is reduced to an analysis of an algebraic Riccati equation. 

w 1.1. I n t r o d u c t o r y  c o m m e n t s  

Part III is concerned with controls which are optimal, according to 
a given criterion. Our considerations will be devoted mainly to control 
systems 

fi = f (y ,  u), y(O) = x, (1.1) 

and to criteria, called also cost fnnctionals, 

T / .  
JT(X, u( . )) = ] g(U(t), u(t)) dt + G(u(T)),  (1.2) 

.Io 

when T < +oo. If the control interval is [0, +oo], then the cost functional 

~0 +~176 
j ( ~ ,  u( . )) = g(y ( t ) ,  u(t))  dr. (1.3) 

Our aim will be to find a control ti(. ) such that for all admissible controls 

JT(x, ti(. )) _~ JT(x, u(-))  (1.4) 

or 
J(x,  f~(. )) ~ J(x,  u( . )). (1.5) 

In Chapter 2 and w 3.3 we will also consider the so-called impulse con- 
trol problems. 
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There are basically two methods for finding controls minimizing cost 
functionals (1.2) or (1.3). One of them embeds a given minimization prob- 
lem into a parametrized family of similar problems. The embedding should 
be such that  the minimal value, as a function of the parameter, satisfies 
an analytic relation. If the selected parameter is the initial state and the 
length of the control interval, then the minimal value of the cost functional 
is called the value function and the analytical relation, Bellman's equation. 
Knowing the solutions to the Bellman equation one can find the optimal 
strategy in the form of a closed loop control. 

The other method leads to necessary conditions on the optimal, open- 
loop, strategy formulated in the form of the so-called maximum principle 
discovered by L. Pontriagin and his collaborators. They can be obtained 
(in the simplest case) by considering a parametrized family of controls and 
the corresponding values of the cost functional (1.2) and by an application 
of classical calculus. 

w 1 . 2 .  B e l l m a n ' s  e q u a t i o n  a n d  t h e  v a l u e  f u n c t i o n  

Assume that the state space E of a control system is an open subset of 
R n and let the set U of control parameters be included in R m. We assume 
that the functions f ,  g and G are continuous on E • U and E respectively 
and that  g is nonnegative. 

T h e o r e m  1.1. Assume that a real function W(-, .), defined and continuous 
on [0,T] • E, is of class C 1 on (0, T) • E and satisfies the equation 

OW (t x) - inf (g(x, u) + (W.(t, x) f (x ,  u))) 
COt ' u ~. u ' ' 

(t, x) E (0, T) x E, (1.6) 

with the boundary condition 

W(0,z)  = G(r z 6 E. (1.7) 

(i) I f  u ( . )  is a control and y(.  ) the corresponding absolutely continu- 
ous, E-valued, solution of(1.1) then 

Jr( , )) >_ W(T, (1.8) 

(ii) Assume that for a certain function f~" [0,T] x E ~ U" 

g(x, O(t, x)) -t- (Wx(t, x), f ( x ,  f)(t, x))~ 

g(x, u) -I- (W~(t, x), f ( x ,  u)), 

(1.9) 

t E ( O , T ) ,  z E E ,  u E U ,  
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and that ft is an absolutely continuous, E-valued solution of the equation 

d 
-~fl(t) -- f (~( t ) ,  fi(T - t, ~(t))), t e [0, T], (1.10) 

~(0)  = =. 

Then, for the control fi(t) = + ( T -  t, ~ t ) ) ,  t E [0, 7'], 

JT(x,  fi( . )) = W ( T , x ) .  

Proof .  (i) Let w(t) -- W ( T - t , y ( t ) ) ,  t E [O,T]. Then w( - )  is an absolutely 
continuous function on an arbitrary interval [a,/~] C (0, T) and 

dY(t))  dwdt (t) - cgWot ( T -  t, y(t)) + ( W ~ ( T -  t, y(t)), -~  

__ a W  ( T -  t,  y ( t ) )  + ( W , ( T  - t, y ( t ) ) ,  I ( y ( t ) ,  u( t ) ) )  
Ot 

for almost all t E [0,7']. Hence, from (1.6) and (1.7) 

f Od,o W ( T  - 1~, Y(l~)) - W ( T  - a y(a)) - w(~) - w(a) -- (t) dt , -~ 

(1.11) 

- - - - f f [ - ( T -  t, y(t)) + ( W ~ ( T -  t, y(t)), f ( y ( t ) ,  u(t))) dt 

>__ - g (y ( t ) ,  u( t ) )  dr. 

Letting a and/~ tend to 0 and T respectively we obtain 

G(y(T))- W(T, z) >_ - g(y( t ) ,u ( t ) )d t .  

This proves (i). 
(ii) In a similar way, taking into account (1.9), for the control ,~ and 

the output 9, 

~oT[ OW ( T _  t,~)(t)) + <W~(T_ t, fl(t)) f(~)(t) fi(t)))]dt G(fI(T)) - W ( T ,  x ) =  - - - ~ -  , , 

= - g(~)(t), ~(t))dr. 

Therefore 

~o T G(,)(T)) + g(,)(s), fi(s)) ds = W(T, z), 

the required identity. 
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R e m a r k .  Equation (1.6) is called Bellman's equation. It follows from 
Theorem 1.1 that, under appropriate conditions, W(T, z) is the minimal 
value of the functional JT(x, "). Hence W is the value function for the 
problem of minimizing (1.2). 

Let U(t ,z)  be the set of all control parameters u E U for which the 
infimum on the right hand side of (1.6) is attained. The function ~(.,-) 
from part (ii) of the theorem is a selector of the multivalued function U(-,-) 
in the sense that 

~(t, z) E U(t, z), (t, z) ~. [0, 7"] • E. 

Therefore, for the conditions of the theorem to be fulfilled, such a selector 
not only should exist, but the closed loop equation (1.10) should have a 
well defined, absolutely continuous, solution. 

R e m a r k .  A similar result holds for a more general cost functional 

Jr(~, u( . ) / -  ~-~ u(t)) dt + e ~ r a ( y ( r ) ) .  (1.12) 

In this direction we propose to solve the following exercise. 
Exerc i s e  1.1. Taking into account a solution W(-, .) of the equation 

o w  (t ~) - i~ f  (g(~, u ) -  ~ w ( t  ~) + (w~(t ~), f(~ ~))) 
Ot ' ' ' ' ' 
W(O,x) = G(z), z ~_ E, t ~. (O,T), 

and a selector ~ of the multivalued function 

U(t, x) - {u  ~ U; g(z, u) + (W~(t, x), f ( z ,  u)) 

= inf(g(x u)+ (W=(t z) / ( z  u)))~ 

generalize Theorem 1.1 to the functional (1.12). 

We will now describe an intuitive derivation of equation (1.6). Similar 
reasoning often helps to guess the proper form of the Bellman equation in 
situations different from the one covered by Theorem 1.1. 

Let W(t , z )  be the minimal value of the functional Jr(z,.). For ar- 
bitrary h > 0 and arbitrary parameter v E U denote by uV(.) a control 
which is constant and equal v on [0, h) and is identical with the optimal 
strategy for the minimization problem on [h,t + hi. Let z~,'(t), t ~_ O, be 
the solution of the equation z: = f ( z ,  v), z(0) = z. Then 

J,§ u~( �9 )) - g(z~'~(,), v) d, + W(t, z~'~(h)/ 
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and, approximately, 

~0 h W(t  + h,z)  ~ inf Jt+h(z ue( �9 )) ~. inf g(z='e(s), v) ds + W(t  z*'~(h)). 
v E U  ' v E U  

Subtracting W(t , z )  we obtain that 

1 
-~(W(t + h, x) - W(t ,  z)) 

[1/o  ,1 inf g(zt'V(s), v)ds  + l ( w ( t , z Z " ( h ) )  - W ( t , z )  . 
v E U  

Assuming that the function W is differentiable and taking the limits as 
h ~ 0 we arrive at (1.6). 12] 

For the control problem on the infinite time interval we have the fol- 
lowing easy consequence of Theorem 1.1. 

T h e o r e m  1.2. Let g be a nonnegatiee, continuous function and assume 
that there exists a nonnegative function W, defined on E and of class C 1, 
which satisfies the equation 

in f (g(z, u) + (Wf(z ) , / ( z ,  u))) = O, z E E. 
u E U  

(1.13) 

I f  for a strategy u( .  ) and the corresponding output y, lim W(y( t ) )  - O, 
t l + ~  

then 
J(z ,  u(-))  _> W(z). (1.14) 

I f  ~" E , U is a mapping such that 

g(z, 13(=)) + (Wx(z), f(z, ~(z))) = 0 for z e E, 

and ft is an absolutely/continuous, E-valued, solution of the equation 

d t ~ (  ) =  f ( ~ t )  O(~(t))), t>_0, (1.15) 

for which lim W(~(t) )  = O, then 

a( .  )) = 

Proof .  We apply Theorem 1.1 with 

G ( z ) = W ( z ) ,  z E E .  
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Since the function W(t , x )  - W(x) ,  t E [0, T l, x e E, satisfies all the 
conditions of Theorem 1.1 we see that,  for an arbitrary admissible control 
u ( - )  and the corresponding output, 

~o T g(y(t), u(t)) dt -{- W ( y ( T ) )  ~_ W(x) ,  T > O .  

Letting T tend to +oo and taking into account that lira W(y(T) )  = 0 we 
Tl+oo 

obtain the required inequality. On the other hand, for the strategy fi(. ), 

f0 T 9(~(t), ~(t)) dt + W(~(T)) - W(~), T > 0 .  

Hence, if lim W(f t (T ) )=  0, then 
TT +oo 

J(~, a) = w(~). 

[3 
Let us remark that if a function W is a nonnegative solution of equation 

(1.13) then function W + c, where c is a nonnegative constant, is also a 
nonnegative solution to (1.13). Therefore, without additional conditions of 
the type !im W(y(t))  = 0, the estimate (1.14) cannot hold. 

t T + ~  
Theorem 1.2 can be generalized (compare Exercise 1.1) to the cost 

functional 

j (~ ,  u(.  )) - ~ -~ 'g (y ( t ) ,  u(t)) dr. 

The corresponding Bellman equation (1.13) is then of the form 

2~fu((g(x,u)+ ( W x ( x ) , f ( x , u ) ) )  - aW(x ) ,  ace E. 

E x e r c i s e  1.2. Show that the solution of tile Bellman equation correspond- 
ing to the optimal consumption model of Example 0.6, with a E (0, 1), is 
of the form 

W ( t , x ) = p ( t ) x  '~, t > O, x >O, 

where the function p(. ) is the unique solution of the following differential 
equation: 

1, 

[9-- c~p + (l _ a) (~ )  c,l(1-a) 

p(O) = ~ .  

for p _  1, 

f o r p >  I, 
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Find the optimal strategy. 

H in t .  First prove the following lemma. 

L e m m a  1.1. Let ~bp(u) = c~up + (1 - u) a, p >_ 0, u E [0, 1]. The maximal 
value m(p) of the function ~l,I, ( �9 ) is attained at 

1/(119 ) -- 1/( l-a) ,  if p E [0, 1]. 

Moreover 

1, 

re(p) - ~P + (1 - ~ ) ( ~ ) ~ / (  1-~) 
i f p  >__ 1, 

i f p E  [0, 1]. 

w 1 . 3 .  T h e  l i n e a r  r e g u l a t o r  p r o b l e m  
a n d  t h e  R i c c a t i  e q u a t i o n  

We now consider a special case of Problems (1.1) and (1.4) when the 
system equation is linear 

it - A y  + Bu ,  y(O) - z E I~", (1.16) 

A E M(n,  n), B E M(n ,  m), the state space E = II n and the set of control 
parameters U - R m. We assume that the cost functional is of the form 

f0 T Jr  - ((Qy(s),  y(s)) + (RuCs), u(s)}) ds + (Poy(T), y(T)},  (1.17) 

where Q E M(n,  n), R E M(m,  m), 1~ E M(n,  n) are symmetric, nonnega- 
tive matrices and the matrix R is positive definite; see w 1.1.1. The problem 
of minimizing (1.17) for a linear system (1.16) is called the linear regulator 
problem or the linear-quadratic problem. 

The form of an optimal solution to (1.16) and (1.17) is strongly con- 
nected with the following matrix Riccati equation: 

- Q + P A  + A * P -  P B R - 1 B  "P, P(O) - Po, (1.1S) 

in which P(s), s E [0, T], is the unknown function with values in M(n ,  n). 
The following theorem takes place. 

T h e o r e m  1.3. Equation (1.18) has a unique global solution P ( s ) ,  s >_ O. 
For arbitrary s >_ 0 the matrix P(s) is symmetric and nonnegative definite. 
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The minimal value of the functional (1.17) is equal to (P(T)z , z )  and the 
optimal control is of the form 

f,(t) = - R  -1 B* P ( T  - t)ft(t), t e [0,T], (1.19) 

where 

b(t) -- ( A -  B R - 1 B * P ( T  - t))ft(t), t E [0,T], ~(0) = z. (1.20) 

Proof .  The proof will be given in several steps. 

Step I. For an arbitrary symmetric matrix P0 equation (1.18) has 
exactly one local solution and the values of the solution are symmetric 
matrices. 

Equation (1.18) is equivalent to a system of n 2 differential equations 
for elements p~j(.), i , j  = 1 ,2 , . . . ,  n of the matrix P( . ) .  The right hand 
sides of these equations are polynomials of order 2, and therefore the system 
has a unique local solution being a smooth function of its argument. Let us 
remark that the same equation is also satisfied by P ' ( - ) .  This is because 
matrices Q, R and P0 are symmetric. Since the solution is unique, P( .  ) = 
P*(- ) ,  and the values of P( .  ) are symmetric matrices. 

Step ~. Let P(s), s E [0,T0), be a symmetric solution of (1.18) and 
let T < To. The function W(s ,z)  = (P ( s ) z , , ) ,  s E [0,7"], z E Rn, is 
a solution of the Bellman equation (1.6)-(1.7) associated with the linear 
regular problem (1.16)-(1.17). 

The condition (1.7) follows directly from the definitions. Moreover, for 
arbitrary z E R" and t E [0, T] 

inf ((Qx, z) + (Ru, u) + 2(P(t)z, Ax + Bu)) 
u E R  m 

(1,21) 

= (Qz,r)+((A*P(t)+P(t)A)r,z)+ inf ((Ru, u)+ (u, 2B*P(t)z)). 
uER T M  

W e  need now the following lemma, the proof of which is lea as an exercise. 

L e m m a  1.2. If a matri ,  R E M(m,  rn) is positive definite and a E R m, 
then for arbitrary u E R m 

�9 1 

Moreover, the equality holds if and only if  

1 ta 
u = 

It follows from the lemma that the expression (1.21) is equal to 

(Q + A*P(t) + P( t )A  ~ - P ( t ) B R  - 1 B * P ( A ) z , z )  
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and that the infimum in formula (1.21) is attained at exactly one point 
given by 

-R-1B*P(t)z ,  t E [0,T]. 

Since P(t) ,  t E [0, T0), satisfies the equation (1.18), the function W is a 
solution to the problem (1.6) - (1.7). 

Step 3. The control fi given by (1.19) on [0,T], T < To, is optimal 
with respect to the functional JT(x, "). 

This fact is a direct consequence of Theorem 1.1. 

Step 4. For arbitrary t E [0, T], T < To, the matrix P(t) is nonnegative 
definite and 

i 
t 

(P(t)x, ,)  ~_ (Qft*(s), f f  (s)) ds + (P07(t) ,  .~*(t)), (1.22) 

where .0"(" ) is the solution to the equation 

y-A~, ~(0)-*. 

Applying Theorem 1.1 to the function Jr(z, .) we see that its minimal 
value is equal to (P( t )x ,x ) .  For arbitrary control u ( - ) ,  J t (x ,u )  _ 0, 
the matrix P(t) is nonnegative definite. In addition, estimate (1.22) holds 
because its right hand side is the value of the functional J~(, ,  .) for the 
control u(s) = 0, s E [0,t]. 

Step 5. For arbitrary t E [0,T0) and x E R n 

(/0' ) o _< (p(t)...) __ ( s'(.)QS(.) d. + S'(t)PoS(t) ..=). 

where S(r) - -  e A t ,  r ~ O. 

This result is an immediate consequence of the estimate (1.22). 

Exerc i se  1.3. Show that if, for some symmetric matrices P - (pij) E 
M(n,  n) and S = (sij) E M(n,  n), 

O _ < ( P a : , x ) < ( S x ,  x), x E a  n , 

then 

+ . . )  < < .., + 1(. . ,  + . , , ) .  i , j -  1, . . . ,n.  

It follows from Step 5 and Exercise 1.3 that solutions of (1.18) are 
bounded in M(n,  n) and therefore an arbitrary maximal solution P ( .  ) in 
M(n,  n) exists for all t _> 0; see Theorem II.1.1. 

The proof of the theorem is complete. El 
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Exerc i se  1.4. Solve the linear regulator problem with a more general cost 
functional 

~0 r (<Q(y(t) - a), y(t) - a) -]- (Ru( t ) ,  u(t))) -}- (Poy(T),  y (T) ) ,  dt 

where a G R ~ is a given vector. 
A n s w e r .  Let P(t), q(t), r(t), t > O, be solutions of the following matrix, 
vector and scalar equations respectively, 

P - Q + A*P + P A  - P B R - I B * P ,  P(0) - P0, 

(1 = A * q -  P B R - l q  - 2Qa, q(O) = O, 
1 

i" - - - ~ ( R - l q , q )  + (Qa, a), r(O) = O. 

The minimal value of the functional is equal 

r(T)  + <q(T), z) + <P(T)x, x), 

and the optimal, feedback strategy is of the form 

1 lq lB .  , u(t) - --~ R -  (T  - t) - R -  P ( T  - t )y(t)  t G [0,7']. 

w 1.4. The linear regulator  and s tabi l i za t ion  

The obtained solution of the linear regulator problem suggests an im- 
portant way to stabilize linear systems. It is related to the algebraic Riccati 
equation 

Q + P A  + A*P - P B R - ~ B * P  - O, P > O, (1.23) 

in which the unknown is a nonnegative definite matrix P. If P is a solution 
to (1.23) and P < P for all the other solutions P, then P is called a 
minimal  solution of (1.23). For arbitrary control u ( . )  defined on [0, +oo) 
we introduce the notation 

J(z ,  u) - ( (Qy(s) ,  y(s)) + (Ru(s) ,  u(s)))  ds. (1.24) 

T h e o r e m  1.4. I f  there exists a nonnegative solution P of equation (1.23) 
then there also exists a unique minimal  solution P of(1.23),  and the control 
fi given in the feedback form 

~(t)  - - R -  ~ B" P y ( t ) ,  t > O, 
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minimizes functional (1.24). Moreover the minimal value of the cost func- 
tional is equal to 

(P.,.). 

Proo f .  Let us first remark that if Pl(t), P2(t), t >_ 0, are solutions of (1.18) 
and PI(0) _< P2(0) then P~(t) <_ P2(t) for all t _> 0. This is because the 
minimal value of the functional 

t 

J~(x, u) - ((Qy(s), y(s)) + (Ru(s), u(s))) ds + (Pl(O)y(t), y(t)) 

is not greater than the minimal value of the functional 

J?(x, u) - ((Qy(,),  y(,)) + (nu( , ) , , , ( , ) ) )  d, + (P~(O)y(t), y(t)), 

and by Theorem 1.3 the minimal values are (Pl( t)x ,x)  and (P2(t)x,x)  
respectively. 

If, in particular, P~(0) = 0 and P2(0) = P then P2(t) = P and there- 
fore Pl(t) < P for all t > 0. It also follows from Theorem 1.3 that the 
function PI(" ) is nondecreasing with respect to the natural order existing 
in the space of symmetric matrices; see w I.l.1. This easily implies that for 
arbitrary i , j  - 1, 2 , . . . , n  there exist finite limits Pij  = lim ~ij(t), where 

ti+oo 
(~ i~( t ) )  - e~ ( t ) ,  t >__ 0. Tak ing  i , t o  ~r ~qu~tion (1 .18)  w~ ~ tha t  
there exist finite limits 

d 
lim " ( t ) =  tT+o ~ "~Pij 7ij, i , j  = 1,.. .  ,n. 

These limits have to be equal to zero, for if "Yi,j ~> 0 o r  ~[i,j <~ 0 then 
lira 15ij(t) -- +oo. But lira ~ i j ( t )  - -  - - o o ,  a contradiction. Hence the 

tT+oo tT+oo 

matrix P - (/Sij) satisfies equation (1.23). It is clear that P < P. 
Now let .0(') be the output corresponding to the input ~(-) .  By The- 

orem 1.3, for arbitrary T >__ 0 and x E }l n, 

- f0 T (Px, x) - ((Qft(t), ft(t)) + (R~(t), fi(t))) dt + (Pft(T), ~(T)), (1.25) 

and 
T 

((Q~(t), ~(t)) + (Rfi(t), ~(t))) dt <_ (Px, x). 

Letting T tend to +co we obtain 

J(z ,  ~) <_ (Px, z). 
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On the other hand, for arbitrary T > 0 and x ~ R n 

(,~ (T)z, z) _ j~o T ((Qft(t) ,~(t)) + (Rf~(t),f4(t))) dt <_ J ( z ,~ ) ,  

consequently, (Px, z) _< J(z ,  fi) and finally 

J(z ,  ~) - (Px,  z).  

The proof is complete. O 

Exerc i se  1.5. For the control system 

~)=u ,  

find the strategy which minimizes the functional 

fo +~176 + u ~) dt 

and the minimal value of this functional. [0,] [0] 
A n s w e r .  The solution of equation (1.23) i n w h i c h . 4 =  0 0 ' B =  1 ' 

Q -  0 , R =  [1], is matrix P = 1 " 

is of the form u - - y -  Vt'2(y) and the minimal value of the functional is 
2 + 2 y ( 0 ) y ( 0 ) +  2. 

For stabilizability the following result is essential. 

T h e o r e m  1.5. (i) I f  the pair (A, B)  is stabilizable then equation (1.23) has 
at least one solution. 

(ii) I f  Q = C*C and the pair (A, C) is detectable then equation (1.23) 
has at most one solution, and if  P is the solution then the matrix A -  
B R -  1 B* P is stable. 

Proof .  (i) Let K be a matrix such that the matrix A + B K  is stable. 
Consider a feedback control u(t) - Ky( t ) ,  t > O. It follows from the 
stability of A + B K  that y(t) , 0 ,  and therefore u(t) * 0 exponentially 
as t T +oo. Thus for arbitrary x E R n, 

)) - f0 +~176 
((Qy(t),  y(t)> + (Ru(/), u(t))) dt < +oo. 

Since 
(P~ (T)x,  x) <_ J(z ,  u(.  )) < +oo, T > 0 ,  
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for the solution Pl(t) ,  t > 0, of (1.18) with the initial condition PI(0) = 0, 
there exists lira P~(T) = P which satisfies (1.23). (Compare the proof of TT+c~ 
the previous theorem.) 

(ii) We prove first the following lemma. 

L e m m a  1.3. (i) Assume that for some matrices M >_ 0 and K of appro- 
priate dimensions, 

M ( A  - B K )  + (A - B K ) * M  + C*C + K * R K  = O. (1.26) 

I f  the pair (A, C)  is detectable, then the matrix A -  B K  is stable. 

(ii) If, in addition, P is a solution to (1.23), then P < M.  

Proof .  (i) Let S l ( t )  -- e (A-nK)t ,  S2(t) = e (A-Lc)t ,  where L is a matrix 
such that A - L C  is stable and let y(t) - S l ( t ) x ,  t >_ O. Since 

A -  B K  = ( A -  L C ) +  ( L C -  B K ) ,  

therefore 

~0 t y(t)  -- S2(t)x  + S~(t - s ) ( L C -  B K ) y ( s )  ds. (1.27) 

We show now that  

f0 +~ ICy(~)l 2 d, < +oo ~0 +~176 and IKy(s)l 2 ds < + o r .  (1 .28)  

Let us remark that,  for t _> 0, 

ft(t) -- ( A -  B K ) y ( t )  and 
d 

-~ (My( t ) ,  y(t)) - 2(My(t) ,  y(t)).  

It therefore follows from (1.26) that 

d 
d~(My( t ) ,  y(t)) + (Cy(t) ,  Cy(t))  + (RKy( t ) ,  Ky ( t ) )  - O. 

Hence, for t >_ 0, 

f0' f0' (My( t ) ,  y(t))  + ICy(,) l  2 ds + (RKy( s ) ,  Ky(s) )  ds = (Mx, x). (1.29) 

Since the matrix R is positive definite, (1.29) follows from (1.28). By (1.29), 

~0 t ly(t)l _< IS2(t)~l + N IS2( t  - ,)l(ICy(,)l + IKy(,)I)d~, 
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where N - max(ILl, IBI), t >_ 0. By Theorem A.8 (Young's inequality) and 
by (1.28), 

/o /o (/0 ly(s)l 2ds <N IS~(~)Id, (ICv(~)l + IKy(s)l ds 

+ IS2(,)I 2 d ,  I=1 < + o o .  

112 

It follows from Theorem 1.2.3(iv) that  y( t )  ~ 0 as t --, oo. This proves the 
required result. Let us also remark that  

j~0 +c~ M - S[ (s)(C* C + K* R K ) S ,  (s) ds. (1.30) 

(ii) Define Ko - R - 1 B * p  then RKo  = - B ' P ,  P B -  - K ~ R .  

Consequently, 

P ( A  - B K )  + (A - B K ) * P  + K * R K  - - C * C  + ( K  - K o ) * R ( K  - Ko) 

and 
M ( A -  B K )  + ( A -  B K ) * M  + K * R K  - - C * C .  

Hence if V -  M -  P then 

V(A - BK)  + (A - BK)*V + (K - Ko)* R(K  -- Ko) = O. 

Since the matrix  A -  B K is stable, 

~0 +~176 
V - S; (s)(K - Ko )* R( K - Ko ) S, (s) ds >_ O, 

by Theorem 1.2.7, and therefore M > P. The proof of the lemma is com- 
plete. O 

To prove part (ii) of Theorem 1.5 assume that  matrices P _> 0, P1 >_ 0 
are solutions of (1.23). Define K - R -  1 B* P. Then 

P ( A  - B K )  + ( A - B K ) * P  + C ' C  + K ' R K  

= P A + A * P + C ' C - P B R - 1 B * P - O .  

(1.31) 

Therefore, by Lemma 1.3(ii), P1 < P. In the same way /91 >_ P. Hence 
P~ - P.  Identity (1.31) and Lemma 1.3(i) imply the stability of A -  B K .  

[3 

R e m a r k .  Lemma 1.3(i)implies Theorem 1.2.7(1). It is enough to define 
B - 0, K - 0 and remark that  observable pairs are detectable; see w 1.2.6. 
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As a corollary from Theorem 1.5 we obtain 

T h e o r e m  1.6. / f  the pair (A ,B)  is controllable, Q = C*C and the pair 
(A,C)  is observable, then equation (1.23) has exactly one solution, and if  
P is this unique solution, then the matrix A -  BR  -1B*P is stable. 

Theorem 1.6 indicates an effective way of stabilizing linear system 
(1.16). Controllability and observability tests in the form of the corre- 
sponding rank conditions are effective, and equation (1.23) can be solved 
numerically using methods similar to those for solving polynomial equa- 
tions. The uniqueness of the solution of (1.23) is essential for numerical 
algorithms. 

The following examples show that equation (1.23) does not always have 
a solution and that  in some cases it may have many solutions. 

E x a m p l e  1.1. If, in (1.23), B = 0, then we arrive at the Liapunov equation 

PA  + A*P - Q, P > O. (1.32) 

If Q is positive definite, then equation (1.32) has at most one solution, and 
if, in addition, matrix A is not stable, then it does not have any solutions; 
see w 1.2.4. 

Exerc ise  1.6. If Q is a singular matrix then equation (1.23) may have 
many solutions. For if P is a solution to (1.23) and 

_ [0 0] [0 0] 
A - O A '  O Q  A E M ( k , k ) ,  k > n ,  

then, for an arbitrary nonnegative matrix R E M ( k -  n, k - n), matrix 

_ [ R 0 ]  
P =  0 P 

satisfies the equation 
P A + A * P = Q .  
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C h a p t e r  2 

D y n a m i c  p r o g r a m m i n g  f o r  i m p u l s e  c o n t r o l  

The dynamic programming approach is applied to impulse control 
problems. The existence of optimal impulse strategy is deduced from gen- 
eral results on fixed points for monotonic and concave transformations. 

w 2 . 1 .  I m p u l s e  c o n t r o l  p r o b l e m s  

Let us consider a differential equation 

= f ( z ) ,  z ( 0 ) - - x ( s R  n, (2.1) 

with the right hand side f satisfying the Lipschitz condition, and let us 
denote the solution to (2.1) by z~(t), t >__ O. Assume that for arbitrary 
x (5 R n a nonempty subset F(x) C R n is given such that  

r(~) c r(~) for arbitrary w (5 r(~). (2.2) 

Let, in addition, c(-, .) be a positive bounded function defined on the graph 
{(x, v); x (5 R n, v E F(x)} of the multifunction F( - ) ,  satisfying the follow- 
ing conditions: 

~(~, v) + ~(v, w) >__ ~(~, w), ~ e R", , e r(~),  ,o e r(v), (2.3) 

there exists 7 > 0, such that c(x, w) > 3' for x (5 R", w (5 F(x). (2.4) 

Elements of the set r (x )  can be interpreted as those states of [I n to 
which one can shift immediately the state x and c(x, v), the cost of the shift 
from x to v. 

An impulse strategy ~r will be defined as a set of three sequences: a 
nondecreasing sequence (tin) of numbers from [0, oo) and two sequences 
(xm) and (win) of elements of R n U {A} (where A is an additional point 
outside of Rn), satisfying the following conditions: 

if tm< +oo, then tm+l > tin; 
if t in--+CO, t h e n z m - - z m - A ;  

if tl = 0 ,  t h e n x l = x a n d w l ( s F ( x ) ;  

i f 0 < t l  < + o o ,  t h e n x l = z ~ ( t ~ ) , w ~ ( s F ( x ~ ) a n d  

if m > 1, and tm < +oo, then 

(2.s) 

(2.6) 
(2.7) 
(2.8) 
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~m = ~ ' ' - ' ( t ~  - - t , . _ , ) ,  ~ e r(~m).  

The number tm should be interpreted as the moment  of the m- th  impulse, 
identical with an immedia te  shift from zm to win. An arb i t rary  impulse tra- 
jectory lr determines,  together  with the initial state z ,  the ou tpu t  s trategy 
y='=(t), t > O, by the formulae 

y'~'=(t) -- z~(t)  for t e [0 , t , ) ,  

y~r'z(t) - -  Z t ~  - -  t i n - l )  for t e [ tm- l , tm) ,  m -- 2 , 3 , . . . ,  

y ' , ~ ( + o o )  = a .  

With  the s t ra tegy  lr we associate the following cost functional 

f0 T Z J r ( ~ , ~ ) -  e-"'g(y'.~(t))dt + e - " " ~ ( ~ m , w , , ) ,  ~ > 0, 
t,,, <_T 

where g is a nonnegative function, (~ is a positive constant  and T g +co.  
We assume also that  c(A,  A ) -  0. 

It is our aim to find a s trategy minimizing JT(' ,  x). We consider first 
the case of the infinite control interval, T = +co. The case of finite T < +co  
will be analysed in w 3.3 by the maximum principle approach.  Instead of 
JT we write s imply J .  

An impor tan t  class of impulse strategies form the stationary strategies. 
Optimal  strategies often are stationary. To define a s ta t ionary  s trategy 
we start  from a closed set K C R n and a mapping S : K  , R n such 
tha t  S(z) 6 F(x) \ K ,  z 6 K ,  and define sequences (tin), (Zm) and (win) 
as follows. Let the s tar t ing  point be z. If z 6 K then t l = 0, z l = 
z and wl = S(z l ) .  If z r K then t l  = inf{t >__ 0; zZ(t) 6 K ]  and 
if t l  < + c o  then z l  = zX(t,) and w, = S(z , ) ;  if t ,  = +co  then we 
define zl  - A, wl -- A. Suppose that  sequences t l , . . . , t m ,  X l , . . . ,Xm 
and w l , . . . ,  wm have been defined. We can assume tha t  t m <  +oo. Let us 
define t,~ - inf{t > 0; z'~'(t)  e K}, tm+l = tm +fro, and if f,~ < + c o  then 
Z m + l  "-- ZW'(~ 'm) ,  Wm+l  ---- S ( Z m + l ) ;  if tm = +co then we set t m . t .  1 - -  - } - c o ,  

X m + l  - -  m - -  Wm+l. 
To formulate tile basic existence result it is convenient to introduce 

two more conditions. 

For an arbi trary  nonnegative and bounded continuous function v, 

My(x) - inf{v(z) + c(z,  z); z E r(~)},  �9 e R", is continuous. (2.9) 

For arbi trary  z E Fin, the set F(x) is compact and the function c(x, .) is 
r on r(~).  (2.~0) 
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T h e o r e m  2.1 Assume that g is a nonnegative, continuous and bounded 
function and that f satisfies the Lipschitz condition and conditions (2.9) 
and (2.10). Then 

(i) The equation 

fot v(z )  - ~ f  e-~'g(z~(s))  ds + e -~ tMv(zX( t ) ) ,  x (5 R",  (2.11) 

has exactly one nonnegative, continuous and bounded solution v - f~. 
(ii) For arbitrary ~e in the set 

/~"-  {x; ~(x) - Mt3(x)}, 

t h ~  ~ i a ~  ~ ~t~m~t ~(~) e r ( i ) \  K" ~ h  that U 6(~ )  - 2 ( ~ )  - 
c(x, S(x))  + t3(S(z)), and the stationary strategy r determined by K and 
is an optimal one. 

R e m a r k .  Equation (2.11) is the Bellman equation corresponding to the 
problem of the impulse control on the infinite time interval. In a heuristic 
way one derives it as follows. 

Assume that v(x) is the minimal value of the function J (x , - ) ,  and 
consider a strategy which consists first of the shift at moment t > 0 from 
the current  state z~(t) to a point w (5 F (z~(t)) and then of an application 
of the opt imal  strategy corresponding to tile new initial state w. The total  
cost associated with this strategy is equal to 

fo r e - " ' g  ( z ' ( s ) )  + [c (z=(t), u,) + ,,(,,,)]. ds e-~t 
Minimizing the above expression with respect to t and w we obtain v(x),  
hence equation (2.11) follows. These arguments  are incomplete because in 
part icular they assume the existence of opt imal  strategies for an arbi trary 
initial condition z (5 R". 

To prove the theorem we will need several results of independent  in- 
terest. 

w An optimal stopping problem 

Let us assume that  a continuous and bounded function ~ on Rn is 
given, and consider, for arbitrary x E R", the question of finding a number 
t >__ 0, at which the infimum 

inf {e-~'t~o(z~(t));t  > O} - (I)(x), (2.12) 

is at tained in addition to the minimal value (1)(x). 
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The  following result holds. 

L e m m a  2.1.  Assume that f is Lipschitz continuous, ~ continuous and 
bounded and ~ a positive number. Then the function �9 defined by (2.12) is 
continuous. Let K = {z E R"; (1)(x) = ~(z)} and 

inf{t >_ 0; z~(t) E K}, 
t ( x ) -  +co, i f  z~(t) qL K fo r  all t >__O. 

~(z~(t))  > 0 Io ,  t > 0, ~ ,a  r  0. 

P r o o f .  Note tha t  for x, w E I~" 

I~(~)  - ~ (w) l  _< ~up (~-" '  I~ ( z ' ( t ) )  - ~, ( z ~ ( t ) ) l ) .  
t>o 

w 

If xm - ~ w, then z ~" , z w uniformly on an arbi t rary  finite inter- 
val [0,T l, T < +oo. The  continuity of to and positivity of ~ imply that  
&(xm) ." (I)(w). Therefore ~ is a continuous function and the set K is 
closed. Note also tha t  if t < t (x )  < +oo then 

~(~)- ~-,,~(z~(t)). (2.13) 

This follows from the identities 

(~ (z~(t)) -- inf e-'~'(l, (z~(s + t)) 
s>O 

m 

= e '~' inf e-~('+t)(~ (z~(s + t)) = e~t'~(z).  
s>o 

The formula (2.13) implies the remaining parts of the lemma. 121 

Lemma 2.1 states tha t  the solution to the problem (2.12) is given by 
the first hi t t ing t ime of the coincidence set 

K - {x; (1)(x)- ~(x)}. 

w 2 . 3 .  I t e r a t i o n s  o f  c o n v e x  m a p p i n g s  

The existence of a solution to equation (2.11) will be a corollary of the 
general results on convex transformations.  

Let /E be a convex cone included in a linear space ~. Hence if x, y E/U 
and ~, f~ _ 0 then c~x + f/y E/E. In ~ we introduce a relation _>" 

z >_ y if and only if x -  y E/E. 
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Let .,4 be a transformation from K~ into K~. We say that  ,4 is monotonic if 
for arbi trary x > y, ~4(x) > A(y).  In a similar way the transformation .,4 
is called concave if for arbitrary x, y E K~ and a,  f~ >_ 0, (~ + fl - 1, 

.x(o~ + ~y) >__ ,,r + ~A(y). 

L e m m a  2.2.  Assume that a mapping .A: IC , IC is monotonic and con- 
cave. I f  for  an element h e K,, h >__ .A(h), and for some t~ > O, 6h < .A(0), 
then there exists 7 E (0, 1) such that 

0 <_ . A m - l ( h ) -  Am(h)  < 7m.Am- l (h )  for  m - 1 , 2 , . . .  (2.14) 

P r o o f .  We can assume that  6 E (0, 1). We show that  (2.14) holds with 
7 -  1 - i5 .  For m -  1 inequalities (2.14) take the forms 

0 _< h - . A ( h )  _< 7h, 

and therefore (2.14) follows from the assumptions.  If (2.14) holds for some 
m then also 

(1 - 7 m ) A m - l ( h )  + 7 " 0  < Am(h).  

It follows, from the monotonicity and concavity of .A, that  

j Im+l(h)  > (1 - 7m).Am(h) + 7m.A(O) 

or, equivalently, that  

A ~ ( h )  - A m + '  (h)  < C ~ , a m ( h )  - , m , a ( 0 ) .  

It suffices therefore to show that  

,~ ,a~(h)-  ,"~A(0) < ~+~A~(h), 

or tha t  
(1 - 7 )Am(h)  < ,4(0). (2.15) 

Since 1 - 7 - ~i and Am(h)  < h, the inequality (2.15) holds. This finishes 
the proof of the lemma. 13 

w 2 . 4 .  T h e  p r o o f  o f  T h e o r e m  2 . 1  

(i) We have to prove the existence of a solution to (2.11) in the class 
of all nonnegative continuous and bounded functions v. For this purpose, 
define s as the space of all continuous and bounded functions on R" and 
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/C C s as the cone of all nonnegative functions from s For arbitrary v 6. K~ 
we set 

(/0' ) . A v ( z ) -  inf e-a'g(zZ(s))  ds +e-a tMv(zX( t ) )  . 
t>__o 

Then equation (2.11) is equivalent to 

~(~) - Av(~),  �9 ~ a". 

Since g >_ 0, the solution v has to be nonnegative, and a function h defined 
by the formula 

~0 +~176 h(z) - e-aS g (zX(s)) ds, z6. R n, 

is in K:. 
We check easily that, for z 6. R n, 

.4v(x) -- h(z) + inf ( e - a t ( M y -  h) (zr( t ) ) ) .  
t>0 

D 

(2.16) 

Therefore, by (2.9) and Lemma 2.1, the function A(v) is bounded and con- 
tinuous for arbitrary v 6./C. Hence .,4 transforms ~ into/C. Monotonicity 
of M implies that .A is monotonic. 

To show that the transformation .,4 is concave, remark that for non- 
negative numbers ]~, 7, ~ + 7 = 1 and for functions I)1, V2 6. ~ ,  

M(~v,  + 7v2)(e) >_ ~Mvl  (z) + 7Mv2(z), z 6. R n. 

Therefore, for arbitrary t >_ 0 

fo ' ~-~~ (z=(~)) + + 7v~)(~=(t)) ds e-at M (t~Vl 

[I' ] >__~ ~-~"g (z"( .))  d.  + e-~"M.,~ (~'( t))  

[I' ] 
>__~A,,~(~) +-y~4,,2(x), x e R". 

By the definition of.A, 

the required concavity. 
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It follows, from the definition of h, that  .A(h) < h. On the other hand, 
for v - 0 and arbitrary t > 0, 

f0 ' ~-~'o (z ' ( , ) )  + M(0)( , )  ds e-aT 

I' >__ ~-~'g (z~(sI)  ds + ~-~"r >_ h(~) + ~-~'(.~ - h)(~"(t)), 

where 7 is a positive lower bound for c(.,-). Let 6 E (0, 1) be such that  
6h < 7. Since h(z) > e-a th  (z*(t)), t > O, so finally 

~ t e-~ (z~'(s)) ds + e -" tM(O)(x )  > h(x) + (6 - 1)e-ath (zX(t)) >_ 6h(x), 

and ,4(0) > 6h. 

All the conditions of Lemma 2.2 are satisfied and therefore the sequence 
(.Am(h)) is uniformly convergent to a continuous, bounded and nonnegative 
function ft. It is not difficult to see that  if v2 > vl >_ 0 then 

o < AC, ,u ) -  A ( , , , )  < 11~2 - vxll. 

In a similar way, for rn - 1 , 2 , . . . ,  

0 < Am+' (h)  - A(~) < I[.A"h - oil, 

and therefore ~) - .A(fi). This way we have shown that  there exists a solution 
of (2.11) in the set K. This finishes the proof of (i). 

(ii) Since fi E K, the set 

[ ( -  {x; T)(z)- M~)(x)} 

is closed by condition (2.9). 
We show first that  there exists a function S ( . )  with the properties 

required by the theorem. By (2.10), function c(x, .) + ~)(. ) at tains its min- 
imum at the point wl E F(x). tlence 

~(~, ~ )  + ~ ( ~ )  - ~(~). 

If wa E fs then there exists an element w2 E F(wx) such that  

~(~ ,  w~) + ~ ( ~ )  - ~(~,). 

More generally, assume that  w~ , . . . ,  w,,~ are elements such that  

c(w,,  w, +, ) + ~( ~ ,  + ~) - 6(w, ) 
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and wi+l E I '(wi) N ~', i - 1 , 2 , . . . ,  m - 1. Adding the above identities we 
obtain 

~(~, ~,,) + ~(w,, ,0~) +... + ,(~.,_,, w,,) + ,~(,0,,,) = ~(,0,). 

Since ~ is nonnegative and c(-, .) >_ 7 > O, 

7m ___ ~(wl). 

Therefore for some m, wm E F(Wm-,) and w,n r i f .  In addition, 

c(~_~,  w~) + O(wm) = O(w~_~). 

Since w m e  r (x ) ,  by (2.3), 

~(~, ~,) + . . .  + ~ ( ~ - , ,  ~m) >_ "(~, win), 
~(~,,0~) + ~(w~) _< ~(~) 

and 
~(~, w~) + ~ ( ~ )  = ~(~). 

Hence a function S with the required properties exists. 
We finally show that  if t3 E KS is a solution to (2.11) then, for arbi trary 

x G II" and the s tat ionary strategy ~r determined by K,  S, 

j(+, ~) = 0(~). 

Let ix,iu,.., and (kl ,  tbl), (k2, tb2),. . ,  be elements of the stationary strat-  
egy. Then for arbi trary finite tm 

tm m 

~)(X) -- ~0 e--aS g (y~r,x(8)) d8 -}- ~ e.-~ tbi) + e 
i=1  

-ai"f~(dOm). (2.17) 

To check that  (2.17) holds assume first that m - 1. If il = 0, then x - 
~1 E/~" and t b l -  S(~1). Hence 

If 0 < il < +oo, then z r and il - inf{t >_ 0; z~(t)  6_ f f } .  It follows 
from equation (2.11) and Lemma 2.1 that 

fo" ~(~) = ~-~0g ( : ( , ) )  d,  + -OioMi~ (z"(i~ )) . 
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However xl = z~(il),  tO1 - -  S(Xl) and 

v(xl)  = M19(~1) = c(~1, tbl) + 0(tbl); 

consequently, 

J 

]0" ~(x) - e-a 'g(z=(s))  ds -I- e-'~i'c(~c,5) -I- e-ait~(~q). 

Similarly, if (2.17) holds for some m and im+l < +co  then 

[ , n + l -  t,n = inf { t _  O; z ~ ' ( t ) E  It'} -- i(~o,n) 

and, by the Bellman equation (2.11), 

~(~m)-  [~(~') 
do 

e-a" g ( z~ ' ( s ) )  ds + e-a(i(~' ' ))MO(z~'( t(Cvm))) .  

Since U~''(i(gVm)) = X,m+l and 

V(Xm+l) -- Mv(~rn+l)= c (~ ,m+l ,Wm+l)  -{- v(Wm+l), 

therefore 

~Oi,,, m ~(~) - ~-"" g(y*,~(,)) d~ + F_, ~-"i'c( ~, ~,) 
i--O 

+ e - '~"  e- '~ 'g(z~ ' ' ( s ) )  as 
Jo 

By the very definition of the s t ra tegy /r  we see that  (2.17) holds for rn + 1 
and thus for all m = 1,2, . . . .  

In exactly the same way we show that  for arbi trary strategy 7r and 
finite tin, 

]0" ~)(X) <~ e-CtS g (y~r,x (8)) d8 --~ e -~ c(xi ,  wi) -]- e-~ 
i=0 

To prove that  
,?(~,) = J(~r, ~), 
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assume for instance tha t  t m <  +oo for m -  1, 2, . . . .  Since 

m m 

i - - 0  i = 0  

tm T +oo. Lett ing m tend to +co  in (2.17), we obtain 

~(=) =/+oo ,~oo  

~-'~'g (y*,=(,)) d, + ~ ~-"~,~(~,, ,~,). 
i = 0  

Similarly, if i l  = +oo  then zX(t) ~ [~ for arbitrary t > 0. Lemma 2.1 and 
equation (2.11) imply 

,~(=) =/0 +~176 
--018 

e g (zX(s)) ds - -  J(fr, a:) .  

If, finally, il < i2 < . . .  < im < tm+l - +oo, then z ~ -  (t) r  for all t > 0, 
and 

~(,i,,.) = ~ - ~ ' g ( z ~ -  ( .))  d,. 

By the identity (2.17) we obtain 

m 

~o f'" -~, g(yCr,= 
~(=) = ~ (~)) d~ + ~ ~-"',~(~,, ~,)+ 

i = 0  

e -ai' ' /+oo + e - " g ( z ~ -  (s)) ds = S(*, =). 

Arguments of a similar type allow one to show that, for arbi trary strategy 

J(~, =) _> ~(~). 

This way we have shown that  the strategy 7? is optimal and at the same 
time that  ~ is the unique solution of (2.11). n 
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C h a p t e r  3 

T h e  m a x i m u m  p r i n c i p l e  

The maximum principle is formulated and proved first for control prob- 
lems with fixed terminal time. As an illustration, a new derivation of the so- 
lution to the linear regulator problem is given. Next the maximum principle 
for impulse control problems and for time optimal problems are discussed. 
In the latter case an essential role is played by the separation theorems for 
convex sets. 

w 3.1. Control problems wi th  fixed terminal  t ime  

We start our discussion of the second approach to the optimality ques- 
tions (see w 1.1) by considering a control system 

(3.1) 

and the cost functional 

f0 T JT(X, U(-)) -" g(y(t), U(t)) dt + e(y(Z)) (3.2) 

with T > 0, a fixed, finite number. The set of control parameters will be 
denoted, as before, by U C R m, the derivative of f ,  with respect to the 
state variable, by fx and derivatives of g and G by g, and G,.  

Here is a version of the maximum principle. 

T h e o r e m  3.1. Assume that functions f ,g ,  G and f~, gx, Gx are continuous 
and that a bounded control fi( . ) and the corresponding absolutely continuous 
solution of (3.1) maximize the functional (3.2). For arbitrary t E (O,T), 
such that the left derivative ~ f t ( t )  exists and is equal to f(ft(t),  fi(t)), the 
following inequality holds; 

(p(t), f(fl(t), fi(t))) + g(9(t), fi(t)) 

>_ m~d((p(t ), f( f t( t) ,  u)) + g(fl(t), u)). 
(3.3) 

In (3.3), p(t), t E [0, T], stands for the absolutely continuous solution of the 
equation 

/~ - - f ~  (~), f i ) P -  g~(l), fi) (3.4) 



w 3.1. Control problems with fixed terminal time 153 

with the end condition 
p(T)  = Gz(f l(T)) .  (3.5) 

R e m a r k .  Since an arbitrary absolutely continuous function is differen- 
tiable almost everywhere, the inequality (3.3) holds for almost all t E [0, 71. 

Proo f .  Assume first that  g (z ,y )  = 0 for z E E, u E U. Let, for some 
to E (0, T ) ,  

d -  
dt ~(to) = f(l)(to), fi(to)). 

For arbitrary control parameter  v E U and sufficiently small h > 0 define 
the needle variation of ~ by the formula 

/ a(t), 
u ( t , h )  - v ,  

if t E [0,t0 - h), 

if t E [ t o -  h, to), 
if t E [to, T]. 

Let y(-, h) be the output  corresponding to u(-, h). It is clear that  

d + 
- ~ G ( y ( T ,  0)) _< O, (3.6) 

provided that  the right derivative in (3.6) exists. To prove that  the deriva- 
tive exists and to find its value, let us remark first that  

~ o 

y(to, h) - ~(to - h) + f (y ( s ,  h), v) ds, 
-h 

~~o ~ 1)(t0) = l)(t0 -- h) 4- f(l)(s), fi(s)) ds. 
-h 

Taking this into account, we obtain 

d + y ( to ,  h)  - fI(to) 
d--~y(to, O) -- lihm ~ h 

= lim y(t0, h ) -  l)(t0 - h) _ lim ~ ( t 0 ) -  1)(t0 - h) 
hlo h hlo h 

= f( l l ( to) ,  v) -- f(1t(to), u(to)). 

(3.7) 

Moreover, ~ y ( t ,  h) - f ( y ( t ,  h), ~(t)) for almost all t E [to, T], so by Theo- 
rem II.1.4, Theorem 1.1.1 and by (3.7) 

d + 
- ~ y ( T ,  O) = S ( T ) S - l ( t o ) ( f ( ~ t o ) ,  v) - f(lI(to), fi(to)), 
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where S ( - )  is the fundamental solution of 

- I~(~ ,  ~)q. 

Therefore, the right derivative in (3.6) exists and 

d + d + 
- ~ G ( y ( T ,  0)) - (G.(~)(T)), -~y (T ,  0)) 

= (G~(~)(T)), S(T)S-~(to)( f ( f l ( to) ,  v) - f(~(to), fi(to)))) 

= (S*(to)-~S*(T)G~(~(T)),  (f(!)(to), v) - / (~) ( to) ,  fi(to)))). 

Since the fundamental solution of the equation lb = - f ~  (~), fi)p is equal 
to (S*(t)) -1 , t E [0, T], formula (I.1.7) and inequality (3.6) finish the proof 
of the theorem in the case when g(x, u) = O, x E It n, u E U. 

The case of the general function g can be reduced to the considered 
one. To do so we introduce an additional variable w E I11 and define 

, ( [ , ] )  [,(,u,] {'] [,] 1 u - (~ - G ( ~ ) + w ,  ~ R  "+ u ~ U .  
w ' g ( z , u )  ' w w ' 

It is easy to see that the problem of maximization of the function (3.2) for 
the system (3.1) is equivalent to the problem of maximization of 

(~ [ u (T)  w(T)] 
for the following control system o n  R n+l, 

d 1 ,o ' 9 ru ,~ )  j 

with the initial condition 

y(0) x ]  (; R.+~ 

Applying the simpler version of the theorem, which has just been proved, 
we obtain the statement of the theorem in the general case. 17 

The obtained result can be reformulated in terms of the Hamiltonian 
function" 

H ( x . p . u ) - ( p . f ( x . u ) ) + g ( x . . ) .  x E a  n, - E U .  p E R  n. (3.8) 
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Equations (3.1) and (3.4) are of the following form: 

OH 
i~ = -g-d, ( y,  p, ,, ) , y ( O ) = x, 

OH 
~ =  cOz(y,p,u),  p ( T ) = G x ( y ( T ) ) ,  

and condition (3.3) is equivalent to 

max H(~),/3, u) -- H(~,/3, fi) 
uEU 

at appropriate points t E (0, T). 

(3.9) 

(3.10) 

(3.11) 

w 3.2. An application of the maximum principle 

We will illustrate the maximum principle by applying it to the regulator 
problem of w 

Assume that fi is an optimal control for the linear regulator problem 
and ~ the corresponding output. Since f ( z , u )  - Ax  + Bu,  g (x ,u )  - 
(Qx, x ) +  (Ru, u), G(x) - (Pox, x), x E R n, u E R m, equation (3.4) and the 
end condition (3.5) are of the form 

- - A * p -  2Q[I na [0,T l, (3.12) 

p(T)- 2P0~(T). (3.13) 

In the considered case we minimize the cost functional (3.2) rather than, 
maximize, and, therefore, inequality (3.3) has to be reversed, and the max- 
imization operation should be changed to the minimization one. Hence for 
almost all t E [0, 7'] we have 

min [(p(t), Aft(t) + Bu(t))  + (Q[l(t), ~(t)) + (Ru, u)] 
u E R  ~ 

= (p( t ) ,  A ~ ( t )  + B ~ ( t ) )  + (Q~( t ) ,  ~(t)) + (R~(t), ~(t)). 

It follows from Lemma 1.2 that the minimum in the above expression is 
attained at exactly one point -�89  Consequently, 

1 1B , fi(t) - - - ~ R -  p(t) for almost all t E [0, T]. 

Taking into account Theorem 3.1 we see that the optimal trajectory ~9 and 
the function p satisfy the following system of equations: 

1 R - '  " (3 .14)  ~ - A ~ ) - ~ B  B p ,  ~)(0)=x, 

- - 2 Q f l -  A'p,  p(T) = 2P0z)(T). (3.15) 
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System (3.14)-(3.15) has a unique solution and therefore determines the 
optimal trajectory. The exact form of the solution to (3.14)- (3.15) is given 
by 

L e m m a  3.1. Let P(t) ,  t >_ O, be the solution to the Riccati equation (3.18). 
Then 

p(t) - 2 P ( T -  t)[t(t), 

[](t) - ( A -  B R - 1 B * P ( T  - t))~)(t), 

(3.16) 

t E [0,T]. (3.17) 

Proo f .  We show that (3.14) and (3.15) follow from (3.16) and (3.17). One 
obtains (3.14) by substituting (3.16)into (3.17). Moreover, taking account 
of the form of the Riccati equation we have 

15(t) - - 2 / b ( T -  t)~j(t) + 2 P ( T -  t)~t(t) 

= - 2 ( A * P ( T -  t) + P ( T -  t )A  + Q - P ( T -  t ) B R  -1 B* P ( T -  t))ft(t) 

+ 2 P ( T -  t ) (A - B R - 1 B * P ( T  - t))~)(t) - - A * p ( t )  - 2Q!)(t) 

for almost all t E [0, T]. E! 

R e m a r k .  It follows from the maximum principle that  fi = - � 8 9  
But, by (3.16), 

~ ( t ) - - R - 1 B * P ( T  - t)[l(t), t 6_ [0,7']. 

This way we arrive at the optimal control in the feedback form derived 
earlier using the dynamic programming approach (see Theorem 1.3). 
Exerc i se  3.1. We will solve system (3.14)-(3.15) in the case n = m = 1, 
A = a E R ,  B = I , Q = R = I ,  P o = O .  Then 

�9 1 

- - 2 1 1 -  ap, p (T)  - O. 

Let us remark that the matrix [ a-2 -�89 has two eigenvectors 

[ 1 ] [ 1 1  
2(.  - ~/i + .2) , 2 ( .  + ~/i + ,2)  ' 

corresponding to the eigenvalues v/~ + a 2 and -~/1 + a 2. Therefore, for 
some constants ~1, ~ ,  t E [0, T] 

p(t 2( .  - ~/i + a~) ~ + ~- 2 ( .  + ~/i + .2)  {2. 
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Since p(T) = 0 and ~(0) = x, 

~1-- - - e - 2 T ~  a + ~/1-1"~~ ~2 
, , - , / i  + 

~r ( 1 - e - 2 T 4 1 + " ' a ' + ~ / l + a 2 ) a -  ~/1 + a  2 

- -1  

X. 

From the obtained formulae and the relation ti = -�89 

= p ( t )  

e 2 ( T - t ) ~  - -  1 
= z)(t), t e [O,T]. 

(a + ~/1 + a2)e2( r - t )  4i+i'~ + ~/ i  + a 2 -- a 

On the other hand, by Theorem 1.3, fi(t) - - P ( T - t ) ~ ( t ) ,  t E [0,T~, where 

P - -  I + 2 a P -  P2, P ( O ) - O .  

Hence we arrive at the well known formula 

e 2 t ~ -  1 , t > O, 
P ( t )  - (a + ~/1 + a2)e 2tJ l+a2 + ~/1 + a 2 - a - 

for the solution of the above Riccati equation. 

w 3.3. The  max imum principle for 
impulse control problems 

We show now how the idea of the needle variation can be applied to 
impulse control problems. We assume, as in w 2.1, that  the evolution of a 
control system between impulses is described by the equation 

s -- f ( z ) ,  z(O) -- x E R n, (3.18) 

the solution of which will be denoted by z( t ,x) ,  t E R. 
It is convenient to assume that there exists a set U and a function 

~o: R" x U , R n such that  x + ~o(z, U) = F(z), z E R n, and to identify 
a shift (impulse) from x to y E I'(x) with a choice of u E U such that  
y = ~o(x, u). An admissible impulse strategy on I = [0, T] is then completely 
determined by specifying a sequence of moments ( t l , . . . ,  tin), 0 _< t 1 < t2 < 
. . .  < t m  < T and a sequence ( u l , . . . ,  urn) of elements in U, m = 1,2, . . . .  
We will denote it by x ( t l , . . .  ,tin; u t , . . . ,  urn) and the corresponding output  
trajectory start ing from z by y(t) = y~,~(t), t E I. Thus on each of the 
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intervals I0 = [t0,t~], Ik = ( t~, tk+,] ,  k = 1,2,...,m, to  = 0,  t i n+ ,  = T the 
function y(.  ) satisfies equation (3.18) and boundary conditions 

y( t  $ )  - y(t~) + ~,(y(tk), ,,k), y ( o )  - ~,  ~: - 1 , 2 , . . . ,  m .  

To simplify formulations, in contrast to the definition in w 2.1, we assume 
that output  trajectories are left (not right) continuous. 

The theorem below formulates necessary conditions which a strategy 
maximizing a performance functional 

JT(z, ~r) = G (y"~ (T)) ( 3 . 1 9 )  

has to satisfy. The case of a more general functional 

sr(~,,O- ~-~"o (y',~(t)) at 
m 

+ F_~-~'~(y',~(t~), uj) + ~-~ (y'"(T)) 
j=l 

(3 .20 )  

can be sometimes reduced to the one given by (3.19) (see comments after 
Theorem 3.2). To be in agreement with the setting of w 3.1 we do maximize 
rather than minimize the performance functional. 

T h e o r e m  3.2. Assume that mappings f ( . )  and ~(., u), u e U, and the 
function G( . ) are of class C'  and that for arbitrary z 6 H n the set oF(z, U) 
is convez. Let * = f r ( ( i t , - - - , im) , ( f i l , - - - , t im))  be , strategy rnazimizing 
(3.19) and fl( ')  the corresponding output trajectory. Then, for arbitrary 
k =  1 , 2 , . . . , m ,  

(p(t+k),~'(~l(tk),fik)) ~ m~t~(p(t+),~(~(ik), u)), (3.21) 

(p(i+t ), f(~l(i+))) -- (p(it), f(~l(ik))), if  tk > O. (3.22) 

I f  ik = 0 then - in (3.22) has to be replaced by >. 
The function p( . ) :  I .~ It" in (3.21) and (3.22) is left continuous and 

satisfies the equation 
= - f ; ( ~ ) p ,  (3.23) 

i .  aU i . t ~ v a t s  io - [ 0 . 6 ] ,  i~ - ( i k . i k + l ] ,  k -- 1 . 2 , . . . , m ,  ~ i t h  th~ ~ . d  
conditions 

p(T) = G~Ct(T)), (3.24) 

p( i , )  - p(i +) + ~o*~(9(t,), fik)p(i+), k - 1 ,2 , . . .  ,m. (3.25) 

Proof .  We start from the following lemma which is a direct consequence of 
Theorem II.1.4 and Theorem 1.1.1. The latter also imply that the derivative 
z~(t, z) exists for arbitrary t E It and z E R". 
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L e m m a  3.2. Let ~(t ,  s) = z x ( t -  s, ~)(s)), t, s e [0,T]. Then 

p(s) -- (I,*(/~+,, s)p(i~+l), 

p(i +) = e)*(i,+,, i+)p(ik+, ), 

s e h ,  

k = 0 , 1 , . . . , m .  

To prove the theorem we fix u E U, a natural number k < rn and 
a n u m b e r  6 > 0 s u c h  that  t k - l + r  < tk < t k + l - 6 .  It follows from the 
convexity of the set ~(~{~) ,  U) that for an arbitrary number/~ E [0, 1] there 
exists u(/~) E U such that  

~(~)({k), ilk) + ~(~o(O({k ), u) - ~o(~)({k ), fi~)) = ~o($)({k ), u(~)) .  

We can asuume that  u(O) -- fik and u(1) - u. For arbi trary a e ( { k -  
e,/k + 6) a n d / / E  [0, 1] we define new strategies 

71.k--1 (CI~,/~), ~k  (CI~, 1~), . . . , ~.m (Ct , /~)  

as follows: 

Irk-1(a,/~/) -- 7r(({1,..., {k-,), (ti,,..., ilk-,)), 
-~ (,~, ~) - -((/1,..., ik_,, ,~), ( , a , , . . . ,  ~_,, u(~))), 

(~, ~) - ,((i, , . . . ,  ik_,, ~, h+,,..., ii), 
( f i , , . . . ,  i l k - , ,  u(/~), i l k + , , . . . ,  fij)), j - k + 1 , . . . ,  m. 

Denote 

~ ( t ;  a,/~) = y"(a 'a) 'x ( t ) ,  t e [0,71, j -  k -  1, . . .  ,m. 

Then 
f~(t) - vm(t; ik, 0), t e [0, T ]  

For arbitrary a E ({k - ~, {k + r and/~ E [0, 1] 

w(~,/~)) - G(9 ~ (T; a,/~)) _< G(9 ~ (T; ik, 0)) < w({~, 0). 

Hence 
Ow(i~ ,O)=O i f i k > O ,  Oa 

Ow( ik ,O)<O i f i k - O ,  
(3.26) 

-~--2(tk, 0) < 0, (3.27) 
a p  

under the condition that  the function to(., .) has partial derivatives at (/~, 0). 
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The essence of the proof consists in showing that the partial derivatives 
exist and in calculating their values; it turns out that (3.26) and (3.27) 
imply (3.22) and (3.21)respectively. 

To prove (3.21) define 

X(~) - w(i~,/~) - G(ym(T; i t ,  ~/)), /~ E [0, 1], 

and note that for ~/~ [0, 1] 

OX m 0[3([3) -- G~(y (T; ik , /3))y~(T;  ij:,/3) 

= G ~ ( y ' ( T ;  i k , [3 ) ) z~ (T -  ira, 8~(/~)) ~-0-~d~8~(/~), op  

where 81(/3) - ym-l ( im;  ik,~) + ~O(ym-l(im; ik,/~), tim). Thus 

Ow (ik, O ) -  x a ( O ) - ( ~ * ( T , i + ) p ( T ) , y ' ~ - ' ( i m "  ik,O) 0/~ 
+ ~,~(y"-'(i,~; ik, o), ~,~)y'p-~(im; i,,, o)). 

It follows from Lemma 3.2 and condition (3.25) that 

�9 * (T, i +)p(T)  - p(i  + ), 

~ ( y m - 1  (i,n ; ik, 0), tim)p(/+) -- p(im) -- p(i+). 

Therefore 
X#(0) -- (p(im), y~n-1 (ira ; ik, 0)). 

By induction, we obtain 

x,(O) = (p(ik+~, y~(ik+, ; ik, o)). (3.28) 

Moreover 

where 

yk(ik+,; ik,/~) -- Z(i~+~ -- ik; ~k(~)), (3.29) 

6k(~) - ~k-'(ik; i k , : )  + V(yk-l( ik;  ik, ~), =(~)) 

= ~(ik) + ~,(~(ik), ~k) + ~(~,(~(ik), ~) - ~(~(ik),  ~k)). 

(3.30) 

Taking into account (3.28), (3.29) and (3.30) we finally see that 

x ~ ( 0 )  - (q: ( ik+~, i+)p( i~+~) ,  ~(9( ik) ,  u) - ~o(ft(ik), ak)) 

= (p(i+),  ~,(~(ik), ,,) - ~,(~(ik), c,k)). 
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Hence (3.21) follows. 
To prove (3.22) define 

Then 

where 

r  - w(tr, 0) - G ( y ' ( T ;  a, 0)), ~ (i~ - ~, ik + ~). 

Oet (er) - G,~(y' (T; a, 0)) Oym (T; a, 0) 
" o ~  

aT1 = G,~(yt(T; cr, O ) z , ( T - i r a ;  71(~))-~-a (~), 

"r~(~) - v ' - ~ ( i m ;  ,~,o) + ~(va -~ ( i~ ;  ~, o)). 

Consequently, by Lemma 3.2 and formula (3.25), 

0r  ~ - ' ( i ~  i ,  0)) + (p(i,~) - p(i+~), V~ , , O--X = (P(i+')'V" ; , " - ~ ( i m "  ik 0)) 

= (p(im),  Va m- I(im ; ik, 0)), 

and, again by induction, 

0 r  (tk) - (p(ik+,),V~(ik+,; ik,O)). Oa 
Moreover 

where 

vk(ik+l; O~,0)  - -  Z ( i k + l  - -  O~; ")'k(Or)), 

~k(~) - v~-~(~; ~,o) + ~(v~-x(~; ~,o), ak). 
Hence 

Oq--~-~ (fk) -- -- (p(ik+,), f(Y(ik+, ))) + (p(i~), f(Y(ik))) 
0a  

+ (p(i +), ~o~ (#(ik), fik)f(#(ik))). 

Taking into account equation (3.25), we arrive at 

O~k (tk) - -(p(ik+1) f(t)(ik+l))) + (P(ik), f(/)(ik))). Cgcr 

O n  the other hand, the function (i0('),f(~)('))) is constant on (ik,ik+~] 
and therefore 

(p(i~), f(I/(f + ))) - (p(tk+,), f(y(ik+, ))). 

In addition, 

oq~ (s -- (p(ik) f(y(ik ))) -- (p(i~), f (~( t~ ))) 

and by (3.26) we nnally obtain (3.22). E! 
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R e m a r k .  Theorem 3.2 can be reformulated in terms of appropriately de- 
fined Hamiltonians 

HI(x,p) - (p, f(z)) ,  H2(z ,p ,u)  = (p,p(;v,u)), z ,pEIR n, u e U. 

The conjugate equation (3.23) is of the form 

lb - -  -H~':(p, ~), 

and condition (3.21)expresses the fact that the function H2(p(i+k),fl(ik), .) 
attains its maximal value at ilk. 

R e m a r k .  To cover the ease of general functional (3.20) one has to replace 
state space R n by ]~n+2 and define 

[ ] f x n + ,  - -  1 , ~ X n + t  , u  = , 
g(=) ,,) --['] 

G x .+ l  = x .+~+e-a~ ' "* 'G(x ) ,  z E R '~, z . + l , x . + 2  E R. (3.31) 
kx-+2 

Formulating conditions from Theorem 3.2 for new functions f ,  ~ and G we 
obtain the required maximum principle. The most stringent assumption 
here is the convexity of ~(x, U). It can, however, be omitted, see [48]. 

w  S e p a r a t i o n  t h e o r e m s  

An important role in the following section and in Part IV will be played 
by separation theorems for convex sets. 

Assume that E is a Banach space with the norm I[" II- The space 
of all linear and continuous functionals ~o on E with the norm I1~011. = 
sup{l~,(z)l-I1~11 < 1} will be denoted by E ~ 

T h e o r e m  3.3. Let K and L be disjoint convex subsets of E. I f  the interior 
of K is nonempty then there erists a functional ~o E E* different from zero 
such that 

~(x) < ~o(y) f o r  x E K, y E L. (3.32) 

P r o o f .  Let z0 be an interior point of K and !/0 an arbitrary point of L. 
Then the s e t M = K - L + y 0 - z 0 = { x - y + y 0 - z 0 ; x E K ,  1 f i l L } i s  
convex and 0 is its interior point. Define 

x 
p ( z ) -  i n f { / >  0; ~ 6 M}. (3.33) 
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It is easy to check that  

p(z + y) _< p(z) + p(y) ,  p(az )  = ap(z) ,  z, y E E, a >_ 0, (3.34) 

p(z) <_ c[[z[[ for some c > 0 and all z E E. (3.35) 

Define on the one dimensional linear space (az0; a E R}, where zo = yo-Zo,  
a functional ~oo by setting ~o(azo) = a,  a E R. Since zo ~ M,  for all a > 0 

Q 
p(c~zo) = inf{ t  > O; ~-zo E M} > a = 7,o(azo). 

If a < 0 then 
~0(~z0) _< 0 _< p(~zo). 

By Theorem A.4 (the Hahn-Banach theorem), there exists a linear func- 
tional ~ such that  

~,(x) <_ p(x), z E E. (3.36) 

It follows from (3.35) and (3.36) that ~ E E*. Moreover, for x E M 

x 
~(z)  < p(z) - - inf{ t  > 0; ~- E M} _< 1. (3.37) 

Hence from (3.37) and the identity ~(z0) = 1, for ~ e K and y E L, 

~o(z - y + yo - xo) = ~o(x - y) + ~o(zo) ~ 1 <_ ~o(zo), 

(3.32) follows. El 

If (3.32) holds we say that  the functional ~o E E* separates the sets K 
and L. 

T h e o r e m  3.4. Let M C E be a convex set. 
(i) I f  the inter ior  Int M of M is nonempty  and xo r Int M then there 

exists a func t ional  ~o E E*, ~ ~ 0 such that 

~(~) <_ ~,(~o), �9 e M. 

(ii) I f  a point zo E E does not belong to the closure of  M then there 
exist a func t ional  ~o E E*, ~o ~ O, and a number 6 > 0 such that 

r + ~ _< ~(~0), �9 e M. 

P r o o f .  (i) Define K = Int M and L = {x0}.  By Theorem 3.3 there exists 
E E*, ~ ~ 0, such that  

~,(~) _ ~,(~o) for �9 ~ Int M. (3.38) 
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Since the set M is contained in the closure of Int M, inequality (3.38) holds 
for all z E M. 

(ii) For some r > 0 the closed ball L = {y E E; [ [ y -  xo[I <_ r} is 
disjoint from M. Setting K = M we have from Theorem 3.3 tha t  for some 

e E*, ~ ~ 0 ,  (3.32) holds. S i n c e ~ 0 a n d m = i n f { ~ ( y ) ;  [ l y -xo l [  _< 
r} < ~o(x0), it is sufficient to define 6 as arbitrary positive number smaller 
than ~(xo) - m. [::! 

T h e o r e m  3.5. Let M be a convex subset of E -  R n. I f  a point xo E M is 
not in the interior of M then there exists a vector p E I] n, p ~ O, such that 

(p,x)  <_ (p, zo), z E  M. 

P r o o f .  If M has a nonempty interior then the result follows from Theorem 
3.4(i). If the interior of M is empty  then the smallest linear space E0 
containing all vectors x -  x0, x E M,  is different from E. Therefore there 
exists a linear functional ~o, different from zero and such that  ~(y) = 0 for 
y E E0. In particular, ~o(x) = ~o(x0) for x E M. The functional ~ can be 
represented in the form ~o(z) = (p, z), z E R n for some p E R n. 

O 

w  T i m e - o p t i m a l  p r o b l e m s  

There are important  optimization problems in control theory which 
cannot be solved using the idea of the needle variation as these variations 
are not admissible controls. In such cases it is often helpful to reformulate 
the problem as a geometric question of finding a support ing hyperplane to 
a properly defined convex set. We will apply this approach to prove the 
maximum principle for the so-called time optimal problem. 

Let us consider again a linear system 

il = Ay  + Bu, y ( 0 ) =  z (3.39) 

and assume that the set U C IR" is convex and compact. Let ~ be a given 
element of }l n different from x. We say that  a control u ( - ) :  [0, +oo)  , U 
transfers x to ~ at time T > 0 if for the corresponding solution y~,U(.) of 
(3.39), yX'U(T) = ~:. 

The time-optimal problem consists of finding a control which transfers x 
to a~ in the minimal time. The following theorem is the original formulation 
of the maximum principle and is due to L. Pontriagin and his collaborators. 

T h e o r e m  3.6. (i) I f  there exists a control transferring z to ~ then the 
t ime-optimal problem has a solution. 

(ii) I f  ~(. ) is a control transferring x to ~: in the minimal  time 7" > 0 
then there exists a nonzero vector )~ E I t  n such that for  the solution p( .  ) of 
the equation 

- - A ' p ,  p (~ ' ) -  )~, (3.40) 
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the identity 
(B* p(t), ~(t)) = m ~ ( B *  p(t), u) (3.41) 

holds for almost all t E [0, ~]. 

R e m a r k .  For a vector b E R m, b ~ O, there exists exactly one ( n -  1)- 
dimensional hyperplane L(b) orthogonal to b, supporting U and such that  
the set U is situated below L(b), the orientation being determined by b. 
The maximum principle (3.41) says that hyperplane L(B*p(t))  rolling over 
U touches the set U at the values f4(t), t E [0,T], of the optimal control. 
The adjoint equation (3.40) indicates that  the rolling hyperplanes are of 
a special form. It is therefore clear that the maximum principle provides 
important  information about optimal control. 

Proo f .  (i) Let S(t)  - e At, t E R. The solution to (3.9) is of the form 

[ /o' q y ( t ) -  s ( t )  �9 + d , t _> O. 

For arbitrary t > 0 define a set R(t) C Ha" 

n(t) - ( f o' s-l(r)nu(r)dr: u(r) E U, r E [O,t]}. 

We will need several properties of the multivalued function R(t), t > O, 
formulated in the following lemma. 

L e m m a  3.3. (i) For arbitrary t > 0 the set R(t) is convex and compact. 
(ii) I f  xm , a and tm ~ t as m ~ +oo and xm E R(tm) for m - 

1,2,. . . ,  t h e n  a E R ( t ) .  

(iii) I f  a E In tR( t )  for some t > 0 then a E R(s) for all s < t suffi- 
ciently close to t. 

Proo f .  In the proof we need a classic lemma about weak convergence. We 
recall that  a sequence (hm) of elements from a Hilbert space H is weakly 
convergent to h E H if for arbitrary z E H, limm(hm,Z)H = (h,x)H,  where 

(', ")U denotes the scalar product in H. 

L e m m a  3.4. An arbitrary bounded sequence (hm) of elements of a separa- 
ble Hilbert space H contains a subsequence weakly convergent to an element 
of H. 
P r o o f  o f  L e m m a  3.4. Let us consider linear functionals 

~Pm(X)--(hm,~)H, x E H ,  m - 1 , 2 ,  . . . .  

It easily follows from the separability of H that there exists a subsequence 
(~,n~) and a linear subspace H0 C H, dense in H, such that  the sequence 
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(~o,nk (z)) is convergent for arbitrary z 6_ H0 to its limit ~o(z), z 6_ H0. Since 
the sequence (hm) is bounded, there exists a constant  c > 0 such that  

I~(z)l _< cIZIH, z E H0. 

Therefore the linear functional ~ has a unique extension to a linear, con- 
tinuous functional ~ on H. By Theorem A.7 (the Riesz representation 
theorem) there exists h E H such that  ~ = (h, z)H z E H. The element h 
is the weak limit of (hm~). 121 

P r o o f  o f  L e m m a  3.3. Denote by U(t) the set of all inputs defined on 
[0,t] with values in U. It is a bounded, convex and closed subset of the 
Hilbert space H = L~(0,t; [In). The linear transformation from H into R n 

~( " ) ~ ~ fo'  
S - ' ( r ) B u ( r ) d r  

maps the convex set U(t) onto a convex set. Hence the set R(t)  is convex. It 
also maps weakly convergent sequences onto weakly convergent ones, and, 
by Lemma 3.4, the set R(t)  is closed. Since R(t )  is obviously a bounded 
set, the proof  of (i) is complete. 

To prove (ii), remark that 

X m ~ fOt S-'(,)Bum(r)d,+~'" 1 2 S - ' ( , ) B . ~ ( , )  d, - ~ + ~m 

for some urn( ' )  6_ U(tm),  m - 1 , 2 , . . . .  Since xlm 6_ R(t) ,  Z2m ~ 0 and 
R(t)  is a closed set, a 6_ R(t) .  

To show (iii), assume, to the contrary, that  a 6_ Int R(t)  but for se- 
quences tm I t and Zm , a, xm r R(tm).  Since the set R(tm)  is convex, 
by Theorem 3.5 there exists a vector Pm 6_ R, Ip~l = 1 such that  

( x -  am, Pro) < 0 for all x 6_ R(tm). (3.42) 

Without  any loss of generality we can assume that  Pm -"+ P, IP[ - 1. 
Letting m tend to infinity in (3.42), we obtain tha t  ( z -  a,p) < 0 for 
arbi trary x from the closure of U R(t,n) and thus for all z E R(t). Since 

m 

a E R(t ) ,  p has to be zero, a contradiction. 121 

We go back to the proof of Theorem 3.6. Let 

. ( t )  = s - ' ( t ) ~ -  . .  t >__ o. 

and let T be the infimum of all t > 0 such that  z( t)  6_ R(t) .  There exists a 
decreasing sequence tm [ T such that  z,n - Z(tm) 6_ R(t,~), m - 1, 2, . . . .  
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By Lemma 3.3(ii), z (T )E  R(7"), and therefore there exists an optimal solu- 
tion to the problem. 

To show (ii) define a = z(T). Then a r Int R(T). For, if a E Int R(T) ,  
^ 

then, by Lemma 3.3(iii), there exists a number t < T such that  z(t) E R(t), 
a contradiction with the definition of T. Consequently, by Theorem 3.5, 
there exists X E It n, A # 0, such that 

( z -  z(T), A) < 0, z E R(T). (3.43) 

Let ti(. ) be an optimal strategy and u(.  ) an arbitrary control taking values 
in U. It follows from (3.43) that  

as / .  

( /  s - ' ( O ( B , ( O -  B~( , ) )d , ,  ~) < o, 
Jo 

or, equivalently, 

as 
f o t B ' ( s ' ( o ) - ~ ( , ) ~ ,  ~(,) - - ( , ) )  d,  O. >_ (3.44) 

Since the function p(t) = (S*(g))-l,~, g E [0,T], is a solution to (3.40), 
see w 1.1.1, and (3.44) holds for arbitrary admissible strategy u( .  ), relation 
(3.41) holds. El 

E x a m p l e  3.1. Consider the system 

= u (3.45) 

with the initial conditions 

z(0) = xl, ~,(0) = z2. (3.46) 

We will find a control u( .  ) satisfying the constrains - 1  < u(t) < 1, t > 0, 
and transferring, in the minimal time, initial state (3.46) to 

=(~) = o, ~(~) = o. 

Transforming (3 .45)- (3 .46) in to  form (3.39), we obtain 

[: ] [0] 1 B -  . 
A =  0 ' 1 

The initial and the final states are, respectively, 

X - -  
X 2  ~ = 
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and the set of control parameters  U = [ - 1 ,  1]. 
Since the pair (A, B) is controllable, an arb i t rary  initial s ta te  x close 

to ~ can be transferred to ~ by controls with values in [ -1 ,  1], see Theorem 
1.4.1. In fact, as we will see soon, all s ta tes  x can be transferred to ~ this 
way. 

An arb i t rary  solution of the adjoint  equat ion  

p [0 0] 
- 1  0 p 

[-~ is of the form p ( t )  - at + b ' t > O, where a and b are some constants .  

Assume t h a t  x # ~ - 0 and t~ is an op t imal  control  transferring x to 0 in 
the min imal  t ime T.  Then,  by Theorem 3.6, there exist constants  a and b, 
at  least one different from zero, such tha t  for a lmost  all t (5 [0, T]" 

fi(t) - sgn B * p ( t )  = sgn(at  + b) (3.47) 

where sgn r is equal 1, 0 or - 1  according to whether  r is positive, zero or 
negative.  W i t h o u t  any loss of generali ty  we can assume tha t  (3.47) holds 
for all t (5 [0, ~f~]. 

I t  follows from (3.47) that  the opt imal  control  changes its value at most  
once and therefore fi should be of one of the following forms: 

( i)  ~ ( t ) - l ,  t e [ 0 , ~ ] ,  

(ii) f i ( t ) -  - 1 ,  t (5 [0, 7~], 

(iii) f i ( t ) - l ,  t(5[0, s), f i ( t )=- l ,  t (5 ( - s ,~ ,  
(iv) f i ( t ) -  - 1 ,  t (5 [0, s), f i ( t ) -  1, t (5 (s, ~f'], 

where s is a number from (0, T).  
Denote  by F+ and F_ sets of these s ta tes  x (5 I~ ~ which can be trans-  

ferred to ~ by the constant controls taking values 1 and - 1  respectively. 
Solutions to the equations 

0 1 [0 1 _ ] ,, 

are given by the formulae 

f2 
y # ( f )  "-- Xl + X2f + "~-, 

t 2 

y~+ (t)  - ~ + t, 

v~  ( t)  - ~2 - t, f > 0 .  



Bibliographical notes 169 

Hence 

F+ = ; xl -- x2 < 0 
X 2 T ~ - -  

([.,] } r _ =  ; z ~ = - - -  z 2 > 0  . 
x2 2 ' - -  

Sets F+ and F_ contain exactly those states which can be transferred to 
by optimal strategies (i) and (ii), and the minimal time to reach 0 is exactly 
z2. Taking into account the shapes of the solutions !/+ and y - ,  it is easy to 
see that if the initial state x is situated below the curve r +  u F_, then the 
optimal strategy is of type (iii) with s being equal to the moment of hitting 
r _ .  If the initial state is situated above r+  u F_, then the optimal strategy 
is of the type (iv). We see also that in the described way an arbitrary state 
x can be transferred to z E R 2. 

B i b l i o g r a p h i c a l  notes 

Numerous applications of the maximum principle can be found in [27], 
[36] and [45]. The proof of the maximum principle for more general control 
problems is given, for instance, in W.H. Fleming and R.W. Rishel [27]. A 
functional analytic approach is presented in I.W. Girsanov [29]. Nonlinear 
optimization problems can be discussed in the framework of nonsmooth 
analysis, see F.H. Clarke [14]. 

Theorem 3.2 is borrowed from A. Blaquiere [9], and its proof follows 
the paper by R. Rempala and the author [49]. Applications can be found 
in [9]. 



C h a p t e r  4 

T h e  e x i s t e n c e  o f  o p t i m a l  s t r a t e g i e s  

This chapter starts with an example of a simple control problem with- 
out an optimal solution showing a need for existence results. A proof of 
the classic Fillipov theorem on existence is also presented. 

w 4 . 1 .  A c o n t r o l  p r o b l e m  w i t h o u t  a n  o p t i m a l  s o l u t i o n  

An important role in control theory is played by results on existence of 
optimal strategies. In particular, all the formulations of the maximum prin- 
ciple in Chapter 3 required the existence of an optimal strategy. The need 
for existence theorems is also more practical as natural control problems 
may not have optimal solutions. 

Let us consider a control system on H 1 

= u, y ( 0 ) -  0 (4.1) 

with the (two-element) control set U - { -1 ,  1}. It is easy to see that a 
strategy minimizing the quadratic cost functional 

Jet(O, u) - (y2 + u 2) dt (4.2) 

exists and is either of the form fi(t) - 1, t e [0, T], or fi(t) - - 1 ,  t e [0, T]. 

It turns out however that for a similar functional 

y g ( 0 . . )  - - . ' )  dr.  

the optimal strategy does not exist. To see that this is really the case, let 
us remark first that for an arbitrary admissible strategy u(. ), y ~ - u  ~ >__ - 1 ,  
hence J?r(O, u) >_ - T .  On the other hand, if we define strategies u,n(-) ,  
m -  1 , 2 , . . .  

_ f 1, if # / - - t  < t  < • 
U r n ( ~ )  

m - -  T 2 m  ' 

/ 12i -1  < t < - ~ L ,  j - 1  .. ,m,  -1 ,  if y 2,,~ - , �9 

then for the corresponding solutions Ym(" ) of (4.1), 

1 
O < y~(t)  < 2--T--'mm' t E [ 0 ,  T], 
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and therefore J~.(0, urn) �9 - T  as m T +co. So the infimum of the func- 
tional J~.(0, .) is - T .  If, on the other hand, for a control u ( - ) :  J~.(0, u ( - ) )  = 
- T ,  then, for almost all t E [0,T], y 2 ( t ) -  u2(t) = y 2 ( t ) -  1 = - l ,  and thus 
y(t) = 0, and, consequently, u(t) = 0, for almost all t E [0, 5"]. But this 
strategy is not an admissible one, a contradiction. 

Before going to the main result of the chapter let us remark that  some 
existence results were formulated in connection with the dynamic program- 
ming in w 1.2 and w 1.3, with the impulse control in w 2.1 and for the time 
optimal problem in w 3.5. 

w  F i l l i p o v ' s  t h e o r e m  

Let us consider a control system 

it : f (Y ,  u), y(O) : z 6_ [i n (4.3) 

with the cost functional 

J ( z ,  u) = G(T, y(T)).  (4.4) 

Let us assume in addition that  given are a set U C It m of control parameters  
and a set K C I] "+1 of the final constraints. Instead of fixing T > 0 we will 
require that  

(T, y(T))  E K. (4.5) 

Let C > 0 be a positive number such that  

If(x,  u)] < C(1 + Ixl + I~1), (4.6) 

If(x,  u ) -  f ( z ,  u)l _~ C l x -  zl(1 + I~1) (4.7) 

for arbitrary x, z E R n and u E U, see w II.l.1. 
An admissible control is an arbitrary Borel measurable function u ( - )  

with values in U defined on an interval [0,7] depending on u( .  ) and such 
that  the solution y( .  ) of (4.3) satisfies condition (4.5). 

The following theorem holds. 

T h e o r e m  4.1.  Assume that sets U and K are compact and 1he se~ f ( z ,  U) 
is convex for  arbitrary x E R n. Let moreover the function f satisfy (4.6)- 
(4.7) and G be a continuous function on K.  I f  there exists an admissible 
control for  (4.3) and (4.5) then there also exists an admissible control min- 
imizing (4.4). 

P r o o f .  It follows from the boundedness of the set K that  there exists a 
number T > 0 such that  admissible controls u( - )  are defined on intervals 
[0, 7'] C [0, 7']. Let us extend an admissible control u(-  ) onto [0,7"] by 
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setting u(t) = u + for t E [T, 7~, where u + is an arbitrary selected element 
from U. Denote by ~ the set of all solutions of (4.3), defined on [0, T] and 
corresponding to the extended controls. By (4.6), for y E K: and t E [0,T], 

I ]0' I /0 -r(t) - ly(t)l  - z + f(y(s) ,  u(s)) ds < I x l+  C (1 + Iu(s)l + lu(s) l )  ds. 

Hence, taking into account Gronwall's Lemma II.2.1, 

[ /o' ] ly(t)l <_ ~c, I~1 + c t  + I=(s)l d s  , t E [0,TI. 

Since the set U is bounded, for some constant C1 > 0 

lu(t)l <_ c ,  for y E/C, t E [0, T]. (4.8) 

Similarly, for y(-)  E ,IC and [t, s] C [0, 71, 

f~ f' ly(t)  - y(s)l _< If(y(r), u(0) l  d~ < c (1 + ly(,')l + lu(,-)l)d~. 

By the boundedness of U by (4.8), for an appropriate constant C2 > 0 

ly(t)- y(s)l < C21t- sl for p( - )  e/C, t, s E [0, 7"]. (4.9) 

Conditions (4.8) and (4.9) imply that  KS is a bounded subset of C(0, T; II n) 
and that  its elements are equicontinuous. By Theorem A.8 (the Ascoli 
theorem), the closure of K: is compact in C(0, T; R"). 

Let d; denote the minimal value of (4.4) and let (Ym) be a sequence of 
elements from K: corresponding to controls (urn) such that  

J ( ~ , . m )  - G(Tm, u~(T~) )  ~ J.  (4.10) 

m 

Since K and /U are compact and tim function G is continuous, we can 
assume, without any loss of generality, that  the sequence (Ym) is uniformly 
convergent on [0, T] to a continuous function ~)(. ) and T~ �9 T. We will 
show that  the function ~(-)  is an optimal trajectory. 

Since ~(. ) satisfies the Lipschitz condition (4.9), it has finite derivatives 
~ ( t )  for almost all t E [0 T] Let t be a fixed number from (0, T) for which dt ~ " 

the derivative exists. The continuity of f( . ,  .) implies that for arbitrary 
> 0 there exists ~i > 0 such that  if I z -  ~)(t)l < ~ then the set f ( z , U )  

is contained in the 6-neighbourhood f6(~(t), U) of the set j'(~(t), U). By 
uniform convergence of the sequence (Ym), there exist 0 > 0 and N > 0 
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such that  lYre(S) -- z)(t)l < 6, for s E (t, t + r/) and m > N.  Let us remark 
that  J" y,, ,( ,)  - y,,.(t) _- 1 I (ym(O,  d,- (4.11/ 

s - t  s - t  

and that  the integral ~ f t  f (ym(r) ,  urn(r)) dr is in the closure f6(~(t), U) 
of the convex set f ,( f l( t) ,  U). Letting m tend to +oo in (4.10) we obtain 

- 

s--t 
e f,(,)(t), u), 

and consequently 
d~ 
d-7(t) e f , ( g t ) ,  u) .  

Since 6 > 0 was arbitrary and the set f(~)(t), U) is convex and closed, 

C,d...~(t) E f (~( t )  U). (4 12) 
dt ' 

This way we have shown that  if for some t E (0, T) the derivative ~ ( g )  dt 
exists, then (4.12) holds. From this and the lemma below on measurable 
selectors, we will deduce tha t  there exists a control ~(.  ) with values in U 
such that  

d~ ~ 
d--i(t)- f (~( t ) ,  ti(t)) for almost all t E [0, T]. (4.13) 

The control fi is an opt imal  strategy and ~ is an o_.ptimal output .  For, 
from the convergence Tm ; T, Y,n - - "  Y in C(0,T;  Rn)) as rn --* +c~,  
the compactness of K and the continuity of G, it follows, see (4.10), that  
J -  G(T,  ~)(T)) and (2b, ~)(T)) E K.  

We proceed now to the already mentioned lemma on measurable se- 
lectors. 

L e m m a  4.1.  Assume that D is a compact subset of R p • R m and let A be 
the projection of D on R p. There exists a Borei function v: A ---+ R m such 
that 

(w, v(w)) E D for arbitrary w E A.  

P r o o f .  The set D is compact  as an image of a compact set by a continuous 
transformation,  and thus also Borel. 

If m = 1 then we define 

v(w) = min{z: (w, z) E D}, w E A .  (4.14) 

The function v is lower-semicontinuous and thus measurable. 
lemma is true for rn = 1. 

Hence the 
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If rn is arbitrary then we can regard the set D is a subset o fR  p+m- 1 xR 1 
and use the fact that  the lemma is true if m = 1. This  way we obtain 
tha t  there exists a measurable function vl defined on the projection D1 C 
H p+m-1 of the set D such that  (wl ,v l (wl ) )  ~. D for arbi trary Wl E A1. 
So if we assume that  the lemma is true for m -  1 and regard the set A1 
as a subset R p x R m- 1 we obtain tha t  there exists a measurable function 
v2: A ~ R m-1 such that 

(w, e for art w e A. 

The function 

has the required property. Hence the lemma follows by induction. El 

We will now complete the proof of Theorem 4.1. It follows from The- 
orem A.10 (Luzin's theorem) that  there exists an increasing sequence ( A t )  
of compact subsets of [0, T] such that  the Lebesgue measure of U Ak is T 

k 
and, on each At ,  the function d~/dt is continuous. We check easily that  
sets 

= {( t ,  u) E A k x U "  dl)(t)=dt f(~l(t), u ) )  C_ R x R m  k = 1 2, , . . . ( 4 . 1 5 )  Dt  

are compact,  and by Lemma 4.1 there exist Borel measurable functions 
~ t ' A t  ~ ; U s u c h t h a t  

d9 
~-~(t) = f(z)(t) , f i t( t)) ,  t E Ak, k = 1,2, . . . .  

The required control fi satisfying (4.13) can finally be defined by the formula 

y for t e 

fit(t) f o r t E A k \ ~ t _ l ,  k - - 2 ,  . . . .  

The proof of Theorem 4.1 is complete. E3 

We deduce from Theorem 4.1 several corollaries. 

T h e o r e m  4.2. Assume that a function f and a set U satisfy the conditions 
of Theorem 4.1 and that for system (4.3) there ezists a control transferring 
z to ~ in a finite time. Then there ezists a control transferring z to ~ at 
the minimal time. 

Proof..~ Let us assume that..there exists a control transferring z to ~ a t  t ime 
T > 0 and define K = [0,71 x {~}, G(T ,~)  = T, T E [0,T]. The  set K is 
compact  and the function G continuous. Therefore all the assumptions of 
Theorem 4.1 are satisfied and there exists a strategy minimizing functional 
(4.4). It is clear that  this is a strategy which transfers z to ~ at the minimal 
time. El 
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In particular, assumptions of Theorem 4.2 are satisfied if system (4.3) 
is linear and the set U compact and convex. Hence the theorem implies 
the existence of an optimal solution to the time-optimal problem for linear 
systems, see Theorem 3.6. 

As a corollary of Theorem 4.1 we also have the following result. 

T h e o r e m  4.3.  Assume that a function f and a set U satisfy the assump- 
tions of Theorem 4.1 and that G is a continuous function on R". Then, for 
arbitrary T > 0, there exists a strategy minimizing the functional 

JT(Z, u) = G(y(T)). (4.16) 

Proo f .  As in the proof of Theorem 4.1 we show that there exists C > 0 
such that  ly(T)I <_ C for arbitrary output  trajectory y( .  ). It is enough now 
to apply Theorem 4.1 with K = {T} x {z: Iz[ < C} and G(T, z) = G(z), 
Izl _< c.  o 

R e m a r k .  T h e o r e m  4.3 is not true for more  general functionals 

J(~,-/= 9(y(.),,,(.)/d. + G(y(TI), (4. ~7) 

as an example from w 4.1 shows. The method of introducing an additional 
variable, used at the end of the proof of Theorem II.3.1, cannot be applied 
here. This is because the new system is of the form 

~/-- f(y, u), y ( O ) -  z, 
-- g(y,,,), W(O) -- O, 

and even if the sets f ( z ,  U), z 6 R", are convex subsets of R", the set 

{ [f(=,-) g(= , . ) ]  ; .  e u }  

is not, in general, a convex subset of [I n+l. 
Theorems on the existence of optimal controls for functionals (4.17) 

require more sophisticated methods than those used in the proof of Theorem 
4.1. 
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P A R T  IV  

I N F I N I T E  D I M E N S I O N A L  L I N E A R  S Y S T E M S  

Chapter 1 

Linear control systems 

This chapter starts with basic results on semigroups of linear operators 
on Banach spaces. Characterizations of the generators of the semigroups 
due to Hille and Yosida and to Lions are given. Abstract material is il- 
lustrated by self-adjoint and differential operators. The final section is 
devoted to nonhomogenous differential equations in Banach spaces which 
are the mathematical models of infinite dimensional control systems. 

w 1 .1 .  I n t r o d u c t i o n  

The control systems considered in the preceding chapters were de- 
scribed by ordinary differential equations and the state space was R n. 
There is, however, a large number of systems which cannot be represented 
by a finite number of parameters. If we identify, for instance, the state of a 
heated bar with its temperature distribution, then the state is an element 
of an infinite dimensional function space. Parametrizing points of the bar 
by numbers from the interval [0, L] and denoting by y(t, f,) the temperature 
at moment t _ 0 and at point ~ E [0, L], we arrive at the parabolic equation 
(0.11) with boundary conditions (0.12)-(0.13), see Example 0.7. 

The variety of situations described by partial differential equations is 
enormous and quite often control questions, similar to those considered in 
Parts I and III appear. 

Control theory of infinite dimensional systems requires more sophisti- 
cated methods than those of finite dimension. The difficulties increase to 
the same extent as passing from ordinary differential equations to equations 
of parabolic and hyperbolic types. A complete theory exists only for a lin- 
ear system. We will limit our discussion to several fundamental questions 
of linear theory and use the so-called semigroup approach. 
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w 1 . 2 .  S e m i g r o u p s  o f  o p e r a t o r s  

Assume for a while that E and U are finite dimensional linear spaces 
and A: E ~ E and B: U ---, E are linear operators. Solutions to the linear 
differential equation 

il = Ay ( t )  + Bu( t ) ,  y(O) = x 6_ E, t >_ O, (1.1) 

are given, see w 1.1.1, by the formula 

y(t)  -- S(t)z  + S ( t -  s ) B u ( s ) d s ,  t > O, (1.2) 

where 
S( t )  = e At , t >_ O, (1.3) 

is the fundamental solution of the equation 

i: = Az,  z (O)= x 6_ E. (1.4) 

The theory of linear semigroups extends the concept of fundamental 
solutions to arbitrary Banach spaces E and gives a precise meaning to (1.2) 
and (1.3) in more general situation. It turns out that a number of control 
systems modelled by partial differential equations can be treated as special 
cases of the general theory. 

Uncontrolled systems (1.4) on Banach spaces are discussed in w167 1.2- 
1.6 and basic properties of controlled systems are the object of w 1.7. The 
following considerations are valid for both real and complex Banach spaces. 
The norm on the Banach space E will be denoted by II " II, and, if the state 
space is Hilbert, usually by I �9 I. 

Let us remark that a function S(t) ,  t > 0, with values in M(n,  n) is the 
fundamental solution of the equation (1.4) if and only if it is a continuous 
solution of the operator equation 

s ( t  + = s ( t ) s ( , ) ,  t , ,  >__ o , s ( o )  = t.  (1.5) 

This leads us to the following generalization. 
Let E be a Banach space. A semigroup of  operators is an arbitrary 

family of bounded linear operators S(t): E .- E, t > 0, satisfying (1.5) 
and such that  

l i m S ( t ) z  = z for arbitrary z E E. (1.6) 
t l0 

Because of tile continuity condition (1.6), the full name of the concept is 
Co-semigronps of  operators; we will however say, in short, semigroups of 
operators or even semigroups. 
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In the case of finite dimensional spaces E the operator  A in (1.3) and 
(1.4) is identical with the derivative of S ( .  ) at 0: 

d--~S r - l i m  S ( h ) -  I 
dt hto h 

= A. (1.7) 

In the general case, the counterpart  of A is called the infinitesimal operator 
or the generator of S(t),  t > O. It is not, in general, an operator defined on 
the whole of E, but its domain D(A) consists of all those x E E for which 
there exists the limit 

lim S(h)x  - x 
hi0 h ' (1.8) 

and the operator A itself is given by the formula 

Ax - lim S ( h ) x  - x at0 h , x E D(A).  (1.9) 

E x a m p l e  1.1. If A is a bounded linear operator on E then the family 

~ t  m 
S ( t )  - e t A  - - - - - A  m 

112! 
rn--O 

t > O ,  

is a semigroup with generator A. 

E x a m p l e  1.2. Let H be a Hilbert space with a complete and orthonormal 
basis (era) and let ()~,,,) be a sequence of real numbers  diverging to - c o .  
Define 

+oo 

S(t )x  - ~ eX'*t(x, em)e,,~, x E H, t > O. (1.10) 
m = l  

It is not difficult to prove that  the family given by (1.10) is a semigroup. 
We will show later, see page 198, that  the domain of its generator A is given 
by 

D(A)- �9 e H ;  2 < , 

m = l  

and the generator itself by 

-I-oo 

Ax - E )~m(x,e,,,), x E D(A).  
m--1  

E x a m p l e  1.3. Let H - L2[0, Tr], Ax - d2x/dE, 2 and the domain D(A) 
of the operator A consist of absolutely continuous functions x ( . )  defined 
on [0, x] equal zero at 0 and 7r and such that  the first derivative dx/dr is 
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absolutely continuous on [0, ~r] and the second derivative dZz/d~ ~ belongs 
to H. 

We will show later, see page 199, that the operator A defined this way 

generator of a semigroup given by (1.10) with em(~) = r  sinm~, 
g - - -  

i s  the 

E [0, ~r], Am = - m  s, m = 1, 2, . . . .  This semigroup is sometimes denoted 
by 

S( t )  -- e td21d~2, t >_ O. 

It is not difficult to guess that the formula 

I' y( t )  - s ( t ) ~  + s ( t  - , ) h , ( , )  d , ,  t >_ O, 

defines the solution to the parabolic equation (0.11)- (0.13) of Example 0.7 
in which ~r ~ - 1 and L -  7r. 

E x a m p l e  1.4. Let us consider the wave equation 

Ot~ ' 

with initial and boundary conditions 

y( t ,  o) = y( t ,  ,O - o, t ~ a ,  

Oy r y(O,~) = a(~), -O-i" ~) = b(~) ~ e (0, ~). 

We identify functions a ( - )  and b(. ) with their Fourier expansions 

+co 
a(~C) = ~ am sin rn~, 

m----1 

+co 
b(~) -- ~ fl,~ sin rr~, ~c e (0, 7r). 

m ~ l  

(1.11) 

(1.12) 

-~oo 

If one assumes that  E (m21~ml + ml/~ml) < +oo then is it easy to check 
m=l 

that the Fourier expansion of the solution y(.,-) of the wave equation is of 
class C 2 with respect to both variables and 

y(t ,~) = ~ a,n cos m t +  .... sin mt sin rn~. (1.13) 
m-1 m 

We have also 

-0-oo 

a~(t ~) - ~ (--m~m ~in mt + ~m ~o~ mt)~in,,~, ~ ~ (0, ~). (1 14) 
Ot ' 

m ~ l  
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D e f i n e g t o b e t h e s e t o f a l l p a i r s [  a]  b of functions with expansions (1.11) 

and (1.12)such that 

-~-00 

m~lc~l  2 + I~m 12 < +oo.  
m = l  

This is a Hilbert space with the following scalar product: 

[111 "-< ) b , ~ ) ) -  ~ m ' ~ ~  + ~ ~  
m = l  

Formulae (1.13) and (1.14) suggest that the semigroup of solutions to the 
wave equation should be defined as follows: 

S ( t ) [ a ] - ~  [ cosmt 
b - m  sin mt 

m = l  

.i0 , ] [o.] 
m sin m( - )  

cos mt ~,~ t > 0 .  

We check directly that the above formula defines a semigroup of operators. 
The formula is meaningful for all t E R and 

s ' ( t ) -  s - ' ( t )  - s ( - t ) ,  t ~ a.  

Hence solutions of the wave equations define a continuous group of linear, 
unitary transformations of E into E (see page 246). 

It follows from Examples 1.2 and 1.3 that  infinitesimal generators are, 
in general, noncontinuous and not everywhere defined operators. Therefore 
a complete description of the class of all generators, due to Hiile and Yosida, 
is rather complicated. We devote w 1.3 to it and the rest of the present 
section will be on elementary properties of the semigroups. 

In our considerations we will often integrate E-valued functions F de- 
fined on [c~,/~] C [0, +oo). The integral f~ F(s)ds should be understood in 
the Bochner sense, see w A.4; in particular, an arbitrary continuous func- 
tion is Bochner integrable and its integral is equal to the limit of Riemann's 
8 a m 8  

f a F ( s )  lim ~ F(s,k)(t,.~+l- t ,k) ,  ds 
O<k<ma 

where ct - t~0 < tnl < . . .  < t,,m, = ~/, snk E [tnk,t=,k+l], k = 
0, 1 , . . . , r a n -  1, n -- 0, 1 , . . . ,  max(t=,k+l - t , k ;  k - 0, 1 , . . . , r a n -  1) ; 0 
if n T +oo. Moreover, for an arbitrary Bochner integrable function f ,  

Z' 
II F(s) dsll < IIF(s)ll ds < +co. 
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T h e o r e m  1.1. Let S(t) ,  t >_ O, be a semigroup of operators on a Banach 
space E. Then 

(i) there ezist constants M > 0 and to such that 

IIS(t)ll _< Me w', t >__ 0; 

(ii) for arbitrary z E E, the function S ( .  ) . ,  �9 E E, is continuous on 
[0,+oo). 
Proo f .  (i) By Theorem A.5 (the Bnnach-Steinhaus theorem) and condition 
(1.6), for some numbers M > 0, m > 0 and arbitrary t E [0, m], 

IlS(t)ll __< M. 

Let t > 0 be arbitrary and k = 0, 1 , . . .  and s E [0, m) such that  t - km + s. 
Then 

IIS(t)ll- IlS(km)S(s)ll _< M M  k < M M  tim <_ M e  wt, 

where to = • log M. 
r n  

(ii) For arbitrary t > 0, h > 0 a n d .  E E 

IIS(t q- h ) .  - S(t)xl[ < M e W t l l S ( h ) . -  *11. 

If, in addition, t - h > 0, then 

IIS(t- h ) . -  S(,)*II _< Me~(t-h)llS(h)x- xl[. 

Hence the continuity of S ( - ) *  at t > 0 follows from (1.6). O 

T h e o r e m  1.2. Assume that an operator A with the domain D(A)  generates 
a semigroup S(t) ,  t >_ O. Then for arbitrary.  G D(A) and t > O, 

(i) 

(ii) 

(iii) 

S(t). E D(A), 

s ( t ) .  = A S ( t ) .  = S ( t ) A . ,  

I' s ( t ) .  - .  = S ( ~ / A ~ d ~ .  

Molv.ol)er, 
(iv) the domain o ( a )  is dense in E and the operator a is closed (i.e., 

its graph {(x ,A(z)) ;  x E D(A)} is a closed subset of E x E) .  

Proo f .  For h > 0, t > 0 

S(t  + h ) x -  S ( t ) x  = S(t)  S ( h ) z -  x = S ( h ) -  1S(t)m. (1 15) 
h h h " 
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I f .  E D(A),  then 

l imS(t )  S(h)x - x = S(t)Ax. 
hi0 h 

Hence, S(t). e D(A) and 

d + -~-[S(t).- S ( t ) A z -  AS(t)x. 

If h > 0, t > 0 and t -  h > 0 then 

s(t - h ) .  - S ( t ) .  = -s(t  - h ) S ( h ) . -  �9 

h h 

and therefore 
d-  
- ~ S ( t ) . -  S(t)A. .  

This way the proofs of (i) and (ii) are complete. 
To prove (iii) note that  the right hand side of (iii) is well defined as 

continuous functions are Bochner integrable. Since the function S ( - ) x  is 
continuously differentiable and (ii) holds, we have for all ~o E E* 

v ( s ( t ) ~  - ~ )  - ~v(s(~).)  d~ 

and (iii) follows by Theorem A.4 (the Hahn-Banach  theorem). 

For h > 0, t > 0 and x E E 

S ( h ) - I  (Jot ) 1 ~  h h S(r)x dr - -~ S(r)(S(t)x - z) dt, (1.16) 

hence, lett ing h in (1.16) tend to 0 we obtain f0 t S (r )x  dr ~. D(A). But 
1 t lim u f0 S ( r )x  dr = x and thus the set D(A) is dense in E. 

r io  

To prove that  the operator A is closed assume that  (xm) (5 D(A), 
m - 1 , 2 , . . . ,  Xm --* x and Axm --* y as m T +oo. Since, for arbi trary 
r > O , m - -  1 , 2 , . . . ,  

I IS(0Axm - S(r)Yll _< M e " l l A x m  - VII, 

S(- )Ax , , ,  ~ S ( - ) y  uniformly on an arbi trary interval [0,t], t > 0. On the 
other hand,  

I' s ( t ) , , ~  - ~,,, - S ( , - ) A , m  d~. (~ .17)  
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Letting rn in (1.17) tend to +oo we obtain 

~0 t s ( t ) ~  - �9 = S ( , ) y  d,.  

and consequently 

lim S( t ) z  - z = Y. 
rio t 

Hence z E D ( A )  and Ax = y. The proof of Theorem 1.2 is complete. Q 

As a corollary we have the following important  proposit ion.  

P r o p o s i t i o n  1.1. A given operator A can be a generator of  at most one 
semigroup. 

P r o o f .  Let S(t) ,  S(t ) ,  t >_ 0, be semigroups with the generator A. Fix 
x E D(A), t _> 0, and define a function z(s) = S ( t -  s)S(s)ae, s E [0, t]. The 
function z ( - )  has a continuous first derivative and 

d r ( s )  = - A S ( t  - s )S (s )x  + S ( t -  s ) A S ( s ) x  
ds 

= - s ( t  - , ) A S ( , ) ~  + S ( t -  , ) A S ( , ) ~  = O. 

Hence 

-- fot d z(s)  ds  = O. S ( t ) ~ -  S ( t ) ~  = z ( O ) -  ~(t) = T ,  
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We will need a result on the family S* (t), t >_ 0, of the adjoint operators 
on E*, see w III.3.4 and w A.2. In the theorem below, E is a Hibert space 
and we identify E with E*. 

T h e o r e m  1.3. Assume that E is a Hilbert space and S( t ) ,  t >_ O, a 
semigronp on E.  Then the adjoint operators S*(t),  t > O, f o rm  a semigroup 
on E as well. 

P r o o f .  By the definition of the adjoint operator, (S( t+s))* = (S( t )S(s ) )*  = 
S*(s)S*( t ) ,  t , s  > O, and therefore (1.5) holds in the present si tuation.  

To show that  
l i m S * ( t ) z  = z for z 6 E*, tl0 

we need the following lemma. 

L e m m a  1.1 I f  f is a funct ion with values in a Banach space E,  defined 
and Bochner integrable on an interval (a,t~ + ho), ho > O, ~ > c~, then 

lim IIf(t + h ) -  f(t)ll at - O. hi0 
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P r o o f .  The  lemma is true if E is one dimensional, by Theorem A.4, and 
hence it is true for simple functions f which take on only a finite number 
of values. By the very definition of Bochner integrable functions, see w A.4, 
there exists a sequence ( fn)  of simple functions such that  

lim ~O+h~ 
n-"* O0 

IIf,,(t) - f(t)ll d t  - O. 

It  follows from the estimate 

f ~ IIf(t + h ) - f ( t ) l l  dt 

Z < IIf.(t + h ) -  f ( t  4- h)ll dt 

+ IIf,,(t + h ) -  f,,(t)lldt + I I f . ( t ) -  f(t)lldt 

< 2 IIf,,(t) - f ( t ) l l  d t +  IIf,,(t + h) - f, ,(t)l I dt, 

valid for h E (0, h0) and n -  1 , 2 , . . . ,  tha t  the lemma is true in general. [3 

For arbi trary s > 0, IIS(~)ll- IIS* (s)ll. Wi thou t  any loss of generali ty 
we can assume that  for some c > 0 and all s E 0, llS*(~)ll < ~. Mor~- 
over, for arbitrary z, y E E the function (S*(s)z ,  y) = ( z ,S ( s ) y ) ,  s E O, is 
continuous. This easily implies tha t  S * ( . ) z  is a bounded, Borel measur- 
able function with values in a separable Hilbert space, and, therefore, it is 
Bochner integrable on arbitrary finite interval. 

To complete the proof of Theorem 1.3 we first fix t > 0 and an element 
x E E and show that  

limS* (t + h)x  - S" (t)x.  (1.18) 
h l O  

If 7 E (0, t) then 

/ -f 

IIS*(t + h ) x -  8* ( t ) x l l -  II-r -~ (s*(t  + h ) x -  S'(t)x)dull 

= 117 -1  S ' ( u ) ( S * ( t  + h - u ) x -  S*(t  - u )x )du l l  

<_ "Y- ' M IIS" (t + h -  u)~  - S" (t - u)~ll du,  

and, by Lemma 1.1, formula (1.18) holds. 
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Let us finally consider an arbi trary sequence (h)  of positive numbers 
convergent to zero and an arbi trary  element x0 of E and denote by M the 
closure of the convex combinations of the elements S*(t t )xo,  I = 1, 2, . . . .  
Since S*(tt)xo ~ xo weakly as ! ---, +oo, so, by Theorem III.3.4(ii), x0 6_ 
M.  Therefore, the space E0 C E of all linear combinations of S*(tz)x,  
l -  1 , 2 , . . . ,  x 6_ E,  is dense in E. By (1.18), 

lim S* (h )x  = x, for all x 6_ E0. 
/ 

Moreover, ~up IIS*(tz)ll < + o o  and therefore 
/ 

l iraS* (t t)z  = x for all z 6_ E. 
/ 

D 

E x e r c i s e  1.1. Give an example of a separable Banach space E and of 
a semigroup S*(t),  t _> 0, on E such that  for some x 6_ E* the function 
S*(t)x ,  t >_ O, is not continuous at 0. 

w 1 . 3 .  T h e  H i l l e - Y o s i d a  t h e o r e m  

Of great  importance in applications are theorems which give sufficient 
conditions for an operator  A to be the infinitesimal generator of a semi- 
group. A fundamental  result in this respect is due to Hille and Yosida. 
Conditions formulated in their theorem are at the same t ime sufficient and 
necessary. The  proof of the necessity part  (not needed in the book) is rather 
easy and is left as an exercise for the interested reader. 

T h e o r e m  1.4. Let A be a closed linear operator defined on a dense set 
D(A)  contained in a Banach space E.  I f  there exist ~a 6_ R and M > 1 
such that, for  arbitrary A > •, the operator ) t I -  A has an inverse R(A) - 
()t I - A ) -  1 satisfying 

M IIRm(X)II < (x - , 0 ) ~  f o r  m = 1, 2 , . . . ,  (1.19) 

then A is the infinitesimal generator of a semigroup S( t ) ,  t >_ O, on E such 
that 

IIS(t)ll _< M~ "', t > 0. (1.20) 

The family of the operators  ( A I -  A) -1, A > ~ is called the resolvent 
of A. 

P r o o f .  For A > w, define linear bounded operators Ax = A(AR() 0 - I )  and 
semigroups 

+oo (~h) .~  R ~ 
s~(t)  - ~'~" - e-~'  ~ m! (~) 

m----O 
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We will prove that the limit of the semigroups SX( �9 ) as )~ --, +oo is the 
required semigroup. 

Let us show first that 

Axz ~Ax for a l l z E D ( A ) .  (1.21) 

If x 6_ D(A) ,  then R()~)()~x- A x ) =  x and therefore 

M 
[])iR()~)z- z l [ -  IIR(A)Azll < ~, w[IAz[l' )~>w.  

Hence 
lim )~R()~)x = x for x e D ( A ) .  (1.22) 

Xl+oo 

Since II~R(~)II < ~L~, X > w and the set D(A)  is dense in E, the formula 
(1.22) is true for all x e E by Theorem A.5(ii) (the Banach-Steinhaus 
theorem). Taking into account that  

Axx  = )~R()~)Ax, )~ > to, 

we arrive at (1.21). 

Let us remark that 

+~ (A2t) m M 
IlSX(t)ll < e-X' E m! ( A - w )  m < Mex--"~', A > w, t > 0. (1.23) 

m--0 

Since A x A ,  = AuAx,  SX( t )A ,  = AuSX(t) ,  t > 0, )~,p > w, so, for x E 
D(A) ,  

fo ' d S" ( t  - ~)SX(~)~ d ,  S ~ ( t ) ~ -  S"( t )~ - 

I' 
I' - s . ( t  - . ) S ~ ( . ) ( A ~  - A . ) ~  d. .  

Therefore, by (1.23), 

~0 t IISX(t)x-- S"(t)zll < I lAxz-  A.zll M2 e ~--~ ( ' - ' )+ ~--~" ds 

< MhllAxx-  A.zlle~-~'. 

Consequently, by (1.21), 

I l SX( t )~ -  s"(t)~ll  ----  0, for A, p T +cx:) and z E D(A),  (1.24) 
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uniformly in t >_ 0 from an arbitrary bounded set. It follows from Theorem 
A.5(ii) (the Banach-Steinhaus theorem) and from (1.23) that the conver- 
gence in (1.24) holds for all x E E. 

Define 
S ( t ) x -  lim SX(t)x, x E E. (1.25) 

~,T+oo 

We check easily that  S(t), t _ 0, is a semigroup of operators and that  for 
z E D(A) ,  

I' s ( t ) ~ -  �9 - S(OA~ d,', t >_ O. (1.26) 

Let B be the infinitesimal generator of S(t), t > 0. By (1.26), D(A)  C 
D(B) and Ax - B z  for x 6_ D(A). It is therefore enough to show that  
D ( A ) -  D(B).  Since 

IIS(t)ll _< Me'Ot, 
the operator 

~ ( ~ ) ~ -  /o +~176 
e -xt S(t)x dr, z E  E (A >w) ,  

is well defined and continuous. For arbitrary A > w, y E E and h > 0 

1 
-~ [S(h)R()~)x - -  R()i)x] 

e - ~ O §  + h ) x  dt - 

e x h - l ~ ( A ) x _ e  xhl  [ h  
h -hJo e-Xt t,xS(~ dr. 

e- x~ S( t )x  dt 

Hence R(A)y E D(B)  and 

(A - B)R(A)y - y, y E E .  (1.27) 

If x E D(B)  and X > w, then 

~(,~)Bx- fo +~176 e-XtS( t )Bx  dt - foo +~176 

and therefore 
R ( A ) ( A - B ) z - x ,  

From (1.27) and (1.28) 

-xt d s( t )x  dt 

x e. D(B) .  

- - x  + ,~R( ,~ ) x ,  

(1.28) 

~ (~ )  - ( ~ -  B ) - ' ,  ~ > ~,. (1.29) 
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In particular, for arbitrary y E E, the equation 

A x -  B x  = y, z ~_ D(B) ,  (1.30) 

has exactly one solution in D(B) .  Since x = R(A)y E D(A)  is a solution 
of this equation, R ( A ) -  R(A). In particular, D ( B ) -  R ( X ) E -  R(X)E  = 
D(A) .  O 

It follows from the proof of Theorem 1.4 that  

P r o p o s i t i o n  1.2. I f  for the generator A of a semigronp S(t),  t >_ O, 
condition (1.19) is satisfied or if a semigroup S( t )  satisfies (1.20), then 

(~ - A / - ' ~  - R ( ~ ) ~  - ~ - ~ ' S ( t ) ~  dr, �9 e E ,  ~ > ~o. ( 1 . 3 1 )  

w 1 .4 .  P h i l l i p s '  t h e o r e m  

For control theory, and for the stabilizability question in particular, 
of great importance is a result saying that  the sum of a generator and a 
bounded linear operator is a generator. It is due to Phillips. 

T h e o r e m  1.5. I f  an operator A generates a semigroup on a Banach space 
E and K" E , E is a bounded linear operator then the operator A + K 
with the domain identical to D(A)  is also a generator. 

Proo f .  Let S(t), t >_ O, be the semigroup generated by A. Then for some 
constants M > 1 and w E R 

IlS(t)ll _< Me '~ t >_ O. 

It follows from Proposition 1.2 that the operator R(A) - ( A I -  A) -1 is 
given by 

R(X)z  - e -X tS ( t ) zd t ,  x E E, A > w. 

Since the semigroup e-~tS( t ) ,  t > O, is generated by A -  wI,  without any 
loss of generality, we can assume that 

IIs(t)l l  ~ M, t > O. 

Let us introduce a new norm I1" II0 on E, 

Then 

Jl~llo - ~up I I s ( t )~ l l .  
t > o  

I[xll < [Ixll0_< Ml[xll, x E E. 
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Hence the norms II �9 Iio and II " II are equivalent, and we check easily t h a t  

IIS(t)ll0 _< 1, t _> 0, 
1 

IIR(A)llo < X' X > 0. 

Assume tha t  A > IIKllo. Since 

IIgR(A)llo < IIKIIolIR(X)llo < 1, 
the operator  I - K R ( A )  is invertible. Define 

+oo 

R()~) - R ( A ) ( I -  KR()~))-t - E R(A)(I(R(A))m' 
r 

We will show tha t  

(i) IIn(A)llo <_ A -IIKllo'  

(ii) 

From (1.33) 

R(A) - (A- A-  K)-' 

-~-oo 

IIR(A)[Io ~ ~ IIR(A)llolIKn(A)llo 
171----0 

1 1 1 

- A 1 - I IKR(A)I Io  -< ~ -  Ilgllo' 

> IIKllo. (1.32) 

A > IIKllo, 

(ii) takes place as well. 

It follows from (i) tha t  

- 1 
II(R(A))mII~ < iA - IIKII0) ~ '  m - 1,2, . . . .  

Moreover, the opera tor  A + K is closed and the theorem follows from The- 
orem 1.4. U! 

Since 
+co 

R()~)()~ - A - K )  - R()~)(A - A -  If) + E R('~)(KR(A))'n(~ - A - K) 
rn----1 

+co +co  

= I -  R(A)+ E ( R ( A ) K ) m -  E (R(A)K)'n - I, 
m----1 m----2 

so the inequality (i) holds. 

To prove (ii) notice t ha t  

( A -  A -  K)R(,~) = ( A -  A)R(,~)-  KR(A) 
= ( I -  KR(A))  -1 - K R ( A ) ( I -  KR(A))  -1 - I .  
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R e m a r k .  It follows from the proof of the theorem that if S(t),  t > 0, is 
the semigroup generated by A + K then 

IIS(t)ll < Me(W+llKII)t, t >__ O. 

w 1.5. Important  classes o fgenerators  and Lions' theorem 

We will now deduce some consequences of Hille-Yosida's theorem 
which help to prove that a given operator is the generator of a semigroup. 

If A is a closed, linear operator with a dense domain D(A) then the 
domain D(A*) of the ad3oint to operator A consists of all functionals f E E* 
for which the transformation x ; f ( A x )  has a continuous extension from 
D(A) to E. If the extension exists then it is unique, belongs to E* and by 
the very definition it is the value A*f  of the adjoint operator A* on f .  

The following theorem holds. 

T h e o r e m  1.6. Let A be a closed operator with a dense domain D(A). I f  
for to E R and all )t > to 

II(AI- a)xll >_ (,x- ~0)llxll 
I1(~I- A*)fll_ (A- ~0)llfll 

for  all x E D( A), (1.33) 

for  all f E D(A*), (1.34) 

then the operator A generates a semigroup of operators S(t), t >__ O, such 
that 

IJS(t)ll < e ~ ' ,  t > o. 

P r o o f .  It follows from (1.33) that Ker ( )~ I -  A) = {0}, for )~ > to and that  
the image of )~ I -  A is a closed, linear space E0 C E. If E0 ~ E, then, by 
Theorem A.4 (the Hahn-Banach theorem), there exists a functional f E E*, 
f ~ 0, such that 

f ( ) ~ x -  Ax) = O, x E D(A). (1.35) 

Hence f E D(A*) and A*f  - Af. By (1.34), f - 0, so, necessarily, E0 - E. 
The operator )~ - A is invertible and, taking into account (1.33), 

1 
IIn(A)ll _< ~ - ~ 0  (1.36) 

Therefore 
1 

IIRm(A)II -< (A - w)m, A > to, m -  1 , 2 , . . . ,  (~.37) 

and the result follows by the Hille-Yosida theorem, tel 
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Conditions (1.33) and (1.34) have particularly simple form if the space 
E is Hilbert (over real or complex numbers). 

T h e o r e m  1.7. Assume that a closed operator A with a dense domain D(A)  
is defined on a Hilbert space H. I f  there exists to E [I such that 

Re(Ax, x} < ,,,llxll 2 
Re(A*x,x) < ,,,11~112 

f o r  x ~_ D(A), (1.38) 

for  x ~. D(A*), (1.39) 

then the operator A generates a semigroup S(t), t >__ O, such that 

IIS(t)ll <_ ,'~', t >__ o. (1.4o) 

Proof .  We apply Theorem 1.6 and check that (1.33) holds; condition (1.34) 
can be proved in the same way. Let A > to, z E D(A), then 

I 1 ~ -  AxII 2 - I I (A - w ) x  + (wx - Az)ll 2 

= (A -~)211~112 + I1~ - Axll 2 + 2 ( ~ -  w) l~e@x - A x ,  x). 

From (1.38) 

Rr - A~, ~) - ~ 1 1 ~ 1 1  ~ - Re(Ax, x) >__ 0 ,  

and (1.33) follows. El 

A linear operator A on a Hilbert space H, densely defined, is said to 
be selfadjoint if D(A) = D(A*) and A - A*. 

We have the following corollary of Theorem 1.7 

C o r o l l a r y  1.1. A selfadjoint operator A such that 

Re(Ax, x) _<-,llxi[ ~ fo r  z E D(A), (1.41) 

generates a semigroup S(t) ,  t >_ O. Since the semigroups S x ( . ) ,  )~ > w 
generated by AA = A(AR(A)-  I), are selfadjoint, the semigroup S( t )  = 
lim SA(t), t >_ O, consists of selfadjoint operators as well. 

x T +oo 

The following way of defining semigroups is due to J.L. Lions, see, e.g., 
[33]. 

Let us consider a pair of Hilbert spaces V C H, with scalar products 
and norms ((-,-)), (-,.), []- I I ,  I" I such that V is a dense subset of H 
and the embedding of V into H is continuous. Let a(., .) be a continuous, 
bilinear function defined on V. In the case of complex Hilbert spaces V 
and H instead of linearity with respect to the second variable we require 
from a(-,-) antilinearity 

a(=, ~ )  - xa(=, ~), =, ~ e v, x e c .  
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Define 

D(A) - {u C V; a(u,-) is continuous in norm I " [}- (1.42) 

Since V is dense in H, for u E D ( A )  there exists exactly one element 
A u E H such that 

(An,  v) - a(u,  v), v C V. (1.43) 

The following theorem is due to J.L. Lions. 

T h e o r e m  1.8. I f  for  some constants w E [I, a > O, 

Re a(u,, ,)  + ~llull ~ _< ~lul  2, ~ e v,  (1.44) 

then the operator A defined by (1.42), (1.43) generates a semigroup S( t ) ,  
t > O, on H and 

IS(t)l _< e ~' ,  t >__ 0. 

P r o o f .  Let us fix A > w and define a new bilinear functional 

~x(~,  v) - X(u, ~) - ~(u,  v), ~, ~ c v. 

From (1.44), 
~llull 2 ___ A(u, ~) - Re a(u, ~) 

< Re(X(u, u) - a(u, u)) 

< Re ax (u, u) 

< lax (u ,u ) l ,  u e V. 

We will need the following abstract result. 

P r o p o s i t i o n  1.3. (the Lax-Milgram theorem). Let a( . , . )  be a continuous 
bilinear funct ional  defined on a Hilbert space H such that, for  some c~ > O, 

la (u ,~) l  >_ ~lul  2, u c H. 

Then there exists a continuous, invertible, linear operator F from H onto 
H such that 

( r u ,  v) = a(u, v), u, v ~ n .  

P r o o f .  For arbitrary u, the functional v =, a(u, v) is linear and continu- 
ous, and by Theorem A.7 (the Riesz representation theorem) there exists 
exactly one element in H, which we denote by Fu,  such that  

~(u, v ) -  (~,, F u ) ,  ,, e v. 

Hence 
(Fu, ~) - a(u, ~), 
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and it is easy to check that  F is a linear, continuous transformation.  More- 
over, 

JFuJ -sup{l(Fu, v)l; Ivl <_ 1} 
-- sup{la(u, v)[; Iv I _< 1} 

U 

>_ i.(., i i)t 
>~lul, u ~ S .  

Consequently the image F ( H )  of the transformation F is a closed linear 
subspace of H.  If F ( H )  ~ H,  then by the l tahn-Banach theorem there 
exists v E H, v ik 0, such that  

(Fu ,  v) - 0 for all u E H. 

In particular,  

But 

(Fv,  v) - -0 .  

(Fv,  v) - a(v, v) ~: O, 

a contradiction,  ffl 

It follows from Proposit ion 1.3 that  there exists a linear, invertible 
operator Ax" V ) V such that  

a~,(u, v) - ( (Aau,  v)) for u, v E V. 

Let Aa be defined by (1.42)-(1.43) with a(. , . )  replaced by aa(-, .). Then 
AA = X I -  A,  D ( A a )  - D ( A ) .  Let, moreover, an operator J" H , V be 
defined by the relation 

(h ,v )  - ( ( Jh ,  v)), h E H, v 6_ V. 

We directly check that  the image J ( H )  is dense in V. For h E H we set 

u - .~-~x J (h) .  

Then A~ u - Jh ,  

aa(u,  v) - ( (Aau,  v)) - ( ( Jh ,  v)) - (h, v), 

hence u E D ( A x )  and A x u -  h. On the other hand, i f u  E D ( A x )  and 
A A u = h t h e n f o r v E V  

ax(u,  v) = (Axu ,  v) - ( ( J A x u ,  v)) - ((Axu, v)). 
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Consequently u -  Ax 1Jh. This way we have shown that  

D(Ax) - ~-~1 j ( H ) ,  (1.45) 

For arbitrary )~ > w the operator 

R()~) - ( ) ~ I -  A ) - '  - A~ 1 

is a well defined linear operator.  In particular,  operators  Ax and A are 
closed. It follows from (1.45) and the denseness of 3(H)  in V tha t  D(A) is 
dense in H and, moreover, for u E D(A) 

I ( a z -  A)ul ~ - I ( a -  ~)~ + ( ~ -  A)ul 2 

= ( ~ -  ~)21~12 + 2 ( ~ -  ~)[~lul  2 - Re(Au, u)] + I ( ~ -  A)ul 2 

> (~ - ~)21ul 2. 

Therefore, for A > w, we have IR(A)I < ~ and thus IR"(A)I _< (x_~)~, 
m - 1,2, . . . .  The conditions of the Hille-Yosida theorem are satisfied. 
The  proof of the theorem is complete. E! 

w 1.6.  S p e c i f i c  e x a m p l e s  o f  g e n e r a t o r s  

We will illustrate the general theory by showing tha t  specific differen- 
tial operators are generators. We will also complete examples introduced 
earlier. 

E x a m p l e  1.5. Let (a, b) C II be a bounded interval and H -- L2(a, b). Let 
us consider an operator 

d 
A - -  - -  d~ 

with the following domain" 

D(A) - { x E H; x is absolutely continuous on [a,b], a ,  o . 

We will show that  the operator A is the generator of the so-called 
left-shift semigroup S(t) ,  t > 0" 

{x(t+~), if t + ~ ( 5 ( a , b ) ,  
S(t)x(E,) - O, if t + ~ r (a, b). (1.46) 

We will give two proofs, first a direct one and then a longer one based 
on Theorem 1.7. 
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Let A > 0 and y E H. The equation 

) i x -  A z  = y, z E D(A),  

is equivalent to a differential equation 

dx ~ ( ~ )  = ~ ( ~ ) -  v(~),  

~(b) - 0, 

~r E (a, b), 

and has a solution x - R(A)y of the form 

~b 
�9 (~) - . x ( * - ' ) v ( . ) d . ,  E [~, b]. 

On the other hand, for the semigroup S(t) ,  t >_ O, given by (1.46) 

(~o +~176 e -X t s ( t )  dr)  y(E,) ~0 b-~ = e -xt  y(E. + t) dt 

- ~ ( ~ - ' ) y ( . )  ds, ~ E [.,b], ~ > O. 

So the resolvent of the generator S(t),  t > O, is identical with tile resolvent 
of the operator A and therefore A is the generator of S(t) ,  t > 0 (see 
Proposition 1.1 and Proposition 1.2). 

To give a proof based on Theorem 1.7, let us remark that for x E D ( A )  

~b dx j~b dx 
(Ax,  x) - ~ss (~)x(~r d~ = - x2 (a )  - ~-~(~)x(~) d~, 

hence 
(Ax, z ) - - ~  ( a ) < 0 .  

We find now the adjoint operator A*. If Y E D(A*), then there exists z E H 
such that 

(Az, y) = {x, z) for all x E D(A).  

Therefore 

.•b dx ~b 
-~ydE, - x(E,)z(E,)d~ (1.47) 

= -  ~(~) ~ ds d~ - ~ z (~ )d~  d , .  
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To proceed further we need the following lemma, which will also be 
used in some other examples. 

L e m m a  1.2. Assume that ~b is an integrable function on an interval [a, b] 
such that 

~ b d(")qo 
a~ ,~"(m~ (~ )~(~)d~  - 0 (1.48) 

for some m = O, 1 , . . .  and arbitrary ~a E C~~ Then ~ is identical, 
almost everywhere, with a polynomial of the order m -  1. 

P r o o f .  If m = 0 the identity (1.48) is of the form 

f b ~O(~)~p(~) d~ -- O. (1.49) 

By a s tandard limit argument we show first that  (1.49) holds for all contin- 
uous and bounded functions and therefore also for all bounded and mea- 
surable functions ~o. Let 

~On = (sgn r n = 1,2, . . . .  

Then 

/,o L 0 - ~ . ( ~ ) ~ ( ~ )  d~ - ~(~)  d~ + 
I>,, I<n 

I,~(~)I d~. 

Since ~ is integrable, f ~b(5) d~ 
I,/,I_>,, 

, 0  as n 1" +co.  Hence 

ja b I'P(5)I d5 - 0, 

and therefore ~(~) = 0 for almost all ~ E (a,b). The proof is complete for 
m-- ' 0 .  

f.' 
Assume that m = 1 and let ~o0 be a function from C~(a ,  b) for which 

qo0(~) d~ = 1. If ~o E C~(a ,  b) then the function 

~(~)- [~,( ,7)-  ( ~,(~) ds)~o(,7)] d,1, r ~ (a, b), 

also belongs to C~'(a, b) and therefore 

~ b d 
= 0 .  
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Hence 

Consequently 

~(~)r  d~ - ~o(~) d~. ~0(s)r  ds. 

~({) r - ~ 0 ( , ) r  d ,  d~ - O. 

Since the lemma is true for m - O, we obtain that  

r - ~ , 0 ( . ) r  for ~h~o~t ~ll ~ e (a,b). 

This way we have shown that  the lemma is true for m - 1. The case 
of general m can by proved by induction and is left to the reader as an 
exercise. E1 

Returning to Example  1.5, let us remark that  identity (1.47) and 
Lemma 1.2 for m -  1 imply 

y ( s )  - - z(E, ) d~, + 7 ,  s 6_. (a ,  b) ,  (1.50) 

for a constant 7- Hence the function y is necessarily absolutely continuous 
and its derivative dy/d~, - - z  belongs to H. 

We will calculate 7- From (1.47) and (1.50) we have 

b dz ~b dy 
~ d~ = - ~ ( ~ ) y ( ~ )  - ~ d ,  = - ~ ( ~ ) ~  + (~, z). 

Hence z (a)7  - 0 for arbi trary z E D(A). Therefore 7 - y(a) = O. This 
way we have proved tha t  

D(A ~ C_ y E H; y absolutely continuous, ~ e H, y(a) - 0 (1.51) 

and dy 
A ' ~  - - N ,  y e D ( A ' / .  

It is not difficult to see tha t  in (1.51) the equality holds, and, since 

1 2 (A 'y ,  y) - - ~ y  (b) _< O, 

the operator A generates a semigroup S(t), t >_ O, satisfying 

IIS(*)l I<__1, t>__O. 
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E x a m p l e  1.2. (Continuation, see page 178.) The operator A has a dense 
domain. Assume that y E D(A*) .  Then there exists z E H such that  

-1-oo 4-oo 

(Ax ,  y) -- E ~rn(X, ern)(y, era) "-- E (X, em)(Z , Urn) 
m=l m=l  

for z E D(A). 

Letting x - e m  in the formula, we obtain (z, Ym) - )~rn (y, e . ) ,  m -  1 , . . . ,  
and, since z E H, 

E ( ( Z ,  Urn)) 2 "-- E ( ~ m  (y,  ern))  2 < 4-(x). 
wl m 

Consequently, y E D ( A )  and A*y - Ay .  We easily check that D ( A )  C_ 
D(A*) .  We see that the operator A is seifadjoint and 

-0-oo 

(Az, x) - E "~'~ ((x, em ))2 _< (sup ,~,~)llxll 2 

rn=l 

By Corollary 1.1, the operator A generates a semigroup S( t ) ,  t > O. That  
the semigroup S( t ) ,  t >_ O, is given by (1.10) can be shown in a similar way 
to the first part of Example 1.5. 

E x a m p l e  1.3. (Continuation, see page 178.) We prove that A is selfad- 
joint. If y E D(A*) ,  then, for some z E H, 

( A x , y )  = (x, z) for all x E D ( A ) .  

Since x ( E, ) = f .g.i ( s ) d , _~..( ( ~ -- "~ ( o + f d ~ x d s , E, E (0 7r ) ~ , 
0 0 

(/," ) (~, z )  = ~(~) z(,) ds d~ 

d x  lr - -  [/" (I" 
Hence 

0 - (Ax ,  y) - (x, z) (1.52) 

-f0 "d'~--[y(~)-f~'(f'O) ~ ] [ " d,) 
In particular, the above identity holds for arbitrary x E C~~ r) .  By 
Lemma 1.2, for some constants 7,/ i  

/,'(I" ) y(~) - z ( s )  ds  dr  + 7 + 6~, ~ E [0, 7r]. (1.53) 
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Inserting expression (1.53)into (1.52)we obtain 

~o w d2z .  dz ~-~(-r + ~)  d~ = ,7~-(0), 

where 

o-/o" (I 
and therefore 

dz dx ~(~)(~  + ~ )  = ~(o)(~ + ~). 

Since the values dz dx T((~r), T((0) can be chosen arbitrarily, 

. r = - r ; ,  6 =  r/. 
7r 

But then y(O) = y(Tr) = O. We have shown that D(A' )  C D(A) and 
A* = Ay for y ~. D(A*). In a similar way one shows that D(A) C D(A*). 
Therefore the operator A is selfadjoint, and, since 

(A~ ,  ~) = ~-~-~ d~ - - a~_<0, 

it is a generator by Corollary 1.1. Denote by .,4 the generator of the semi- 
group from Example 1.2 with 

em ({) - ~ s i n  rn~, { E (0, x), Am = - m  2, m = 1,2, . . . .  

Let us remark that for arbitrary numbers a], a s , . . .  ,am,  m = 1, 2 , . . .  

If z (5 D(.A) and x,n = E j % I  (x, ej)ej ,  171 - -  1 , 2 , . . . ,  then zm --, z and 
.A(Zm) ".A(z). Therefore also A(xm) ~..A(z). Since the operator A is 
closed, we obtain that z 6_ D(A) and Ax = .Az. Therefore the generator A 
is an extension of the generator ,4. By Proposition 1.1 and Proposition 1.2 
the generators are identical. As a consequence we have that  the semigroup 
S(t), t > 0, generated by the differential operator A has the representation 

S(t)z(()  - 2_ E e-'m~ sin rn~ z(s) sin ms ds , ff 
m = l  

~ [0,~] ,  t___0. 
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Exerc i s e  1.2. Applying the Lions theorem, prove that the operator A 
from Example 1.3 is a generator. 

H i n t .  Define 

{ dx } V-//oI(0..)- z6-H; ~-~ 6-H. x(O)-x( - ) -O . 

fo '~ dx dy ((~, y)) - - ~ - ~  d~, 

a(.. y) = -((.. y)). .. y ~ v. 

Here is a different illustration of the Lions theorem. 

E x a m p l e  1.6. Let H - L~(a,b), V - H l ( a , b ) -  {x 6- H; -~ 6_ H}, 

~a b dx dy 
((z, y)) = d~ d~ 

~a b 
d~ + .(~)y(~) d~ 

and 
a( . ,  y) = - ( ( . ,  y)). 

It is clear that the bilinear functional a(-,-) satisfies the conditions of The- 
orem 1.8. 

Let A be the generator defined by (1.43) and (1.42). We show that  

D( A ) _ { x E H ; dX d2x dx dx } ~'  d~, ~ H, ~ ( ~ ) -  - ~ ( b ) -  0 , (1.54) 

d2x 
Ax - dE U x. (1.55) 

If x 6- D(A), then, for some z 6- H and arbitrary y 6- V, 

. ( * ,  y) = (~, y), 

or, equivalently, 

~ b dz dy 

d~d~ 
]b 

- - - -  + . ( r162  d~ = - z(r162162 (1.56) 

From (1.56) and the representation y ( ~ ) -  y(a) + f~ ~ ds ~ E (a,b) 
d s  ' 

~(r ~(~)+ ~ ( , ) d ,  + ~ ( , ) d~  d~ ( 1 5 7 )  

I' = - y ( a )  (~(~) + z(~)) d~. 
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Since CS~ b) C V, by Lemma 1.2, for a constant 7 

(~) - - (~( , )  + z( , ) )  d ,  + ~, ~ ( . ,  b). (1.58) 

This way we see that  dx/d~ is absolutely continuous and 

d2 x 
- - - - = x + z .  
d~2 

In particular, 
d2x 

Ax - z - x. 
d~2 

To show that  d~ ( a ) -  d~ (b) -- O, we remark first that 

dx  
-~(b) = 7, 

dx ]'  
~ ( a )  = "r-  (~( , )  + ~ ( , ) ) a s .  

By (1.58) and (1.57) 

ja b dy fab ~ d~ = ~(u(b) - u(-))  = - y ( . )  (~( . )  + z ( . ) )  ds, 

or, equivalently, 

( /.' ) -ru(b) = "r-  (x(s)  + z(~)) d,  u(a). 

Since y is an arbitrary element of V -  Hl(a,b) ,  

7 - - 0 - -  ~a b (~(~) + ~(~,)) ds. 

dx dx ~-(b) 0, the Hence ~ ( a )  - = and required result easily follows. C! 

E x a m p l e  1.7. On the domain D(A) given by (1.54)define A + B where B 
is a bounded operator and A given by (1.55). The operator A + B defines a 
semigroup by Theorem 1.5. In particular, if B is the identity operator,  then 
we obtain that  the operator d 2 / ~  ~ with the Neuman boundary conditions 
generates a semigroup. 



202 1. Linear control systems 

w 1 . 7 .  T h e  i n t e g r a l  r e p r e s e n t a t i o n  o f  l i n e a r  s y s t e m s  

Let us consider a linear control system 

- A y +  Uu,  y ( O ) -  z ,  (1.59) 

on a Banach space E. We will assume that the operator A generates a 
semigroup of operators S( t ) ,  t >_ O, on E and that  B is a linear, bounded 
operator acting from a Banach space U into E. We will study first the case 
when U = E and the equation (1.59) is replaced by 

ft - A y  + f ,  y(O) - x,  (1.60) 

with f an E-valued function. 
Any continuous function y: [0, T] , E such that  

(i) y ( 0 ) -  x, y( t )  E D ( A ) ,  t E [0, T], 

(ii) y is differentiable at any t E [0, T] and 

dY(t)- - A y ( t )  + f ( t )  
dt 

t e [0,T] 

is called a strong solution of (1.60) on [0, T]. 

T h e o r e m  ~.9. A ~ . m e  that ~ ~ D(A) ,  f ( . )  i s .  ~o,Ui.~o~s f ~ . a i o ,  o .  
[0, T] . . d  y ( .  ) i~ a a~o .g  ~ot . t io .  oi(1.60) o .  [0, 71. The.  

f0 t y(t)  - S ( t ) x  + S( t  - s ) f ( s ) d s ,  t ~_ [0,T]. (1.61) 

P r o o f .  Let us fix t > 0 and s E (0, t). 
properties of generators that 

It follows from the elementary 

d dy(s)  
- - s ( t  - ~)y(~) = - A S ( t  - ~)y(~) + S(t  - ~) 
ds ds 

= - S ( t  - s ) A y ( s )  + S ( t  - s ) [ A y ( s )  + f(s)] - S( t  - s ) f ( s ) .  

Integrating the above identity from 0 to t we obtain 

y ( t ) -  s ( t ) y (o )  = fo' S( t  - s ) f ( s )  ds. 

[3 
The formula does not always define a strong solution to (1.60). Addi- 

tional conditions either on f or on the semigroup S(t),  t >_ 0, are needed. 
Here is a typical result in this direction. 
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T h e o r e m  1.10.  Assume that f ( . )  is a function with continuous first 
derivatives on [0,+oo] and z e D(A) .  Then ecuation (1.60) has a strong 
solution. 
P r o o f .  The function S ( - ) z  is, by Theorem 1.2, a strong solution of equa- 
tion (1.60) with f - 0. Therefore we can assume that  z = 0. For all 
t > O ,  

/o' /.'(L' d, ) -- S ( t -  s ) f (O)ds  + S ( t -  s)-~r(r ) ds dr. 

We will show that  for z 6 E and r > 0 

j~o r S ( s ) z  ds 6 D( A) 

(1.62) 

(/0 ~ ) and S ( r ) z - z - A  S ( s ) x d s  . (1.63) 

It follows from Theorem 1.2 that  (1.63) holds for all z 6 D(A).  For an 
arbitrary x 6 E let ( z , )  be a sequence of elements from D(A) converging 
to z. Then 

(/0 ~ ) S(r)z.  - z.  - A S(s)z. ds ~ S(r)z - z 

and 

]o" ]o" S(s)z.  ds - - - ,  S(r)z ds. 

Since the operator A is closed, (1.63) holds for all z. 

For arbi trary  t > r >__ 0, we have, by (1.63), 

o' S(t - s)f(O) e D(A) ds 

(Io' ) S(t) f (O) - f(O) = A S(t - s)f(O) ds , 

fo ~ dl S ( t -  S)~r(r  ) ds 6 D(A)  

(1.64) 

(1.65) , (f, d, ) 
(S(t  - r) - I ) ~ r ( r  ) - A S ( t -  S)~r(r  ) ds . 

Let us remark tha t  for an arbitrary closed operator A, if functions r  
and A r  ) are continuous, then for arbitrary r _> 0 

/0 ~ (/0 ~ ) / 0  ~ r  ds 6 D(A)  and A r  ds - Ar ds. 
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Therefore (1.62), (1.64) and (1 .65) imply  that  y(t) E D(A)  and 

A y ( t )  - ( S ( t ) -  f ) / ( o )  + (S ( t  - ~) - I) (~) e~, 

Since 

t > 0 .  

~o t y(t) - S ( s ) f ( t  - s) ds, 

dy  ' d l  (t - , )  d ,  - S ( t ) I (O)  + S( t  - , ) ~ ( , )  d, .  aS( t )  - S(t)f(0) + S ( r ) ~  

Summarizing, 

dy fot df  d--7(t) - Ay( t )  - S(t)f(0) - f(0) + (S( t  - r) - I ) ~ ( r ) d r  

f0' df - s ( t ) I ( o )  + s ( t  - ~ ) ~ ( ~ ) d , . -  o. 

The proof of the theorem is complete. E1 

C o r o l l a r y  1.2. If  a control function u ( . )  is of class C 1 and x E D(A),  
then equation (1.59) has exactly one strong solution, and the solution is 
given by 

y ( t ) -  s ( t ) ~  + s ( t -  ~ ) B u ( , )  d~. t >__ O. (1.66) 

The function y(t), t >_ 0, given by the formula (1.66) is well defined 
for an arbitrary Bochner integrable function u(.  ). It will be called a weak 
solution of the equation 

it = Ay + Bu. (1.67) 

It is easy to show that  the weak solution of (1.67) is a continuous function. 
The following proposition, the proof of which is left as an exercise, 

shows that  weak solutions are uniform limits of strong solutions. 

P r o p o s i t i o n  1.4. Assume that u ( . )  is a Bochner integrable function on 
[0,T] and z E E. I f  (uk( . ) )  and (xk) are sequences such that 

(i) xk (5 D(A),  f o r  all k = 1 ,2 , . . .  and l imz~ = z, k 
(ii) u k ( . ) a r e  C ~ funct ions  f r o m  [0,7'] , E,  n = 1 ,2 , . . .  and 

lim Ilu~(.) - u(~)ll d .  - 0 
k ' 

then the sequence of functions 

I' y~(t)  - s ( t ) ~  + s ( t  - . ) B , , ~ ( . )  d . ,  k = 1 , 2 , . . . ,  t e [O, r l ,  
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converges uniformly to the weak solution y( .  ) of (1.66). 

Strong, and therefore weak, solutions of (1.67) are not in general iden- 
tical with classical solutions of partial differential equations of which they 
are abstract models. To see the difference let us go back to heat equation 
(1.10). Physical arguments which led to its derivation did not determine 
which function space should be taken as the state space E. There are al- 
ways several choices possible. Let us assume for instance that the state 
space is the Hilbert space H - L2(0, L) and that the generator A is given 
by 

Ax = a 2 d2x 
- - . . - - _ .  

d~2' 

with the domain D(A)  described in Example 1.3. Assume that b(-)  E H 
and let B u  = ub, u E R. Equation (1.67) is then a version of (0.11), (0.12) 
and (0.13). 

If a function u ( - )  is of class C ~ and z E D(A) then, by Theorem 1.10, 

~0 t y( t )  = S ( t ) z  + S(t  - s)bu(s) ds 6. D(A) ,  (1.68) 

= Av(t)  + b (t) for t > 0. 

A solution y( .  ) given by (1.68) is nonclassical because, for each f _> 0, 
y(t) is a class of functions and the inclusion y(t) E D(A) implies only 
that there exists a representative of the class which is sufficiently smooth 
and satisfies the Dirichlet boundary conditions. Whether one could find 
a representative y(t,~), ~ E [0, L], which is a smooth function of (t,~) E 
[0,-60o) x [0, L] satisfying (0.11)-(0.13), requires an additional analysis. 
Moreover, the continuity of the strong solution and its differentiability are 
in the sense of the space L2(0, L), which is again different form the classical 
one. 

However, despite the mentioned limitations, the abstract theory is a 
powerful instrument for studying evolutionary problems. It gives a first ori- 
entation of the problem. Moreover, the strong solution often has a classical 
interpretation, and the classical solution aways is the strong one. 
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C h a p t e r  2 

C o n t r o l l a b i l i t y  

This chapter is devoted to the controllability of linear systems. The 
analysis is based on characterizations of images of linear operators in terms 
of their adjoint operators. The abstract results lead to specific descriptions 
of approximately controllable and exactly controllable systems which are 
applicable to parabolic and hyperbolic equations. Formulae for controls 
which transfer one state to another are given as well. 

w 2 . 1 .  I m a g e s  a n d  k e r n e l s  o f  l i n e a r  o p e r a t o r s  

Assume that U is a separable Hilbert space. For arbitrary numbers 
b > a >_ 0 denote by L2(a, b; U) the space of functions, more precisely, 
equivalence classes of functions, u(. )" [a, b] ~. U, Bochner integrable (see 
w A.4 and w A.6), on [a, b] and such that 

b 
~ lu(s)12ds < +oo. 

It is also a Hilbert space with the scalar product 

( ( , , ( - ) , , ( .  ))) - ( , , ( ,) ,  v ( , ) )  d , ,  u( . ), v( . ) 6_ L2(a, b; U), 

where (.,-) is the scalar product in U. Norms in U and in L2(a, b; H)  will 
be denoted by I - l a n d  II" II respectively. 

As in Part I, in the study of controllability of infinite dimensional 
systems 

f l -  Ay  + Bu, y(O) - x 6_ E, (2.1) 

an important role will be played by the operator 

jr0 T s  - S ( T  - s )Bu(s)  ds, u( . ) 6_ L2(O, T; U) (2.2) 

(see w 1.7), acting from UT -- L2(O, T; U) into E. Note that 

y(T)  - S ( T ) x  + ~CT u, 11(" ) 6- L2(O, T; U), 

where y(-)  is the weak solution to (2.1). 



w 2.1. Images and kernels of linear operators 207 

To analyse the opera tor / :T  w e  will need several results from operator 
theory which we discuss now. 

Let X, Y and Z be Banach spaces and F and G linear, bounded 
operators from X into Z and Y into Z. The adjoint spaces and adjoint 
operators will be denoted, as before, by X*, Y* and Z* and by F* and G* 
respectively. The image F ( X )  and the kernel F - l  {0} of the transformation 
F will be denoted by Im F and Ker F. 

Our main aim in this section is to give characterizations of the inclu- 
sions 

Im F C Im G, im F c Im G 

in terms of the adjoint operators F* and G ~ 

T h e o r e m  2.1. The following two conditions are equivalent 

Im F C Im G, (2.3) 

Ker F* :3 Ker G*. (2.4) 

Proo f .  Assume that  (2.3) holds and that for same f E Z*, G*f  = 0 and 
F*f  ~k O. Then for arbitrary y E Y, f (G(y))  = 0 and f = 0 on ImG.  It 
follows from (2.3) that  f = 0 on I m F  and f (F ( z ) )  = 0 for x E X.  Hence 
F*f  = 0, a contradiction. This way we have shown that  (2.3) implies (2.4). 

Assume now that  (2.4) holds and that there exists z E I m  F \ l inG. 
There exists a functional f E Z* such that f ( z )  ~k 0 and f = 0 on Irn G. 
Moreover, for a sequence of elements z,n E X, rn = 1 ,2 , . . . ,  F(zm) ~ z. 
For sufficiently large m, F* f ( xm)  ~ 0. Therefore F * f  ~ 0, and, at the 
same time, G*f = 0, which contradicts (2.4). E! 

Under rather general conditions, the inclusion 

Im F C im G (2.5) 

takes place if there exists c > 0 such that 

IIF*fll < cllG*fll for all f e Z*. (2.6) 

We will prove first 

L e m m a  2.1. Inclusion (2.5) holds if and only if for some c > 0 

F(x);  IIxll _< 1} C {Gy; [lY[[-< c}. 

Moreover (2.6) holds if and only if. 

F(x);  [[xl[ < 1} C {G(Y); Ilyll _< c}. 

(2.T) 

(2.8) 
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Proo f .  Assume that (2.5) holds, and, in addition, KerG = {0}. Then 
the operator G-IF is well defined, closed and, by Theorem A.2 (the closed 
graph theorem), continuous. Hence there exists a constant c > 0 such that 

I IG- ' (F(=)) I I  < c, provided Ilxll < 

and (2.7) holds. If KerG ~ {0}, consider the induced transformation 
from the quotient space Y = Y / K e r  G into X .  We recall that  the norm of 
the equivalence class [y] E Y of an element y E Y is given by 

lilY]{{ = inf{l[Y + Y[I; G(.~) = 0}. 

Since Im G = Im (~, inclusion (2.5) implies Im F C Im (~, and, by the proven 
part of the lemma, 

{F(z);  [Ix[I < 1} C {(~([y]); lilY]I[-< c} 

C {G(y+.O); ]IY+ Yl] _< c +  1}. 

Hence (2.5) implies (2.7) for arbitrary G. It is obvious that  (2.7) implies 
(2.5). 

To prove the second part assume tha t  (2.8)holds. Then for arbi trary  
f E Z *  

IIF*fll = sup I f (F(x))I  < c sup If(G(y))l  < cllG*f[[, 
Ilxll ~ - 1 l l yU~  1 

and (2.6) is true. 
Finally assume that  (2.6) holds and for some z0 E X,  IIz0}l _ 1, 

F(xo) ~ {Gy; IlYll _< c}. By Theorem III.3.4(ii) there exists f E Z* for 
which f (F (xo ) )  > 1 and for arbitrary y E Y, IlY[I -< 1, cl f (G(y)) I  < 
1. Hence at the same time }}F*fI I > 1 and cllG'fll <_ 1. The obtained 
contradiction with the condition (2.6) completes the proof of the lemma. 121 

C o r o l l a r y  2.1. If the set {Gy; llYl{ <- c} is closed, then inclusion (2.5) 
holds if  and only if there exists c > 0 such that (2.6) holds. 

In part icular we have the following theorem 

T h e o r e m  2.2. If  Y is a separable Hilbert space then inclusion (2.5) holds 
if  and only if, for some c > 0, (2.6) holds. 

P r o o f .  Assume that  Y is a Hi|bert space and z E {Gy; Ilyi]-< c}. Then  
there exists a sequence of elements ym E Y, m - 1 ,2 , . . . ,  such tha t  
G(ym) ~. z. We can assume tha t  (Ym) converges weakly to ~ E Y, 
II~)II -< c, see Lemma III.3.4. For arbi trary  f E Z*, f (G(ym))  " f ( z )  and 
f (G(ym))  - G*f(ym) - G*f(~),  hence f ( z )  - f (G(~)) .  Since f E Z* 
is arbitrary,  z = G(~) E {G(y); Ilyll -< c} and the set {G(y); IIYll -< c} is 
closed. Corollary 2.1 implies the result. [3 
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R e m a r k .  It follows from the proof that Theorem 2.2 is valid for Banach 
spaces such that  an arbitrary bounded sequence has a weakly convergent 
subsequence. As was shown by Banach, this property characterizes the re- 
flexive spaces in which, by the very definition, an arbitrary linear, bounded 
functional f on Y* is of the form f ~ ~ f ( y ) ,  for some y E Y. 

E x a m p l e  2.1. Let Y = C[0, 1], X = Z = L~[0,1] and let F x  = x,  G y  = y, 
x E X, y E Y. Then condition (2.8) is satisfied but not (2.7). So, without 
additional assumptions on the space Y, Theorem 2.2 is not true. 

We will often meet, in what follows, inverses of operators which are 
not one-to-one and onto. For simplicity, assume that X and Z are Hilbert 
spaces and F: X ~. Z is a linear continuous map. Then X0 = Ker F is a 
closed subspace of X. Denote by X1 the orthogonal complement of X0: 

x ,  = {~ e x ;  (~,u) = 0 for ~ll y e x 0 } .  

The subspace Xl is also closed and the restriction F1 of F to X1 is one-to- 
one. Moreover 

ImF1 = ImF.  

We define 
f - ~ ( ~ )  = f~-~(~), ~ e I m f .  

The operator F - l :  Im F ~. Y defined this way is called the pseudoinverse  
of F.  It is linear and closed but in general noncontinuous. Note that  for 
arbitrary z E Im F 

inf{]lxlJ ; F ( x ) =  z} = JlF-'(z)lJ. 

~i 2 .2 .  T h e  c o n t r o l l a b i l i t y  o p e r a t o r  

We start  our study of the controllability of (2.1) by extending Propo- 
sition I.l.1 and give an explicit formula for a control transferring state 
a E E to b E E. Generalizing the definition of the controllability matrix  we 
introduce the controllability operator by the formula 

~0 T QTX = S ( r ) B B * S * ( r ) z  dr, x E E .  (2.9) 

It follows from Theorems 1.1 and 1.3 that for arbitrary x E E the function 
S ( r ) B B * S * ( r ) x ,  r E [0, T], is continuous, and the Bochner integral in (2.9) 
is well defined. Moreover, for a constant c > 0, 

~0 T JS(r)BB*S*(r)xI dr <_ cJxl, z E E .  
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Hence the operator QT is linear and continuous. It is also self-adjoint and 
nonnegative definite: 

(QTz,X) - IB*S*(r)xi 2 dr >_ O, x 6 E. (2.10) 

We denote in what follows by QT/~ the unique self-adjoint and nonnegative 
operator whose square is equal QT. There exists exactly one such operator. 
Well defined are operators QT 1 and (Q~/U)-I (see w 2.1); the latter will also 

be denoted by Q~1/2. In connection with these definitions we propose to 
solve the following 

E x e r c i s e  2.1. Let (era) be an orthonormal, not necessarily complete, se- 
quence in a Hilbert space E and (7m) a bounded sequence of positive num- 
bers. Define 

+co  

Q~ - ~ ~(~, ~ ) ~ ,  �9 e E 
rn--1 

Find formulae for Q,/2, Q-I ,  (Q1/2)-1. 

T h e o r e m  2.3. (i) There exists a strategy u(.  ) 6 UT transfering a 6 E to 
b 6 E in time T if and only if 

S ( T ) a -  b 6 Im QT/2. 

(ii) Among the strategies transferring a to b in time T there exists 
ezactly one strategy fi which minimizes the functional JT(U) -- f f  lu(s)12ds. 
Moreover, 

Jr(u) - -  [Q~rl/2(S(T)a - b)l 2. 

(iii) I f  S(T)a - b 6 Im QT, then the strategy fi is given by 

fi(t) -- - B * S * ( T -  t ) Q T * ( S ( T ) a  -- b), t 6 [O,T]. 

P r o o f .  (i) Let us remark that a control u 6 UT transfers a to b in time T 
if and only if 

b 6 S(T)a + s  

It is therefore sufficient to prove that 

f~l/2 (2.11) l m f T - - I m ~ T  - 

Let x 6 E and u(-)  6 UT. Then 

( ( . ( .  ), C r y ) )  - (Cru ,  ~) - ( S ( T  - ~)Bu(~) ,  ~) d,. 

- (u(~) ,  B ' S ' ( T  - , . )~) d~, 
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and,  by the very definition of the scalar product  in UT, 

L ~ x ( r )  = B ' S *  ( T -  r)x,  for almost all r e (0, T). 

Since 

j~o T IIL~xll 2 = IB*S* (T  - r)xI2dr 

- -  <QTZ, x) = ]Q~./2xl 2, x e E,  

(2.12) 

P r o p o s i t i o n  2.1 I f  F and G are linear bounded operators acting between 
separable Hilbert spaces X ,  Z and Y, Z such that 11 F* f I[ = 1[ G* f 1[ for f E 
Z*, then Im F = Im G and [ 1 F - l z  [[ = G - l z [  for z E Im F. 

P r o o f .  The  identi ty  Im F = Im G follows from Theorem 2.2. To show the 
lat ter  identity, one can asssume tha t  operators are injective as otherwise 
one could consider their restrictions to the orthogonal complements  of their  
kernels. Assume tha t  for some z E Z, z ~ 0, z = FXl - Gyl ,  X l E X ,  yl E 

Y and Ilxlll  > Ilyl[I. Then  ~u, II = G ' E {Gy; IIY[I < 1}. By 
z L e m m a  2.1 {Gy; [[YI[ -< 1} = {Fx;  [[x[[ < 1}. Consequently,  Ilylll E 

{Fx;  [[xl[ <_ 1}. Bu t  Ilu:ll" -- F (  x-~-)llu,u" Since I[ x__~_[lllu, ii > 1 and F is 
Xl - -  �9 injective, F(llu~ll) ~ {S(x);  [[x[[ < 1}. i contraction. Thus [[xi[[ = [[Yl[[ 

[] 

TO prove (iii), let us remark tha t  for arbirary x E E,  

LT~.~x -- QTX. (2.13) 

Let us fix y E I m  QT and let 
- � 8 9  - 

fi - -  f~T  1 y ,  Z --- QT , QT �89 z = QT 1 y .  

It  follows from (2.13) tha t  
1 1 

s  ~ Z = QT ~ z ---- y. (2.14) 

I f  ~-.TU = O, U E U T  t h e n  

1 1 
s  Z, U )) = {QT ~ z, s  = O. 

Taking into account the definition of s  1 and identity (2.14), we obta in  
1 

* -~  (2.15) -- f~TQT Z, 

and, by (2.12), 

fi(t) = B * S * ( T -  t )QTly ,  t e [0, TI. 

Defining y = S ( T ) a -  b, we arrive at (ii). I:3 

par t  (i) follows immediate ly  from Theorem 2.2. 
(ii) The  unique opt imal  s trategy is of the form s  1 (a -- S(T)b) .  The  

formula for the minimal cost is an immediate  consequence of the following 
result. 
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~i2.3- V a r i o u s  c o n c e p t s  o f  c o n t r o l l a b i l i t y  

The results of the two preceding sections lead to important  analitical 
characterizations of various concepts of controllability. 

Let RT(a) be the set of all states attainable from a in time T _ 0. We 
have the obvious relation 

RT(a) "- S(T)a + Im s 

We say that system (2.1) is exactly controllable from a in time T if 

R T ( a ) -  E. 

If 
R T ( a ) -  E, 

then we say that system (2.1) is approximately controllable from a in time 
T. 

We say that system (2.1) is null controllable in time T if an arbitrary 
state can be transferred to 0 in time T or, equivalently, if and only if 

Im S(T)  C Im s (2.16) 

We have the following characterizations. 

T h e o r e m  2.4. The following conditions are equivalent. 
(i) System (2.1) is exactly controllable from an arbitrary state in time 

T > 0 .  
(it) There exists c > 0 such that for arbitrary x E E 

flo w IB ~ S* (t)xl2dt > ~1~12. (2.17) 

(iii) ImQT/2 = E. (2.18) 

P r o o f .  If a system is exactly controllable from an arbitrary state, it is 
controllable in particular from 0. However, the exact controllability from 0 
in time T is equivalent to 

I m s  D E. 

Applying Theorem 2.2 to G = s and F = I, we obtain that  condition 
(2.17) is equivalent to the exact controllability of (2.1) from 0. If, however, 
I m s  = E, then, for arbitrary a ~_ E, RT(a) = E ,  and (2.1) is exactly 
controllable from arbitrary state. 

The final part of the theorem follows from Theorem 2.3(i). D 



w 2.4. Systems with self-adjoint generators 213 

T h e o r e m  2.5. The following conditions are equivalent. 
(i) System (2.1) is approximately controllable in time T > 0 from an 

arbitrary state. 

(ii) I f  B*S*(r ) z  = 0 for almost all r ~ [0,71, then x = 0. (2.19) 

(iii) Im0~,/2 is dense in E. (2.20) 

P r o o f .  It is clear that the set RT(a) is dense in E if and only if the 
set I m s  is dense in E. Hence (i) is equivalent to (ii) by Theorem 2.1. 
Moreover (i) is equivalent to (iii) by Theorem 2.3. El 

T h e o r e m  2.6.  The following conditions are equivalent. 
(i) System (2.1) is null controllable in time T > O. 

(ii) There exists c > 0 such that for all z E E 

~0 T IB*S*(r)xJ~dr > (2.21) clS* (Y) xl 2. 

(iii) ImQ~/2 D ImS(T) .  (2.22) 

P r o o f .  Since null controllability is equivalent to (2.16), characterizations 
(i) and (ii) and characterizations (i) and (iii) are equivalent by Theorem 
2.2 and Theorem 2.3 respectively. I:l 

w 2.4. Sys tems with self-adjoint generators 

Let us consider system (2.1) in which the generator A is a self-adjoint 
operator on a Hilbert space H, such that  for an orthonormal and complete 
basis (era) and for a decreasing to - o o  sequence (Am), Aem -- )~rne,n, 
rn -- 1, 2, . . . .  (See Example 1.2 with E - H, pages 177 and 198). 

We will consider two cases, B as the identity operator and B as one- 
dimensional. In the former case, we have the system 

~1 = Ay  + u, y(0) = a, (2.23) 

with the set U of control parameters identical to H. In the latter case, 

= Ay + .h ,  y(0) = . ,  (2.24) 

U = 111 and h is a fixed element in H. 

L e m m a  2.2.  Sets I m s  .for system (2.23), are identical for  all T > O. 
Moreover, state b is reachable from 0 in a time T > 0 i f  and only i f  

+oo 

I ml I(b,e,-)l 2 < +oo. (2.25) 
m = l  
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Proo f .  In the present situation the operator QT is of the form 

) QTX= j~ ~ S(2t)xdt - E e2X't dt (X,em>em 
rn-- I 

-}2-  -1 
m=l 2Am 

Therefore +~176 ( [e2X,,,T --1[) I/2 
~rt--1 

Let us remark that for arbitrary T > 0 

[e 2 x ' T - 1 [  ~1, as m l ' + o o .  

+oo f~112 Hence b - Y~m=l (b, era)era 6 Im ~T if and only if condition (2.25) holds. 
Since Im ET -- Im QT/2 the result follows. ['3 

L e m m a  2.3. Under the conditions of Lemma 2.2, for arbitrary T > O, 

f~1/2 Im S(T) C Im,,~T " (2.26) 

Proo f .  If a E H, then 

-~-oo 

S(T)a - E ex-T <a, em>e  m . 
m--1 

Since 

y ~  [Am[e2A"*Tl(a, em)[ 2 < (sup l)imle 2A''T) lal2< +oo, 
m 

(2.26) holds. D 

As an immediate corollary of Lemma 2.2, Lemma 2.3 and results of 
w 2.3, we obtain the following theorem. 

T h e o r e m  2.7. System (2.23) has the following properties: 

(i) It is not exactly controllable from any state and at any moment 
T > 0 .  

(ii) It is approximately controllable from arbitrary a and in arbitrary 
T > 0 .  

(iii) Set RT(a) is characterized by (2.25). 

We proceed now to system (2.24). 
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It follows from Theorem 2.6 that (2.24) is not exactly controllable. 
We will now formulate a result giving a characterization of the set of all 
attainable points showing at the same time the applicability of theorems 
from w 2.1. An explicit and complete characterization of the set is not known 
(see [52]). 

First of all we have the following 

T h e o r e m  2.8.  System (2.24) is approximately controllable from an arbi- 
t ra~ state at a time T > 0 if and only if 

An CAm for  n tk m, (2.27) 

<h, em} # O f o r m - l , 2 ,  . . . .  (2.28) 

Proo f .  We apply .Theorem 2.5. For arbitrary z E H 

B*S*(t)x = E eX't(h' em)(x, em). 
m = l  

Since 
+oo 

I(h,em)(z, e,,)l _<_ Ihl I~1 < +oo 

and ~,~ - - - * - o o  as m T +oo, the function 

4-oo 

m = l  

t > 0 ,  

is well defined and analytic. Hence ~o(t) - 0 for almost all t E [0, T] if and 
only if ~o(t) = 0 for all t > 0. It is clear that  conditions (2.27) and (2.28) 
are necessary for the approximate controllability of (2.24). To prove that  
they also are sufficient we can assume, without any loss of generality, that  
the sequence ()i,,,) is decreasing. Then 

lim e-X't~o(t) = (h, el)(X, el) = O. 
t T + ~  

Since (h,e~) r O, (z,e~) = O. Moreover, 

+oo 
SO(t)- E eX'~t(h'em)(x'em)' 

m----2 

In a similar way 

t > O .  

lim e-X2tso(t ) = (h, e2)(x, e2) = O, 
t T +c~ 

and thus (x, e2) - O. By induction (z, era) - 0 for all m = 1 , 2 , . . . ,  and, 
since the basis (em) is complete, x -  0. This completes the proof of the 
theorem. 13 
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Let (am) be a bounded sequence of positive numbers. Let H0 be a 
subspace of H given by 

{ +~176 (x'em)2 < + o o } .  (2.29) no-  . . . .  

m i n i  

We say that  the space H0 is reachable at a moment T > 0 if 0 can be 
transferred to an arbitrary element of H0 in time T by the proper choice of 
a control from LU(0, T). 

It turns out that one can give necessary conditions, which are very 
close to sufficient conditions, for the space H0 to be reachable at time 
T > 0. To formulate them consider functions fro(t) = e x~t, t ~ [0,T] and 
closed subspaces Zm of Z = L2(O,T), m = 1 ,2 , . . . ,  generated by all fk, 
k ~ m. Let 5m be the distance, in the sense of the space Z, from fm to 
Z~, m = 1 ,2 , . . .  

T h e o r e m  2.9. (i) I f  Ho is reachable at time T, then there exists "y > 0 
snch that 

0 < a , ,  < 78,~l(h, em)l, m = 1,2, . . . .  

(ii) If, for some 7 > O, 

0 < a.~ < ~ ~ l ( h , e . , ) l ,  m = 1 , 2 , . .  �9 ~ 

then 1to is reachable at time T. 
Proof .  Let F: H , H be an operator given by 

+oo  

Fz  = E a m ( Z , e m ) e m ,  og 6_ H. 
m----1 

Then 
Im F = Ho. 

Hence the space H0 is reachable at T > 0 if and only if 

Im F C Im s  (2.30) 

It follows from Theorem 2.2 that (2.30) holds if and only if for a number 
3 ' > 0  

J(S(t)h,z)lUdt > ~ l F z l  2, x ~ H. (2.31) 

Denoting the norm in Z by I1" II w~ c~n reformulate (2.31)equivalently as 

k 1 k 

[J j~ l  ~ f j  ~j I[ -> - provided E ~ = 1 aj "y 
"---- j - - 1  

k = ~,2, . . . .  (2 .m) 
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Let us fix m and c > 0 and choose k _> m and numbers  r/j, j < k, 
j # m such t ha t  

k 

6,, + e _> II.f,,, + ~  & ~" . o~.~ #, .f'.~,7.~ll. (2.33) 

(E,': ,,y)"' D e f i n i n g  r/m = 1, 6 = 1 >_ 1, we obtain from (2.32) and ( 2 . 3 3 )  

1'8" I (6,,,~,,, + ~) >_ II ~.= fi,Tsll >_ 611 . =  fj II >_ 6-~_> - .  

Since e > 0 was arbi trary,  (i) follows. 
To prove (ii) denote  by fm the orthogonal projection of f,n onto Zm 

and let 
- 1 

.f'm = ~--~m ( f r o -  j~m), m = 1,2, . . . .  

Let us remark tha t  

- 1 
((.fro, .fro)) - ~-(( . fm,  [m - ira)) = 1, 

- - 1 
((fro, f k ) )  - -  O, I I /ml l  --  " ; - - ,  k :/: m .  

o m  

where ((.,-)) denotes the scalar product  on Z. 
Therefore, if, for a sequence (~m), 

,,=, i~,,,I ~ < +oo, 

then 

and 
T 

Consequently,  

-0-oo 
,,(.) = ~ ~ "  , , , : ,  ~ i , , , ( . )  e z 

~m g ' - ' , , ( t )  dt = (( . f . , , , , ))  = ~ , , ,  m =  1,2, . . . .  

< +cr  
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implies z E Ims  On the other hand, 

rn-----1 Ir I,S,. 

4-00 
m 1 

m--1 

Hence, if 

0 < c~m < __1 I~mlam, m = 1 , 2 , . . . ,  
/TI 

then H0 C I m s  The proof of the theorem is complete. 

1/2 

o 

w 2 . 5 .  C o n t r o l l a b i l i t y  o f  t h e  w a v e  e q u a t i o n  

As another application of the abstract results, we discuss the approxi- 
mate controllability of the wave equation, see Example 1.4, page 179. 

Let h be a fixed function from L2(0, 7r) with the Fourier expansion 

+00 4-00 

h(~)- ~ ~,.~ sin m~, ~ e (0, ~r), ~ 7~ < +co. 
r n = l  r n = l  

Let us consider the equation 

02Y  _ oq2Y 
Oi 2 - O~. 2 + hu( t ) ,  t > O, ~ e ( 0 ,  Tr), (2.34) 

with initial and boundary conditions as in Example 1.4 and with real valued 
u(-) .  Equation (2.34) is equivalent to the system of equations 

Oy 
Ot - v, 
i)v c92y 
0-7 = o~2 + h,,(t),  

(2.35) 

t >_ o, { e (0, ~). (2.36) 

Let E be the Hilbert space and S(t), t E R, the group of the unitary 
operators introduced in Example 1.4. In accordance with the considerations 
of w 1.7, the solution to (2.35)-(2.36) with the initial conditions u(0) - a, 
v(0) - b will be identified with the function Y ( t ) ,  t >__ O, given by 

a t 0 
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T h e o r e m  2 .10 .  I f  

T >_ 2~r, 7,,1~ 0 for r e = l , 2 , . . . ,  

then system (2 .35) - (2 .36)  is approximately controllable in time T from an 
arbitrary state. 

P r o o f .  In the present s i tuat ion  U - R and the operator  B" R ~ , E is 
given by [o] 

B u - -  h u, u E R .  

Since S*(t) = S(--t) ,  t >_ O, 

[0] 
b -" (( h b )) 

-I-co 

= ~_, 7,, (mare sin m t +  ~m cos mr), 
m--1 

t > 0 .  

Taking into account  tha t  

-0-OO 

I m % , a m l  < +co,  
m----1 

-~oo 

E I~/'m/0rnl < -~-OO, 
m = l  

we see that  the formula 

~,(t) = ~ 7m (mC~m sin mt + ~m cos mr), 
m-----1 

t > 0 ,  

defines a continuous,  periodic function with the period 2~r. Moreover, 

lf02" roT,. ~,n - - ~o(t) cos rnt dr, 
~r 

7r ~( t )  sin mt dr, m =  1,2, . . . .  

Hence if T _> 27r and 9 ( t )  = 0 for t (5 [0,T l, 

mTmO~m "-  0 a n d  ]~mTm - O, m - -  1,2, . . . .  

Since 3'~ ~ 0 for all m = 1 , 2 , . . . ,  a,,~ =/~,n = O, m - 1 , 2 , . . . ,  and we 
obta in  that  a = 0, b -  0. By Theorem 2.6 the theorem follows. E! 
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B i b l i o g r a p h i c a l  n o t e s  

Theorems from w 2.1 are taken from the paper by S. Dolecki and 
D.L. Russell [21] as well as from the author's  paper [68]. They are gen- 
eralizations of a classical result due to Douglas [22]. 

An explicit description of reachable spaces in the case of finite dimen- 
sional control operators B has not yet been obtained; see an extensive 
discussion of the problem in the survey paper by D.L. Russell [52]. 

Asymptotic properties of the sequences (fro) and (~m) were an object 
of intensive studies, see D.L. Russel's paper [52]. Theorem 2.9 is from 
author's  paper [68]. Part (i) is in the spirit of D.L. Russell I521. 



C h a p t e r  3 

S t a b i l i t y  a n d  s t a b i l i z a b i l i t y  

We will show first that  the asymptotic stability of an infinite dimen- 
sional linear system does not imply its exponential stability and is not de- 
termined by the spectrum of the generator. Then we will prove that  stable 
systems are characterized by their corresponding Liapunov equations. It is 
also proved that  null controllability implies stabilizability and that  under 
additional conditions a converse implication takes place. 

w Various concepts of stability 

Characterizations of stable or stabilizable infinite dimensional systems 
are much more complicated then the finite dimensional one. We will restrict 
our discussion to some typical results underlying specific features of the 
infinite dimensional situation. 

Let A be the infinitesimal generator of a semigroup S(t),  t _~ 0, on 
a Banach space E. If z E D ( A )  then a strong solution, see w 1.7, of the 
equation 

= A z ,  z(0) = z E E, (3.1) 

is the function 
z ' ( t )  = s ( t )~ ,  t >_ o. 

For arbitrary x E E, z"( .  ) is the limit of strong solutions to (3.1) and 
is also called a weak solution to (3.1), see w 1.7. 

If the space E is finite dimensional then, by Theorem 1.2.3, the following 
conditions are equivalent: 

For some N > 0, v > 0 and all t > 0 IIS(t)ll < N e  -y r .  (3.2) 

For arbitrary x ~ E ,  z ~ ( t )  ~ 0 exponentially as  t ~ +oo .  (3.3) 

For arbitrary z E E,  IIz"(t)ll2dt < +oo. (3.4) 

For arbitrary z ~. E ,  z ' ( t )  - - - ,  0 as t --. +oo  (3.5) 

sup{Re,~; A e it(A)} < 0. (3.6) 

In general, in the infinite dimensional situation the above conditions 
are not equivalent, as the theorem below shows. 
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Let us recall that for linear operators A on an infinite dimensional 
space E, )~ {5 a(A) if and only if for some z {5 E the equation ) ~ z -  Ax - z 
either does not have a solution z {5 D(A)  or has more than one solution. 

T h e o r e m  3.1. Let E be an infinite dimensional Banach space. Then 
(i) Conditions (3.2), (3.3) and (3.4) are all equivalent. 

(it) Conditions (3.2), (3.3) and (3.4) are essentially stronger than (3.5) 
and (3.6). 

(iii) Condition (3.5) does not imply, in general, condition (3.6), even 
i f  E is a Hilbert space. 

(iv) Condition (3.6) does not imply, in general, condition (3.5), even 
i f  E is a Hilbert space. 

P r o o f .  (i) It is obvious that (3.2)implies (3.3) and (3.4). Assume that  (3.4) 
holds. Then the transformation x , S ( - ) z  from E into L2(0, +c~; E)  
is everywhere defined and closed. Therefore, by Theorem A.2 (the closed 
graph theorem), it is continuous. 

Consequently, there exists a constant K > 0 such that  

fo ~176 IlS(t)xll=,Lt < g l l x l l  =, x for all E. 

Moreover, by Theorem 1.1, for some M >_ 1 and w > 0, 

IIS(t)ll < Me '~ for all t > 0. 

For arbitrary t > O, x (5 E, 

m e ~  

2w 
2wt /0 ~ 

IISCt)=ll 2 = ~-2~llSCt)=ll2a~ 

I' <_ e-2"~ r)xll2d~ 

<_ M 2 IIS(.)=ll2d, <__ M=KII=II 2. 

Therefore, for a number L > O, 

IIS(t)ll <_ L, t >_ O. 

Consequently, 

fo' fo' t l lS( t )=ll  2 - I IS( t )z l l=ds < I IS (s ) l l211S( t -  s)=ll2ds 

_< L=KII=II =, t > O, = ~ E, 
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and 

IIS(t)ll  < L ~ t  t-, 

Hence, there exists f > 0 such that 

t > O .  

IIS(OII < 1. 

For arbitrary t _> 0 there exist rn = O, 1 , . . .  and s 6 [O,t-) such that  t = 
m t +  s. Therefore 

IIS(t)ll  _< II~(t-)ll ~ M e "  < IIS(t-)II'/~MIIS(t-)II -a e ~, 

and (3.2) follows. 
(ii) It is clear that  (3.2)implies (3.5). 

Re A > - v  then 
Moreover, if (3.2) holds and 

R ( ~ ) = ( A I - A )  -1 
~0 +~176 

= e-X 'S ( t )d t ,  

see Proposition 1.2. Consequently 

sup{Re A; A 6 o'(A)} _< - v  < O, 

and (3.6) holds as well. 
To see that  (3.5) does not imply, in general, (3.2), we define in E -- 12 

a semigroup 

where (Tin) is a sequence monotonically decreasing to zero. Then 

+oo 

i i s ( t )x l l  2 -- ~ e-~'r" ' l~ml 2 
m ~ l  

,0, ast  T + o o .  

However 

IIs( ~ )ll > ,-' - - -  , r e = l , 2 , . . . ,  
"Ym 

and (3.2) is not satisfied. 
An example showing that  (3.6) does not imply (3.5) and (3.2) will be 

constructed in the proof of (iv). 

(iii) Note that  the semigroup S(t) ,  t >_ 0, constructed in the proof of (ii) 
satisfies (3.5). Since - 7 , ,  E ~r(A), rn = 1 ,2 , . . . ,  sup{ReA; A E ~r(A)} >_ 0 
and (3.6) does not hold. 

(iv) We will prove first a lemma. 
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L e m m a  3.1.  There exists a semigroup S(t),  t > O, on E, the complex 
Hilbert space 12C, such that 

IIS( t ) l l -  ~', t > o and e r ( A ) -  {i)~,,,; m = 1 , 2 , . . . }  

where ()~m) is an arbitrary sequence of real numbers such that IA~I ~. +oo. 
P r o o f .  Let us represent an arbitrary element x (5 I~, regarded as an infinite 
column, in the form x = (xm), where x m (5 C m. The required semigroup 
S(t) ,  t > O, is given by the formula 

s ( t ) ~ - ( ~ x - , ~ , - , ~ ) ,  (3.7) 

where matrices Am - (a. ~.,,J) (5 M(n, n) are such that  

1 

a~- {0 
for j - i + 1 ,  i - 1 , 2 , . . . , m - 1 ,  

for the remaining i , j .  

It is easy to show that  l imS( t )x  = x for all x (5 E,  and we leave this 
tl0 

as an exercise. 
To r162 IIS(t)ll remark that  

IlS(t)ll - sup II ~'~- 'ea- ' l l  < sup II~a-'ll < ~up ~'tta-tt _< ~,, t >__ 0, 
m DI ITI 

because IIA~II- 1, m - 1,2, . . . .  

em E C m with all elements equal ~ ,  
On the other hand, for the vector 

[ t )~  ileA.te.~l I _ 1 12 + (1 + + + (1 + + 
m T.' . . . . . .  

*e t, a s m l " + o o .  

(m - 1)!)2 

112 

Hence I lS(t) l l -  ~'. 
For arbitrary , / r  {i~m; m -  1 ,2 , . . . }  let W(,/) be the following oper- 

ator: 
W()~)x - ( ( )~I -  (i)~m + Am)) -]xm) .  

An elementary calculation shows that  W()~) is a bounded operator  such 
that  ( +" } D -  Im W ( , / ) -  (z m) e 12; ~ [,/,,,i2lx"l 2 < +oo . 

m = l  

Moreover, if Do is the set of all sequences z - (x m) such tha t  x "  # 0 for 
a finite number of m, then for x E Do, 

A ( x " )  - (()tmi + Am)x m) 
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and 
w(~)~- R(~)~, 

where R(A), A r a(A) is the resolvent of S(t), t _> 0. Consequently D(A)  - 
D and for A r a(A),  R(A) = W(A). 

One checks that  for A E {iA,,; m = 1 ,2 , . . . } ,  

( ) i I -  A)W()~) - I 

W()~)(2I -  A) = I 

on 12, 

on D(A). 

Hence a(A)  - {i~m; m = 1,2 , . . . } .  The proof of the lemma is complete. 121 

We go back to the proof of (iv). For arbitrary a E R 1 and/~ > 0 define 
a new semigroup S( .  ), 

g(t)  = ~ " s ( a t ) ,  t >_ o. 

The generator A of the semigroup S ( - )  is given by 

A - o~I + BA, D(A) = D(A). 

Moreover 

IIS(t)ll = e ( '+a) '  and sup{Re ,~; )~ E a(A)} - c~. 

Taking in particular c~ - -�89 and ~ = 1 we have that 

-- ~ 1 
l l S ( t ) l l -  e~',  t >_ o and sup{Re~; A e a ( a ) }  - - ~ .  

Since lim IIg(t)ll = +oo,  there exists, by Theorem A.5(i) (the Banach- 
t--~4-oo 

Steinhaus theorem), z E E such that lira I IS ( t )~ l l -  +oo. t--+oo 
Hence (3.6) does not imply (3.5) in the case of E being the complex 

Hilbert space I~:. The case of E being a real Hilbert space follows from the 
following exercme. C! 

Exerc i s e  3.1. Identify the complex Hilbert space I~ with the Cartesian 
product 12 x 12 of two real 12 spaces and the semigroup S(t),  t >_ 0, from 
Lemma 3.1 with its image S(t) ,  t >_ O, after the identification. Show that  

IIS(t)ll- e', t > o and a ( . A ) -  {rkiAn; n -  1,2 , . . . } .  

where A is the generator of 8(t),  t > O. 
If a semigroup S(t) ,  t > O, satisfies one of the conditions (3.2), (3.3), 

(3.4) then it is called exponentially stable, and its generator an exponentially 
stable generator. 
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w Liapunov's equation 

As we know from w 1.2.4, a matrix A is stable if and only if the Liapunov 
equation 

A*Q + QA - - I ,  Q > O, (3.8) 

has a nonnegative solution Q. A generalization of this result to the infinite 
dimensional case is the subject of the following theorem. 

T h e o r e m  3.2. Assume that E is a real Hilbert space. The infinitesimal 
generator A of the semigroup is exponentially stable if  and only if there 
exists a nonnegative, linear and continuous operator Q such that 

2(QAx, x) - - Ix l  2 f o r  all x e D(A ). (3.9) 

If  the generator A is exponentially stable then equation (3.9) has exactly 
one nonnegative, linear and continuous solution Q. 

Proo f .  Assume that Q >_ 0 is a linear and continuous operator solving 
(3.9). If x E D(A) then the function v(t) = (Qz~(t) ,z~(t)) ,  t > O, is 
differentiable, see Theorem 1.2. Moreover 

d v ( t )  - dz~( t ) , z~ '  dz  ~ 
d-i = (Q'-Ji- (t)) + (Q~( t ) , - - j i - ( t ) )  

= 2 ( Q A z * ( t ) ,  zX(t)) ,  t > O. 

Therefore, for arbitrary t >_ 0, 

fO t ( Q z ~ ( t ) , z ~ ( t ) ) -  (Qx,  x) - - Iz~(s)12ds, 

o t Iz~(s)12ds + (Qz~(t),z~(t)> = (Qx,x) .  

Letting t tend to Tco in (3.10) we obtain 

(3.10) 

~ +oo IS(s)x[ ads ~_ (Qx ,  x) ,  x e D(A).  (3.11) 

Since the subspace D(A) is dense in E, estimate (3.11) holds for x E E. 
By Theorem 3.1, the semigroup S(t), t > 0, is exponentially stable. 

If the semigroup S(t),  t >_ O, is exponentially stable, then zX(t) , 0  
as t ---, +co,  and, letting t tend to +co in (3.10), we obtain 

fo+~176 (t)S(t)x,  x) dt - (Qx, x), x E E. (3.12) 
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Therefore, there exists a solution Q to (3.9) that is given by 

~0 +~176 
Q z  = S*( t )S ( t ) zd t ,  z E E.  (3.13) 

u! 

w  S t a b i l i z a b i l i t y  a n d  c o n t r o l l a b i l i t y  

A linear control system 

il = AV + Bu, v(O) = x (3.14) 

is said to be exponentially stabilizable if there exists a linear, continuous 
operator K" E -" U such that the operator AK,  

AK -- A + B K  with the domain D ( A K ) -  D(A) ,  (3.15) 

generates an exponentially stable semigroup SK(t), t > 0. That  the opera- 
tor AK generates a semigroup follows from the Phillips theorem, see w 1.4. 
The operator K should be interpreted as the feedback law. If, in (3.14), 
u ( t ) -  Ky ( t ) ,  t > O, then 

fl = (A + B K ) y ,  y(O) = x, (3.16) 

and 
y ( t ) -  SK( t ) z ,  t > O. (3.17) 

One of the main results of finite dimensional linear control theory was 
Theorem 1.2.9 stating that  controllable systems are stabilizable. In the 
infinite dimensional theory there are many concepts of controllability and 
stabilizability, and therefore relationships are much more complicated. Here 
is a typical result. 

T h e o r e m  3.3. (i) Null controllable systems are ezponentiaUy stabilizable. 
(ii) There are approximate controllable systems which are not exponen- 

tially stabilizable. 

Proof .  (i). Let u ' ( - )  be a control transferring z to 0 in time T z > 0 and 
u~(t) - 0 for t > T ~. If ~ f ( . )  is the output corresponding to u~( . )  then 
y~ (t) -- 0 for t _> T x. Therefore 

j~0 +~176 
J (x ,  u~( . )) - (lye(t)[ 2 -4-lu=(t)l 2) dt < +<~, (3.18) 

and the assumptions of Theorem 4.3, from Chapter 4, are satisfied with Q - 
I and R - I. Consequently, there exists a nonnegative continuous operator 
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P on H such that for the feedback control f i ( t ) -  K~( t )  = - B * P ~ ( t )  and 
the corresponding solution ~)(t), t >_ 0, of 

~(t) = A ~ t )  + Bf<~(t) = (A + Bf( ) f t ( t ) ,  t >_ O, 

one has 

a(.)) = f0 +~176 (I.O(t)l ~ + la(t)l 2) dt < J (x ,  u~( . )) < -t-(x), zEE .  

But .~(t) = S ~ ( t ) x ,  t >_ O, where SE(-)  is the semigroup generated by A~. 
Consequently, 

~0 + ~176 
I S ~ ( t ) x l 2 d t -  /o +~176 I~(t)12dt < +co for all z 6_ E, 

and it follows from Theorem 3.1(i) that the semigroup S ~ ( - )  is exponen- 
tially stable. 

(ii) Let us consider a control system of the form 

= Ay + hu, y(O) = z,  (3.19) 

in a separable Hilbert space E with an orthonormal and complete basis 
(e,~). Let A be a linear and bounded operator on E given by 

-~OO 

A x -  Z )h~{z, e,~)e,n, z E E, 
m----1 

with ()~m) a strictly increasing sequence converging to 0. Let h 6_ E be an 
element such that < h, em > r  0 for all rn - 1 ,2 , . . .  and 

~ l(h, em)l 2 

m--1 I'kml2 
< T o o .  

Then (3.19) is approximately controllable, see Theorem 2.8. 
To show that (3.19) is not exponentially stabilizable, consider an arbi- 

trary bounded linear operator K : E  ~ U - R 1. It is of the form 

K z - { k , z ) ,  x 6 _ E ,  

where k is an element in E. We prove that  0 6_ a(A  + B K ) .  
z 6_ E and consider the following linear equation 

Let us fix 

Ax + B K x  = z, x 6_ E. (3.20) 
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Denote 

(h, em) ='I,m, (=,era) = ~ m ,  (z, e m ) =  r/,,,, m = 1,2, .... 

Then (3.20) is equivalent to an infinite system of equations 

A,n~,,, + 7-, (k, =) = r/,,,, m = I, 2,..., 

from which it follows tha t  

' ' . . . .  

Since 

m=l ~ < + c o  and m=ll~ml 2 < + ~ 1 7 6  

therefore 

m - - 1  

~m12 
< q-co, 

and z E E cannot be an arbitrary element of E. Hence 0 E ~(A + B K ) .  
It follows from Theorem 3.1(ii) that  (3.19) is not exponentially stabi- 

lizable. E! 

It follows from Theorem 3.3 that  all exactly controllable systems are 
exponentially stabilizable. We will show that  in a sense a converse state- 
ment is true. 

We say that  system (3.14) is completely stabilizable if for arbitrary 
o; E R there exist a linear, continuous operator K: E ~ U and a constant 
M > 0 such tha t  

ISK(t)l _< Me 0~' for t > 0. (3.21) 

The following theorem together with Theorem 3.2(i) are an infinite 
dimensional version of Wonham's  theorem (Theorem 1.2.9). 

T h e o r e m  3.4.  I f  system (3.14) is completely stabilizable and the operator 
A generates a group of operators S(t), t E H, then system (3.14) is ezactly 
controllable in some time T > O. 

P r o o f .  By Theorem 1.1 there exist N > 0 and v E R such that  

IS(-t)l  < N~",  t > O. (3.22) 

Assume that  for a feedback K" E : U and some constants  M > 0 and 
~ E R  1 

ISx(t)l _< M~ ~', t > 0. 
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Since 

~0 t S( t )z  - S K ( t ) z -  S ( t -  s ) B K S K ( s ) z  ds, x E E, t > O, 

therefore, for arbitrary f E E*, t > 0, x E E, 

IS*(t)fl <_ IS~c(t)fl + IS*K(S)K*B*S*(t -- s ) f lds  

I' < Me ' t l f l  + IKIM e'(t-~ S* (s) f l  ds 

(/o' )'"(I' ) _< Me~'lYl + IKIM ~2~, d, In*S*(,)fl2d~ 
112 

If I l l -  1, then IS'(-t)s'(t)fl = 1 and 

I s ' ( - t ) l  -~ - I S ( - t ) l  -~ _ IS*(t)fl,  t > o. 

The above estimates imply that if [ f l -  1 then 

I s ( - t ) l  -~ _< M e  ~' 

+ ,Ir (/te'~ 
1/2 t )1/2 

( fo  , B ' S ' ( s ) f , ' d s  

(3.23) 

Assume that system (3.14) is not exactly controllable at a time t > 0. 
It follows from the results of w that  for arbitrary c > 0 there exists 
f E E* such that 

t 

IB*S*(s)fl2ds < c and I f l -  1. 

0 

Since c is arbitrary and from (3.23) 

JS(-t)J -~ < Me ~t. (3.24) 

If (3.14) is not exactly controllable at any time t > 0 then by (3.24) and 
(3.22) 

M - l e  -~t <_ IS(-t)l  < N e vt for all t > 0. 

This way we have w > - v ,  and (3.14) cannot be completely stabilizable. 
D 
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C h a p t e r  4 

L i n e a r  r e g u l a t o r s  i n  H i l b e r t  s p a c e s  

In this chapter the existence of a solution to an operator Riccati equa- 
tion related to the linear regulator problem in separable Hilbert spaces is 
shown first. Then a formula for the optimal solution on an arbitrary finite 
time interval is given. The existence of an optimal solution on the infinite 
time interval is dicussed as well. Some applications to the stabilizability 
problem are also included. 

w 4 . 1 .  I n t r o d u c t i o n  

Our discussion of optimal control problems in infinite dimensions will 
be limited to the linear regulator problem. In what follows we will assume 
that  the stated space denoted here by H as well as the space U of the 
control parameters are real, separable Hilbert spaces. The control system 
is given by 

= A y +  Bu, y(O) = x E U, (4.1) 

where A is the infinitesimal generator of a semigroup co(t), t >_ 0, and B is 
a linear and continuous operator from U into H. By a solution to (4.1) we 
mean the weak solution, see w 1.7, given by 

~0 t y ( t ) -  s(t)~ + s ( t -  , )B~( , )  d~, ~ >__ O. (4.2) 

Admissible controls are required to be Borel measurable and locally square 
integrable 

T 

fol u(s)12ds < + o o  for T > 0. 

We will also consider closed loop controls of the form 

u ( t ) -  K(t)y(t),  t >_ O, (4.3) 

where K ( - )  is a function with values in the space L(H, U) of all linear and 
continuous operators from H into U. 

Let Q E L(H,H),  Po E L(H, H), R (5 L(U, U) be fixed self-adjoint 
continuous operators, and let R be, in addition, an invertable operator 
with the continuous inverse R -1. 
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The linear regulator problem with finite horizon T (compare w 111.1.3), 
consists of finding a control u ( - )  minimizing the functional JT(z,-):  

JT ( x ,u )  = ( (Qy(s ) ,y (s ) )  + ( R u ( s ) , u ( s ) ) ) d s +  (Poy(T) ,y (T) ) .  (4.4) 

The linear regulator problem with infinite horizon consists of minimizing 
the functional 

J(~, , , I  - ((Qy(.) ,  ~(.)) + (Ru(.), , , ( . ) ) /d . .  (4.5/ 

We present solutions to both problems. 
We are particularly interested in optimal controls given in the closed 

loop form (4.3). Such controls define outputs y( . )  only indirectly as solu- 
tions of the following integral equation: 

I' y(t)  = s(t)~, + s( t  - . ) B l ( ( . ) y ( . ) d . ,  t >_ O, (4.6) 

and we start by giving conditions implying existence of a unique continuous 
solutions to (4.6). 

We say that  K: [0,T] - , L(H,U)  is strongly continuous if for arbi- 
trary h E H the function K(t )h ,  t ~. [O,T], is continuous. In the obvious 
way this definition generalizes to the function K( - )  defined on [0, +e~). We 
check easily that if K ( - )  is strongly eontinuous on [0,7"] and an H-valued 
function h(t), t ~_ [O,T], is continuous, then also K( t )h ( t ) ,  t ~_ [O,T], is 
continuous. There Mso exists a constant M~ > 0 such that  IK(t)l < M~, 
t ~ [0,T]. 

L e m m a  4.1. I f  an operator valued function K ( .  ) is strongly continuous on 
[0, T] then equation (4.6) has exactly one continuous solution y(t),  t E [0, T]. 

Proo f .  We apply the contraction mapping principle. Let us denote by 
CT = C(O, T; H) the space of all continuous, H-vMued functions defined 
on [0,T] with the norm IlhllT = sup{lh( t ) ; t  E [0,7]}. Let us remark that  
if h E CT then the function 

I' ATh( t )  = S( t  -- s )K(s )h(s )  ds, t e [0, T], (4.7) 

is well defined and continuous. 
Let M > 0 and w > 0 be constants such that 

IS(t)l < Me on, t > O. 

Then 
I.ATh(t)l < w -~ M M t ( e  wT - 1)llhllT, h E C T .  
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Therefore, if 
M M1 (e wT~ - 1) < w, 

then 11-4Toll < ~, and, by the contraction principle, see w A.1, equation 

y( t )  - s ( t ) ~  + A r o y ( t ) ,  t e [o, To], 

has exactly one solution y(.  ) in CTo. Let k be a natural number such that  
kTo >__ T.  By the above argument, equation (4.6) has exactly one solution 
on the arbitrary interval [jTo, (j  + 1)T0], j - O, 1 , . . . ,  k -  1, therefore also 
on [0, T]. O 

Let us assume in particular that  K( t )  - K for all t > 0. By the Phillips 
theorem, see w 1.4, the operator AK = A + K ,  D ( A K )  - D ( A )  defines a 
semigroup of operators SK(t) ,  t > O. Its relation with the solution y(.  ) of 
(4.6) is given by the following proposition, the proof of which is left as an 
exercise. 

P r o p o s i t i o n  4.1. /Jr K(t )  = K ,  t >_ O, and SK( t ) ,  t >_ O, is the semigroup 
generated by AK -- A + If ,  D ( A K )  - D(A) ,  then the solution y ( .  ) to (4.5) 
is given by 

y(t) = s K ( t ) ~ ,  t > 0. 

w The operator Riccati equation 

To solve the linear regulator problem in Hilbert spaces we proceed 
similarly to the finite dimensional case, see w III.1.3, and start  from an 
analysis of an infinite dimensional version of the Riccati equation 

P -- A* P + P A  + Q - P B R -  ~ B ~ P, P(O) - eo. (4.8) 

Taking into account that operators A and A* are not everywhere defined, 
the concept of a solution of (4.8) requires special care. 

We say that a function P(t) ,  t > 0, with values in L(H,  g ) ,  P(O) -- Po 
is a solution to (4.8)if, for arbitrary g ,h  e D(A), the function (P( t )h ,g} ,  
t > 0, is absolutely continuous and 

d (P( t )h  g) - ( P ( t ) h  Ag) + (P ( t )Ah ,  g) (4.9) 
dt ' ' 

+ (Qh, g) - (P B R -  x B" Ph,  g) for almost all t > 0. 

T h e o r e m  4.1. A strongly continuous operator valued function P(t) ,  t > 0, 
is a solution to (4.8) if and only if, for  arbitrary h 6_ H, P(t) ,  t > o, is a 
solution to the following integral equation: 

P ( t ) h  = S*( t )PoS(t )h  (4.10) 

I' + s ' ( t  - s ) ( Q  - P ( s ) B R - ' B ' P ( . ) ) S ( t  - . ) h d s ,  t >_ O. 
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The proof of the theorem follows immediately from Lemma 2.4 below 
concerned with linear operator equations 

[~(t) = A*P + P A  + O(t), t > O, P(O) = Po. (4.11) 

In equation (4.11) values Q(t), t > O, are continuous, self-adjoint operators. 
An operator valued function P(t), t > O, P(O) = Po is a solution to 

(4.11) if for arbitrary g,h G D(A),  function (P(t)h,g), t > 0 is absolutely 
continuous and 

d 
-~(P( t )h ,  g) = (P(t)h,  Ag) + (P(t)Ah,  g) + (Q(t)h, g) for almost all t > 0. 

(4.12) 

L e m m a  4.2. [f Q(t), t >_ O, is strongly continuous then a solution to (4.11) 
exists and is given by 

~0 t P(t )h  = S*(t)PoS(t)h+ S * ( t - s ) Q ( s ) S ( t - s )  ds, t > 0, h E H. (4.13) 

Proo f .  It is not difficult to see that function P ( . )  given by (4.13) is well 
defined and strongly continuous. In addition, 

~0 t (P(t)h,  g) - (PoS(t)h, S(t)g) + (Q(s)S(t  - s)h, S(t  - s)g) ds, t > 0 .  

Since for h,g E D(A)  

d (PoS(t)h S(t)g) (PoS(t)Ah S(t)g) + (PoS(t)h,S(t)A9},  ___ --- 
t i t  ' 

t > 0 ,  

and 

d -~(Q(s)S( t  - s)h, S(t  - s)g) = (Q(s)S(t  - s)Ah, S(t - s)g) 

+ ( Q ( , ) s ( t  - ~)h, S ( t  - ~ )Ag) ,  t > s > O ,  

hence 

d 
d--~(P(t)h, g) = (S*(t)PoS(t)Ah, g) + (S*(t)PoS(t)h, Ag) 

I' + (Q(t)h, g) + ((S* (t - s)Q(s)S(t  - s)Ah, g) 

+ ( s ' ( t  - s ) O ( . ) s ( t  - . ) h ,  Ag))  d . .  

Taking into account (4.13) we obtain (4.12). 
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Conversely, let us assume that (4.12) holds. For s q [0,t] 

d ( p ( s ) S ( t -  s)h S( t  - s)g) 
ds 

= ( P ( s ) S ( t -  s)h, S(t - s)Ag) + (P(s)S( t  - s )Ah,  S(t  - s)g) 

+ ( Q ( s ) S ( t -  s)h, S ( t -  s)g) 

- ( P ( s ) S ( t -  s)Ah,  S( t  - s)g) - (P(s )S( t  - s)h, S( t  - s)Ag) 

= (Q(s)S(t  - s)h, S ( t -  s)g). 

Integrating the above identity over [0,t], we obtain 

0 t (P( t )h ,g)  - (S*(t)PoS(t)h,g)  = (S*(t - s )Q(s )S( t  - s )h ,g)  ds. (4.14) 

Since D(A) is dense in H, equality (4.14) holds for arbitrary elements h, g 6 
H.  [3 

w  T h e  f i n i t e  h o r i z o n  c a s e  

The following theorem extends tile results of w 111.1.3 to Hilbert state 
spaces. 

T h e o r e m  4.2. (i) Equation (4.8) has exactly one global solution P(s),  
s > O. For arbitrary s >_ 0 the operator P(s)  is self-adjoint and nonnegative 
definite. 

(it) The minimal value of functional (4.4) is equal to {P(T)z ,x )  and 
the optimal control fi(-) is given in the feedback form 

a(t)- k(t),)(t), 
k(t) - - R - ' B * P ( T - t ) ,  t ~ [0,T]. 

Proof .  We prove first the existence of a local solution to (4.10). We 
apply the following version of the contraction mapping theorem (compare 
Theorem A. 1). 

L e m m a  4.3. Let .A be a transformation from a Banach space C into C, v 
an element of G and ~ a positive number. I f  .,4(0) = O, II,,11 < �89 , , .d 

1 
[IA(V,)- .4(p~)[I _< fillp, - p~ll, r IIp, II _< ~. lip211 _< ~. 

then equation 
. 4 ( p )  + ~ - p 
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has exactly one solution p satisfying Ilpll-< c~. 

Proof .  Let A(p)  = .A(p) + v, p E C. By an elementary induction argument 

((1).) 
l[.,4~(o)l[ _< cr 1 -  k =  1,2, . . . .  

Hence II.~k(0)ll _< ~,  t = 1,2,  . . . .  From the Lipschitz condition it follows 
that  the sequence (.Ak(0)) converges to a fixed point of  .4. r3 

Let us denote by CT the Banach space of all strongly continuous func- 
tions P( t ) ,  t 6_ [0, T], having values being self-adjoint operators on H, with 
the norm 

[[P(')IIT = sup{IP(/)[; t E [O,T]}. 

For P ( - )  E CT we define 

.AT(P)( t )h  = - fot S*(t-  s)P(s)BR-'B*P(s)S(t- s)hds 

and 

j~0 t v(t)h = S* ( t )PoS(t)h + S ' ( t -  s )QS( t  - s)h ds, h E H ,  t E [0,T]. 

Equation (4.10) is equivalent to 

P -- v q- .AT(P). (4.15) 

It is easy to check that AT maps CT into CT and v(-)  E CT. 

If IIPIIIT _<~ ~, I]P21IT _<~ ~, then 

IP~(s)BR-'B*P~(s)- P2(s)BR-'B*P2(s)[ 

_< I(P~(s) - P2(s))BR-~B*P~(s)I + IP~(s)BR-'B*(P~(s) -- Pl(S)l 

< 2 a I B R - '  B*I lIP, - P2IIT, s e [0,T]. 

Therefore 

~0 T II.AT(P1) - -  .AT(P2)IIT <_ 2~IBR-1B*IM 2 e2~Sds liP1 - P211T 

< ~(~, T)li P~ - P2 liT, 

where 
/~(ol, T) = (~w-IM2[BR-1B*[(e2wT - 1). (4.16) 
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At the same time, 

~o T IIV[[T <_ M2e2wT]po]TM2 e2WSds[QI <_ M2e2"JT[pol + 

Consequently, if for numbers a > 0 and T > O, 
1 c~w-IM21BR-1B*I(e2wT- 1) < 

M2(e 2wT -- 1) 
IQI. 2w 

(4.17) 

M2(e2wT -- 1) IQI < 2 '  (4.18) M2e2wT]P~ + 2W 

then, by Lemma 4.3, equation (4.10) has exactly one solution in the set 

P(-) ECT; sup [P(t)[ < c~}. 
t<_T 

For given operators P0 and Q and for given numbers w > 0 and M > O, 
one can find a > 0 such that  

M 2 c~ 
M2[P0[ + ~--~ IQI < ~. 

One can therefore find T = T(a)  > 0 such that  both conditions (4.17) and 
(4.18) are satisfied. By Lemma 4.3, equation (4.10) has a solution on the 
interval [0, T(a)].  [3 

To proceed further we will need an interpretation of the local solution. 

L e m m a  4.4.  Let us assume that a function P(t),  t 6. [0,T0], is a solution 
to (4.10). Then for arbitrary control u ( . )  and the corresponding output 
y(.), 

JTo(*,") =(P(To)*,*) 

+ IR'/2,,(,) + R-~/~B-p(ro-  ,)y(,)12d,. 

(4.19) 

P r o o f .  Assume first that  z E D(A) and that  u ( - )  is of class C 1. Then 
y ( - )  is the strong solution of the equation 

d 
d--~y(f ) = Ay(t) + Bu(t) ,  y ( O )  = ~.  

It follows from (4.9) that  for arbitrary z E D(A) function { P ( T 0 -  i)z, z), 
t E [0, To], is of class C 1, and its derivative is given by 

d { p ( T 0  - t)z z) = - {P(T0 - f)z Az) - {P(T0 - t )Az,  z) - {Qz, z) 
dt ' ' 

+ (P(To - t ) B R - 1 B * P ( T o  - t ) z , z ) ,  f E [O, To]. 
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Hence 

d ( p ( T o  - t ) y ( t ) ,  y ( t ) )  

= - (P (To  - t ) y ( t ) ,  A y ( t ) )  - (P(To - t ) A y ( t ) ,  y(t))  - (Qy ( t ) ,  y (O)  

+ (P(To  - t ) B R  -1 B* P(To - t )y( t) ,  y( t ) )  

+ (P(To - t)il(t), y(t)) + (P(To - t)y(t), ~t(t)) 

= -  (Qy(t), y(t)) + (P(To - t ) B R - 1 B ' P ( T o  - t ) y ( t ) ,  y(t)) 

+ (P(To - t )Bu(t) ,  y(t)) + (P(To - t)y(t), Bu(t))  

= - (Qy(t), y(t)) + IRll2u(t) + R-II2B*P(To - t)y(t)l 2 

-(Ru(t), u(t)), t 6.[0,T0]. 

Integrating this equality over [0, To] we obtain 

- ( P ( T o ) ~ , , ~ )  = - J r o ( ~ ,  ,,) + IRx//2u(t)  + R - ' / / 2 B * P ( T o  - t )y ( t )12at ,  

and therefore (4.19) holds. Since the solutions y(-)  depend continuously 
on the initial state x and on the control u(-) ,  equaliV (4.19) holds for all 
x 6. H and all u ( - )  6. L2(0, To; U). ra 

It follows from Lemma 4.4 that for arbitrary u( - )  6. L2(0,T0; U), 

(P(To)x,x) <_ JTo(X,u). 

By Lemma 4.1, equation 

I' f~(t) = s ( t ) ~  - s ( t  - . ) B R  -~ B" e ( r 0  - . ) ~ ( . )  d . ,  t e [0, To], 

has exactly one solution zi(t), t e [0, T]. Define control ~(. )" 

~,(t) - - R - ~ B * P ( T o -  t )~( t ) ,  t e [0,Tol. 

Then ~)(-) is the output corresponding to fi(-) and by (4.19), 

JTo(X, fi(. )) -- (P(To)x,x).  (4.20) 

Therefore fi(. ) is the optimal control. 
It follows from (4.20) that P(To) >_ O. Setting u ( - )  = 0 in (4.19) we 

obtain 

0 <_ (P(To)x, x) < (OS(t)x,  S(t)z)  dr, 

o <_ (P(To)~ ,  ~) <_ ( S" ( t ) Q S ( t )  dt ~, ~). 
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Consequently 

IP(T)I < IS*(t)QS(t)l dt for T < To. 

Let now c~ be a number such that 

fO ~ M 2 ct M 2 IS*(t)QS(t)ldt + --~wlQI < -~ 

where T is a given in advance positive number. 
We can assume that T1 < T(a).  It follows from the proof of the local 

existence of a solution to (4.10), that the solution to (4.10) exists on [0, 7"1]. 
Repeating the proof, on consecutive intervals [7"1, 2T1], [2T1,3Tx],..., we 
obtain that  there exists a unique global solution (4.8). 

Nonnegativeness of P(-  ) as well as the latter part of the theorem follow 
from Lemma 4.4. E! 

w  T h e  i n f i n i t e  h o r i z o n  c a s e :  
S t a b i l i z a b i l i t y  a n d  d e t e c t a b i l i t y  

We proceed to the regulator problem on the interval [0, +oo) (compare 
to (4.5)). 

An operator algebraic Riccati equation is of the form 

2(PAx ,x )  - ( P B R - I B ' P z ,  x) + (Qx, x) - O, x (5 D(A),  (4.21) 

where a nonnegative operator P (5 L(H, H) is unknown. 

T h e o r e m  4.3. Assume that for arbitrary z (5 H there exists a control 
ux(t) ,  t >_ O, such that 

J(z ,  u*(. )) < +oo. (4.22) 

Then there ezists a nonnegative operator P (5 L ( H , H )  satisfying (4.21) 
such that P < P for an arbitrary nonnegative solution P of (4.21). More- 
over, the control fi(. ) given in the feedback form 

a(t)  = - R  t _> 0, 

minimizes functional (1.5). The minimal value of this functional is equal 
to 

P r o o s  Let P(t), t >_ 0, be the solution of the Riccati equation (4.9) with 
the initial condition P0 - 0. It follows from Theorem 4.2(ii) that, for 
arbitrary z (5 H,  function (P(t)x, z) ,  t _> 0, is nondecreasing. Moreover, 

<P(t)z,z) < J(z ,  uZ( . )) < +oo, z (5 H. 
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Therefore there exists a finite lim (P(t)x, x), x ~_ H. On the other hand 
tT+oo 

1 
(P(t)x, y) = -~((P(t)(x + y) ,x  + y) - (P(t)(x - y ) , x  - y)) (4.23) 

for arbitrary x, y E H. 
Applying Theorem A.5 (Banach-Steinhaus theorem), first to the family 

of functionals (P(t)x,  .~, t > 0, for arbitrary x E H and then to the family 
of operators P(t), t > O, we obtain that sup ]P(t)l - c < +c~. Hence for 

t > 0  
m 

arbitrary x, y E H, there exists a finite limit a(x, y) - lim {P(t)x, y) and 
t---*-F-oo 

la(x, Y)I -< (sup IP(t)l)lxl lYl ~ clxl ly[, x, y e H. 
t > o  

. . . . .  

Therefore there exists P E L(H, H) such that  

a(x, y) = IPx, y), x, y e H. 

The operator P is self-adjoint, nonnegative definite, because a(x ,y)  = 
a(y,.), a(.,.) > O, *, y e H. 

To show that  P satisfies (4.21) let us fix z 6- D(A) and consider (4.9) 
with h = y -  z. Then 

~(P(t)z,.) -(P(t)z, Az) + (P(t)Az, z) 

+ (Q.,.) - (PBR-*B'F.,.). 

(4.24) 

Letting t tend to +oo in (4.224) and arguing as in the proof of Theorem 
III.1.4 we easily show that  P is a solution to (4.21). 

The proof of the final part  of the theorem is completely analogous to 
that  of Theorem III.1.4. E! 

Let A be the infinitesimal generator of a C0-semigroup S(t),  t > 0, 
and let B E L(U, H). The pair (A, B ) i s  said to be exponentially stabiliz- 
able if there exists K 6. L(H, U) such that the operator AK = A + B K ,  
D(AK) = D(A) generates an exponentially stable semigroup (compare to 
w 3.3). Note that  in particular if the pair (A, B) is null controllable then it 
is exponentially stabilizable. 

Let C 6. L(H, V) where V is another separable Hilbert space. The 
pair (A, C) is said to be exponentially detectable if the pair (A*, C*) is 
exponentially stabilizable. 

The following theorem is a generalization of Theorem III.1.5. 

T h e o r e m  4.4. (i) I f  the pair (A, B) is exponentially stabilizable then the 
equation (4.21) has at least one nonnegative solution P 6- L(H, H). 
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(ii) I f  Q = C*C and the pair (A, C) is exponentially detectable then 
equation (4.21) has at most one solution and if P is the solution of (4.21) 
then the operator A -  B R - 1 B * P  is exponentially stable and the feedback 
K - - R  -1 B* P exponentially stabilizes (4.1). 
Proof .  (i) If the pair (A, B) is exponentially stabilizable then the assump- 
tions of Theorem 4.3 are satisfied and therefore (4.21) has at least one 
solution. 

(ii) We prove first a generalization of Lemma 111.1.3. 

L e m m a  4.5. Assume that for a nonnegative operator M E L(H, H) and 
g L(H, tr) 

2(M(A + B K ) x , x )  + (C*Cz,z) + ( K * R K z , z )  - 0 z ft. D(A).  (4.25) 

(i) I f  the pair (A,C) is ezponentially detectable then the operator 
AK - A + B K ,  D(AK) - D(A)  is exponentially stable. 

(ii) I f  in addition P E L(H, H), P >__ 0 is a solution to (4.21) with 
Q - C 'C,  then 

P > M. (4.26) 

Proof .  (i) Let S t ( - )  be the semigroup generated by AK. Since the pair 
(A, C) is exponentially detectable, there exists an operator L ~. L(V, H) 
such that the operator A* L. - A * +  C'L* ,  D(A*L. ) = D(A*), is expo- 
nentially stable. Hence the operator A -- (A* + C'L*)* - A + LC, 
D ( A ) -  D(A)  generates an exponentially stable semigroup $2(-). 

Let y(t) - Sl( t )x ,  t >> O. Since 

A + B K  = (A + LC) + (LC + B K ) ,  

therefore, by Proposition 4.1, 

/o' y ( t ) -  S2(t)x + S 2 ( t -  s ) (LC + B K ) y ( s )  ds. (4.27) 

We show that 

j0+oo ~+oo 
ICy(s)12ds < +oo and Igy(s)12ds < +oo. (4.28) 

Assume first that z (5 D(A). Then 

d 
ft(t) -- (A + B g ) y  and -d~(My(t), y(t)) - 2(My(t), y(t)), t > O. 

It follows from (4.25) that 

d 
d--~(My(t), y(t)) + (C*y(t), Cy(t))  + ( n K y ( t ) ,  Ky(t))  - O. 
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Hence 

/0' I' (My(t),  y(t)) + ICy(s)12ds + (Rgy(s) ,  gy ( s ) )d .  - ( M . ,  . ) .  (4.29) 

By a standard limit argument, (4.29) holds for all x E H. 
Applying Theorem A.8 (Young's inequality) in the same way as in the 

proof of Lemma III.1.3, we obtain that 

f0 +~176 f0 +~176 
ISa(t).l dt = ly(t)l dt < +oo. 

By Theorem 3.1(i), the semigroup S~ ( . )  is exponentially stable. This 
proves (i). 

(ii) Denote M -  P -  W. Then for z E D(A)  

2(W(A + BK), ,z)  = -  (C*Cz, z) - (K*RKz ,  z) 

- 2 (PAx ,  z) - 2 ( P B K x ,  x).  

Since P satisfies (4.21) with Q = C ' C ,  

2 < W(A + BK)x, x) - - (K* RKz, x) - (PBR- '  B* Px.x) (4.30) 
- 2 ( P B K z ,  x,). 

Let Ko - - R - 1 B * P ,  then RKo = - B ' P ,  PB - - K ~ R ,  and from 
(4.30) we easily obtain that  

2 < W ( A  + B K ) x , x )  = - ( ( K  - K o ) * R ( K  - K o ) x , x ) ,  x ~_ D(A) .  

Since A + B K  is the exponentially stable generator, operator W is nonneg- 
ative by Theorem 3.2. El 

We return now to the proof of part (ii) of Theorem 4.4 and assume that 
operators P _> 0 and Pl _> 0 are solutions of (4.21). Let K -- - R - 1 B * P ,  
then 

2(P(A + BK)z,z)  + (K*RKz,  z) + (C*Cx, z) 

= 2(PAx, z) - (PBR-*B*Pz ,  z) + (C*Cz, z) (4.31) 

--0. 

Consequently, by L e m m a  4.5(ii),/'I _< P. In the same way P _</)i. Hence 
P - P,. Moreover, by Lemma 4.5(i) and (4.31) the operator A + B K  is 
exponentially stable. El 
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A P P E N D I X  

w h . 1 .  Metric  spaces 

A metric space is a pair composed of a set E and a function #: E x E 
R+ such tha t  

~ ( x , y ) - 0  if and only if x - y  

~ ( x , y ) - ~ ( y , x )  for all x, y E E  

~(x, y) _< #(x, z) + ~(z, y), for arbitrary x, y, z E E. 

The function ~ is called a metric. 

For any r >_ 0 and a E E the set 

B(a, r ) -  {x E E; ~ ( a , x ) <  r} (A.1) 

is called a ball of radius r and centre a. A union of any family of balls is an 
open subset of E and the complement A ~ of any open set A C E is called 
a closed subset of E. The smallest closed set containing a set A C E is 
denoted by A or cl A and called the closure of A. 

If there exists a countable set E0 C E such that  E0 - E then E is a 
separable metric space. 

h metric space (E,~)  is complete if for arbi trary sequence (xn) of 
elements of E such that lim ~(xn ,xm)  -- 0 there exists x E E for which 

r l  ~ r lr~--~ OO 

lim e(xn, x) - 0. 
n - - - *  O O  

If El ,  E2 are two metric spaces and F" E1 , E2 a transformation 
such tha t  for any open set F2 C E2 the set 

F-~(r2)- {x ~ El;  F(x) e r~} 

is open in El ,  then F is called a continuous mapping from E1 onto E2. 
A transformation F: E , E is called a contraction if there exists 

c E (0, 1) such that 

~(F(x), F(y))  <_ c~(x, y), for all x, y E E. (A.2) 

T h e o r e m  A.1.  (The contraction mapping  principle.) Let E be a complete 
metric space and F: E ; E a contraction. Then the equation 

F ( x ) - x ,  x E E  (A.3) 
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has a unique solution ~. Moreover, for arbitrary zo 6 E, 

lim e ( z . ,  ~) = O, 
t r l - - .*O0 

w h e r e ,  Z n + l  -"  F ( z , ) ,  n = O, 1 . . . .  

w  B a n a c h  s p a c e s  

A complete, metric space (E, e) which is also a linear space over It (or 
C) and such that  

e(~,, v)  = e(~, - v, o), ~, v e E 

e ( , ~ , ,  O) = I,~le(x, 0),  �9 e E,  a E It (or E C)  

is called a Banach space. The function 

I1~11 = e (~ ,  0),  �9 e E 

is called the norm of E.  
An operator A acting from a linear subspace D(A) of a Banach space 

E onto a Banach space E~ such that  

A ( a x  + By) = a A x  + flAy, x , y  6 D(A),  a ,B  6 R ( a , B  6 C) 

is called linear. 
If D(A)  = E1 and the linear operator A is continuous then it is a 

bounded operator and the number 

[[A[[ = sup{llAxll2; II~ll, < 1} (A.4) 

is its norm. Here ]1" ][1, I1" I]2 stand for the norms on E1 and E2 respectively. 
A linear operator A is closed if the set {(z, Az); z 6 D(A)}  is a closed 

subset of Ei  x E2. Equivalently, an operator A is closed if, for an arbi trary 
sequence of elements (xn) from D(A)  such that for some z 6 El ,  y 6 E2, 
lim I[z, - z[Ix = 0, l iml[Az ,  - y[[~ = 0, one has x 6 D(A)  and A x  = y. 

n - - - *  OO n 

T h e o r e m  A.2 .  (The closed graph theorem.) I f  a closed operator A: E1 , 
E~ is defined everywhere on El ,  ( D ( A ) =  El),  then A is bounded. 

T h e o r e m  A.3 .  (The inverse mapping theorem.) I f  a bounded operator 
A: E1 ~ E2 is one-to-one and onto E2, then the inverse operator F -1 is 
bounded. 

T h e o r e m  A.4 .  (The Hahn-Banach theorem.) Assume that Eo C E is a 
linear subspace of E and p: E , R+ a functional such that 

p(a + b) <_ p(a) + p(b), a, b 6 E 
p(aa)=ap(a), a>_0, a6E.  
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I f  ~,: Eo ----, R is a linear functional such that ~,o(a) <<_ p(a), a 6 Eo, then 
there exists a linear functional ~o: E ~. R such that 

~,(~) - ~,o(~),  ~ e Eo 

and 
~,(~) < p(~),  �9 e E. 

The space of all linear, continuous functionals on a Banach space E, 
with values in R (in C) equipped with the norm [[. II., 

I1~11. = sup{l~o(z)l; I1~11_ 11, 

is a Banach space over R (or C) denoted by E* and called the dual or 
adjoint space to E. 

Assume that A is a linear mapping from a Banach space E1 onto a 
Banach space E2 with the dense domain D(A).  Denote by D(A ~ the set 
of all elements ~o 6 E~ such that  the linear functional z 6 D(A)  ~ ~ ( A z )  
has a continuous extension qs to El.  Then D(A*) is a linear subspaee of 
E~ and the extension ql is unique and denoted by A*~o. The operator A ~ 
with the domain D(A*) is called the adjoint operator of A. 

If a bounded operator A from a Hilbert space E onto g is such that  
IlF~II = Ilxll ro~ all �9 E E,  th~n A is called a nnitary operator. A bounded 
operator A is unitary if and only if A" = F -1. 

T h e o r e m  A.5. (The Banach-Steinhaus theorem.) 

(i) I f  (An) is a sequence of bounded operators from a Banach space 
E1 onto E2 such that 

sup IIA.xll2 < +oo f o r  all z 6 E1 
n 

then supllA.II < +cr  
f l  

(ii) If, in addition, sequence ( A , z )  is convergent for all x 6 Eo, where 
Eo is a dense subset of E,  then there exists the limit 

lim An z - Az  , 
lrl--.~ OO 

for  all z 6 E and A is a bounded operator. 

Let X and Z be Banach spaces and F: U -~ Z a transformation from 
an open set U C X into Z. The Gateaur derivative of F at r0 E U is a 
linear bounded operator A from X into Z such that for arbitrary h 6 X 

lim 1 
t - . o  -t (F(xo + th) - F ( x o ) )  = Ah. 
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If, in addition, 

lim liE(x~ + h) - F(zo) - Ah][ = O, 
,h,-.o Ilhll 

then F is called Frdchet differentiable at z0 and A the Frdchet derivative 
of F at x0 denoted by Fx(z0) or dF(xo). The vector Ah = F~(xo)h = 
dF(xo; h) is the directional derivative of F at x0 and at the direction h E X.  

T h e o r e m  A.6.  (The mean value theorem.) If  a continuous mapping 
F: U --- ,  Z has the Gateaux derivative Fx(z) at an arbitrary point z in the 
open set U, then 

JJF(b)- F ( a ) -  F~(a) (b -  ~)11 (A.5) 

s u p  IIF ( ) - F . ( a ) l l  l ib-  all, 
sTE l( a,b ) 

where I(a, b) - {a + s ( b -  a); s C [0, 1]} is the interval with the endpoints 
a,b. 

w  H i l b e r t  s p a c e s  

If E is a Banach space over I~ (or C) equipped with the transformation 
(-, .)" E • E , I] (or C) such that  

(a, b) =(b, a), (= (b, a)) 

(a, a) >_0 and (a, a) - 0 if and only if a = 0 

(c~a + f~b, c) -c~(a, c) 4-/3(6, c) 

for a,b E E and scalars a,/~ 

Ilall-( ,a) E ,  

then E is called a Hilbert space and the form (.,-) is the scalar product on 
E.  

T h e o r e m  A.7.  (The Riesz representation theorem.) I f  E is a Hilbert 
space then for  arbitrary ~ E E* there exists exactly one element a E E such 
that 

~(x)  -- (z ,a) ,  z E E. (A.6) 

Moreover, 

II ll. = ll ll. 
This way E* can be identified with E. 

Norms on Hilbert spaces are also denoted by I " I. 
Typical examples of Hilbert spaces are l u and I~. The space 12 consists 

+co 
of all real sequences (~,) such that ~ I~,12 < Tcx) and the scalar product  

n - - 1  

is defined by 
{(~-), (~7-)) = E ~" ~"' (~")' (7-) E 12. 

fi  
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.-~- oo 

The space 1~ consists of all complex sequences (~,) such that  ~ I .1 < 
n----1 

+oo and the scalar product is given by 
~-oo 

w Bochner's integral 
Let E be a metric space. The smallest family g" of subsets of a metric 

space E such that 
(i) all open sets are in ~e 

(ii) i f F E s  ~ E s  
+oo 

(iii) if FI, F~, . . .  E s then (.J F ,  E g' 
r t ~ l  

is called the Borel a-f ield of E and is denoted by B(E).  Elements of B(E) 
are called Borei sets of E. 

A transformation F: Et ~ E2 is called Borel  if for arbitrary F2B(E2), 
F -1(F2) E B(F~). If E2 = It then F is called a Borel  func t ion .  Continuous 
mappings are Borel. 

Assume that E is a separable Banach space and let E1 = (c~,/~) C 
( -00 ,  +00) and E2 = E. If f:  (c~,~) ~ E is a Borel transformation then 
also function IIr(t) l l ,  t ~ ( a , ~ ) i s  Borel measurable. The transformation F 
is called Bochner  integrable if 

f P IIF(t)ll d t <  +r162 

where the integral is the usual Lebesgue integral of tile real-valued function 
liE(-)11. Assume, in addition, that  F is a s imple  t rans fo rma t ion ,  i.e., there 

gn 

exist Sorel, disjoint subsets F~, . . .  ,F,~ of(c~,~), U Fj = ((~, f~) and vectors 
j=l 

al ,  �9 �9  am such that 
F ( t )  - ai, t E Fi. 

Then the sum 

j = l  

is well defined and by definition equal to the Bochner integral of f over 
((r, f~). It is denoted by 

f F(t) at. 
Note that  for simple transformations F 

II r ( t )   tll < llr(t)ll dr. (A.7) 
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Let {en } be a dense and a countable subset of E and F a Borel mapping  
from (a,  f/) into E.  Define 

7,,,(t) - min{ll f( t)  - ~kll; k = 1 , . . . ,  m}, 

k, , , ( t )  - min{k < m; 7re(t) = Ill(t) - ~kll} 

and  F.,(t)  = ek..(,), t e (c,, f0,  m = 1,2, . . . .  Then Fm is a Borel, simple 
transformation and I I F m ( t ) -  F(t) l l ,  t e (a ,  ~),  decreases monotonically to 
0 as m ~ +cx~. In addition, 

I IF , , , ( t ) -  F(t)ll  < I1~, - F ( t ) l l  
_< I1~,11 + IIF(t)ll, t e (r m -  1, 2 . . . .  

Consequently, if F is Bochner's integrable 

lim II Fro(t)  dt  - F , , ( t )  dtll 
n ~ l T l  - ' *  O 0  

< lim ]lFm(t) - F(t)ll at + lim IIF,,(t) -- F(t)ll  dt - O, 
" - "  m - - - ~  ~ ~ --.~ o o  

and therefore there exists the limit 

l lim F,, ( t ) dr, 
n - - - t .O0  

which is also denoted by f ~  F ( t ) d t  and called the Bochner integral of F.  
The est imate (A.7) holds for arbitrary Bochner integrable functions. More- 
over, if (G,~) is any sequence of Borel transformations such that  

l i r n  I lam(t)  - F( t ) l l  dt - 0 

then 

I' I' lirnoo II G.,(t)  d t -  F(t) dtll - 0. 

One can asily show, using Theorem A.9, that  for an arbitrary Bochner 
integrable transformation F ( .  ) there exists a sequence of continuous trans- 
formations (Gin) such that  

l i rno IIGm(t) - F(t)l] dt - O. 
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w A . 5 .  S p a c e s  o f  c o n t i n u o u s  f u n c t i o n s  

Let - c o  < a </~  < +co and E be a Banach space. The space of all 
continuous functions from [a,/$] into E with the norm 

llfll = sup{llf(t)II; t e [,~,~]} 
is a Banach space, denoted by C(a,[3; E). If the space E is separable, the 
space C(a,/~; E) is separable as well. We have also the following result: 

T h e o r e m  A.8. (The Ascoli theorem.) Let K be a closed subset of 
C(~,/~; R"). Every sequence of elements from K contains a convergent 
snbsequence if and only i f  

(i) sup{llf(t)ll; t ~ [a,#], f ~ K} < +co 
(ii) for arbitrary e > 0 there ezists 6 > 0 such that 

I I f ( t ) -  f(s)ll  < e for  all f G K 

and all t ,  s E [~, ~] such that It - sl < 6. 

w S p a c e s  o f  m e a s u r a b l e  f u n c t i o n s  
Let p >_ 1. The space of all equivalence dames of Bochner's integrable 

functions f from (~, a) < ( -c~ ,  +c~) into E such that 

L Ollf(t)ll ~ < + c o  dt 

is denoted by LP(a,/~; E). It is n Banach space equipped with the norm 

Ilfl = I I f ( t ) l l  ~ d t  �9 

If E is a Hilbert space and p = 2 then L2(o,/~; E)  is a Hilbert space as well 
and the scalar product ((., .)) is given by 

10 ((I, 9)) = (I(t) ,  g(t))Edt. 

If E = R or E = C we write Ln(~, 1~) for short. 
1 + 1  T h e o r e m  A.9. (Young's inequality.) I f  1 < p, q < +co, 1 = p -~ -  1 

and f E LP(O, +co), g E Lq(0, +co), then f .  g E Lr(o,-Fco) ( f  * g(t) -- 
t 

f f ( t -  s)g(s)ds,  t >_ O) and 
0 )i,. 

If * g(t)l" dt <_ If(t)l p dt Ig(t)l q dt . 
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T h e o r e m  A .  10. I f  f E Lp ( -oo ,  -boo) then 

limf_+ 6--*0 
If(t  + 6) -- f ( t ) l  dt = O. 

T h e o r e m  A . 1 1 .  (Luzin's  theorem.) I f  f" [a,/~ l ; R is a Borel funct ion 
then for  arbitrary 6 > 0 there exists a closed set F C [a,/~] such that the 
Lebesgne measure of [a,/~] \ F is smaller then e and f restricted to F is a 
continuous function.  

A funct ion f :  [a,/~] , II n is called absolutely continuous if for arbi- 
trary e > 0 one can find 6 > 0 such that  if a _< to < t l < t2 < . . .  < t2k < 
t2k+l <~ P a n d  

then 

k 

j=o 

k 

[f(tzj+a) - f ( t j ) [  < ~- 
j=0 

A function f" [a,/~] , R" is absolutely continuous if and only if there 
exists ~ E L l (a , /~ ;  R") such that  

s f ( t )  -- f ( a )  -I- ~(s )  ds, t E [a, 1~]. 

Moreover, f is differentiable at almost all t E (a,/~], and 

d[ 
d-7(t)- 
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N o t a t i o n s  

R" The set of all real numbers. 
R+" The set of all nonnegative real numbers. 

C" The set of all complex numbers. 
E n" The Cartesian product of n-copies of E. 

M(n, m)" Set of all n x m matrices with real elements. 
M(n, m; C)" Set of all n x m matrices with complex elements. 

12. Hilbert space of all real sequences ({n) satisfying ~ I{n[ 2 < +oo 

with the scalar product 

( o . ) )  - 
t ' l  

l~:" Hilbert space of all complex sequences (~n) satisfying ~ I~.12 < 
n 

+e~ with the scalar product 

Xr: Indicator function of the set F: xr (z )  = 1 if z E r, xr(=) = 0 if 
z E F  ~. 

LV(c~,~; E): The space of all E-valued, Borel functions integrable in power p 
on the interval (c~,/3). 

L(E, F): The space of all linear bounded operators from E into F. 
C~~ ~): The space of all infinite differentiable real functions with compact 

supports included in (a, ~). 



I N D E X  

Adjoint operator 190, 246 
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Canonical representation 28 
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Contraction mapping principle 244 
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Controllability matrix 14 
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Differential inequalities 92-3 
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Feedback stabilizing 112, 141,242 
- in Wat t ' s  regulator 6 

First Liapunov's method 102, 120 
Frechet's derivative 246 

Gateaux '  derivative 246 
Generator of a semigroup 178, 181 
GronwaU's lemma 92 
Group of unitary transformations 

180, 246 

Hamiltonian 154, 162 
Harmonic input 52 
Heat equation 8, 176 
Heating of a rod 8 
Homotopic mapping 108 
t tomotopy 108 

Image of an operator 207 
Impulse response function 50, 54 
- of linearization 122 
Index of a transformation 109 
Input  1 
- reference 124 
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- impulsive 50 
- periodic 52 

Input -output  mapping 50, 12"1 
- map of a system 50, 121 

regular 124 
Interval of maximal existence 74 

Jordan block 29, 96 

Kalman's  condition 17 
- r a n k  condition 17 
Kernel of an operator 207 

Lemma on measurable selector 173 
Liapunov's function 103 
Lie bracket 81 
Limit set 106 

Linear regulator problem 133, 232 
Linearization of a system 78 
- method 100 
Lipschitz' condition 106 
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Local solution 73 
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Matrix 10 
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- solution 74 
Maximum principle 128, 152 
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Measurable selector 173 
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Needle variation 153 
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Observer 47 
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- linear 245 
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- self-adjoint 191 
Optimal  consumption 7 
- stopping 144 
Optimali ty  criteria 3, 127 
Orbit  106 
Output  1 
Oven electrically heated 3 
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Pair controllable 16, 21 
- detectable 46 
- observable 25-6 
- stabilizable 43 
Parametrization of a surface 81 
Periodic component 52 
Positive controllability 65 
- system 64 
Principle contraction mapping 244 
Problem of optimal consumption 7 

Reachable point 2, 14, 16 
Real 3ordan block 29 
Realizable mapping 3 
Realization controllable-observable 

58 
- impulse response function 50, 54 
- partial 124 
- transfer function 51-2 
Reference inputs 124 
- sequence 124 
Reflexive space 209 
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Stable matrix 28 
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- exponentially stable 100 
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- reachable 14 
Stopping optimal 144 
Strategy impulse 142 
- optimal 134 
- stationary 143 
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Surface 81 
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- closed-loop 1 
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- controllable 16 
- controllable approximately 212 
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- detectable 49, 241 
-exac t ly  controllable 212 
- exponentially stable 225 
- locally controllable 77 
- observable 25, 88 
- on manifold 3 
- stabilizable 43 
- symmetric 87 
- positive 64 
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Theorem Ascoli 250 
- Banach-Steinhaus 246 
- Cayley-Hamil ton 17 
- closed graph 245 
- Datko 231 
- Fillipov 171 
- Hahn-Banach  245 
- Hille-Yosida 185 
- Jordan  29, 96 
- La Salle's 105 
- Lax-Milgram 192 
- Lions 192 
- Luzin 251 
- o n  regular dependence 75 
- on separation 162 
- mean-value 247 

Philips 188 
Riesz 2 
Routh 34 

Time-optimal problem 3, 164 
Transfer function 51 

Uncontrollable par t  24 

Value function 128, 130 
Vector field of class C k 81 

Weak convergence 165 
- limit 165 


	cover-large.gif
	front-matter
	fulltext
	fulltext_001
	fulltext_002
	fulltext_003
	fulltext_004
	fulltext_005
	fulltext_006
	fulltext_007
	fulltext_008
	fulltext_009
	fulltext_010
	fulltext_011
	fulltext_012
	fulltext_013
	fulltext_014
	fulltext_015
	back-matter

