
Chapter 1

Mathematical Models

In this chapter we present a range of dynamical systems from different areas of ap-
plication and use them as examples to illustrate some typical problems from systems
and control theory. Several of the mathematical models we introduce and discuss in
the following sections will be taken up as examples in later chapters.
The development of mathematical systems theory starts in the next chapter. Read-
ers who prefer to go directly to Chapter 2 can do so without any difficulty as the
mathematical exposition in that chapter is self-contained and independent of fol-
lowing material. On encountering an example based on a dynamic model from
Chapter 1, they may wish to look back to its origin here to find more details and
get additional background information.
This chapter consists of six sections in which we present dynamical models from the
following areas:

• Biology (Population Dynamics)

• Economics

• Mechanics

• Electromagnetism and Electrical Systems

• Digital Systems

• Heat Transfer

The mathematical models in the first three sections are described by ordinary differ-
ential equations and by difference equations. Also in Section 1.4, although the basic
equations of electromagnetism are partial differential equations, we will only con-
sider so-called lumped models of electromagnetic devices which again are described
by ordinary differential equations. Different types of models are presented in the
remaining two sections. In Section 1.5 we consider digital systems which have only
a finite number of different states and are represented as finite automata. In the
last section we deal with an example of a distributed parameter system described
by partial differential equations.
In all these sections we will not only discuss the mathematical models but also point
out some of the problems encountered in determining a mathematical model for a
real process. While most of the sections just present a gallery of typical examples,
some modelling methods will be sketched out in the sections on mechanical and
electrical systems.
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1.1 Population Dynamics

In order to predict or estimate the growth of a given population one needs a dynam-
ical model. Such models may also be useful if one wants to control the development
of a population. For example problems of control arise in fisheries management
where one would like to keep fishing at a sustainable level and maximize the average
catch over long time periods. In other applications interaction between different
populations may be important and one may make use it for control purposes, e.g.
in pest control where one introduces predators to reduce the pest. In this section
we consider two classical models of population dynamics.

Example 1.1.1. (Logistic growth model). The simplest growth model is

ẋ(t) = ax(t). (1)

Here x(t) is the size, density or biomass of a given population at time t and the growth
parameter a is the intrinsic growth rate (difference between the birth rate and the death
rate) of the population. If the initial size of the population is x(0) = x0 > 0 the develop-
ment follows the exponential law x(t) = eatx0. Thus we have exponential growth if a > 0
(i.e. the birth rate is larger than the death rate) and exponential decay if a < 0. The
idea that human populations when “unchecked by the difficulties of subsistence” have a
positive constant natural growth rate goes back to Malthus. In his Essay on Population
(1798) he contrasted the natural geometric growth of mankind with the linear growth of
subsistence resources and drew far reaching conclusions from this which had a profound
effect on political economics.
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Figure 1.1.1: Exponential and logistic growth models

The exponential growth model, although adequate in many applications over a limited
time span becomes unrealistic in the long run since eatx0 → ∞ as t → ∞. The growth
rate ẋ(t)/x(t) cannot be constant over arbitrarily long periods of time, since resources are
limited. As the population becomes larger and larger, restraining factors will have an in-
creasingly negative effect on population growth (“crowding”). In 1838 Verhulst proposed
another growth model which incorporated the limiting factors and accounted for the fact
that individuals compete for food, habitat, and other limited resources,

ẋ(t) = r(K − x(t))x(t). (2)
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According to this model a small population will initially grow at an exponential rate rK

but as the population increases the growth rate will be diminished.
If the system is initially at x0 = K then it will remain at x(t) = K for all time. Then the
population is at an equilibrium x(t) ≡ x̄ = K, t ≥ 0. If 0 < x0 < K the population x(t)
will increase continuously and approximate K as t → ∞. If x0 > K, the population size
x(t) will converge towards K from above. In fact the following formula for the solution is
easily obtained by separation of variables

x(t) =
K

1 + (K/x0 − 1) e−rKt
.

The graphs of these solutions are called logistic curves and Verhulst’s model is also known
as the logistic growth model. Figure 1.1.1 illustrates that x(t) ≡ K is a stable equilibrium,
i.e. all trajectories with initial state x0 > 0 converge towards this equilibrium as t →
∞. The saturation level K is interpreted as the environmental carrying capacity of the
corresponding ecosystem.Now suppose that we want to describe the dynamics of a fish
population under the influence of fishing. If u(t) ≥ 0 is the catch rate and we assume the
logistic growth model for the undisturbed fish population, we obtain Schaefer’s model

ẋ(t) = r(K − x(t))x(t) − u(t). (3)

Note that only non-negative solutions x(t, u) ≥ 0 make sense. Given an initial state
x0 > 0 and a fixed time period [t0, t1], a fishing policy u(·) : [t0, t1] → R+ may be called
“admissible” if it leads to a non-negative solution x(t, u) of (3) for t ∈ [t0, t1] and “optimal”
if it maximizes the overall catch during that period. Such an “optimal” fishing policy will,
however, lead to depletion at time t1. To prevent this one may wish to impose a “terminal
constraint” x(t1) ≥ x1 where x1 > 0 is a lower bound to an acceptable fish population at
the end of the period. Thus we end up with the following optimal control problem:

Maximize

� t1

t0

u(t)dt subject to u(t) ≥ 0, x(t, u) ≥ 0, t ∈ [t0, t1], x(t1) ≥ x1.

If u(t) is required to be constant, the problem is easily solved, see Ex. 2.1.15.
Another optimal control problem which can be solved by elementary means is the optimal
constant-effort harvesting problem. Here the harvesting rate u(t) is by definition propor-
tional to x(t), i.e. u(t) = cx(t). This is a simple example of feedback control where the
control variable u(t) is determined as a given function of the instantaneous state x(t) of
the system. Following this control strategy one obtains a Verhulst model in which the
parameters have changed

ẋ(t) = r(K − c/r − x(t))x(t).

If c < rK there is an equilibrium solution x(t) = x̄ = K − c/r, t ≥ 0 corresponding to the
constant harvesting policy u(t) = cx̄, t ≥ 0. Again one can determine the optimal constant
harvesting policy which yields the highest sustainable harvesting rate, see Ex. 2.1.15. ✷

Remark 1.1.2. Although the logistic model is a widely used and successful model which
predicts quite well the growth of various laboratory populations (see Notes and Refer-
ences), it is a highly simplified model. It is based on a number of assumptions which are
not usually satisfied when the growth of a species in a real ecosystem is considered, e.g.

(i) The influence of environmental factors on the growth of the species is assumed to be
constant in time. But these factors and the behaviour of a species usually vary with
the time of the year. Also there are often random variations in the environment.
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(ii) The effects of limited resources are assumed to affect all individuals of the species
in an equal manner. A more realistic model would take the spatial distribution of
the species and its resources into account (partial differential equations).

(iii) It is assumed that the birth and death rates of the population respond instantly to
the population size, whereas usually there is a delay between birth and the ability
to give birth.

(iv) The age distribution of the population is assumed to be constant or that if it changes
it does not influence the growth of the species.

Although the assumptions are not realistic, highly simplified models like that of Verhulst
are often of great scientific value. Their purpose is not to give an accurate portrait
of an underlying real process but to enhance the understanding of some of its internal
mechanisms. As such they can be more important motors for scientific progress than
complex “realistic” simulation models1. ✷

Often the dynamics of a population are strongly influenced by the interaction with
other populations in the same ecosystem. Several species may compete for the same
natural resources or a species may be predatory on some species while serving as
prey for others. In the following example we describe a classical predator-prey model
due to Lotka and Volterra2.

Example 1.1.3. (Predator-prey system). Suppose that an island is populated by
goats and wolves. The goats survive by eating the island’s vegetation and the wolves
survive by eating the goats. Often oscillations are observed in the development of such
predator-prey populations. If, initially, there are only a few wolves but many goats, the
wolves have a lot to eat and the number of goats will be diminished while the number of
wolves will increase until there are not enough goats to feed them. Then the number of
wolves will be reduced so that the goats will be able to recover and this closes the cycle.
The classical Lotka-Volterra model for such a predator-prey system is

ẋ1 = ax1 − bx1 x2

ẋ2 = −cx2 + dx1 x2, (4)

where x1 and x2 are the densities (number per unit area) of the prey and predator popu-
lations respectively, and a, b, c, d are positive constants. The model mirrors a qualitative
feature which has been observed in many real predator-prey systems, the persistence of
periodic fluctuations. This is illustrated in Figure 1.1.2. x̄ = (c/d, a/b) is an equilibrium
point of (4) and any initial state x0 �= x̄, x0

1 > 0, x0
2 > 0 leads to a periodic trajectory

cycling around this equilibrium point in the positive orthant.
Clearly, this is a simplistic model and does not aim at simulating or predicting a real
process. The model is based on the following assumptions.

1“This work seeks to gain general ecological insights with the help of general mathematical
models. That is to say the models aim not at realism in detail, but rather at providing mathematical
metaphors for broad classes of phenomena. Such models can be useful in suggesting interesting
experiments or data collecting enterprises, or just in sharpening discussion.” (R. M. May, Preface
of “Stability and Complexity in Model Ecosystems”).

2The story of how Volterra came to design the model (independently of Lotka) is interesting. For
many years fishermen had observed periodic fluctuations between sharks and their prey populations
in the Adriatic Sea. During World War I, commercial fishing was greatly reduced and so it was
expected that there would be plentiful fish stocks for harvesting after the war was over. Instead the
catches of commercially valuable fish declined after the war while the number of sharks increased.
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(i) In the absence of predators the prey population grows exponentially with rate a.

(ii) In the absence of prey the predator population decreases at the death rate c.

(iii) The growth of the predator population depends affinely on the food intake, i.e. on
predation.

(iv) Predation depends on the likelihood that a victim is encountered by a predator and
this likelihood is proportional to the product x1x2 of the two populations’ densities.

An assumption similar to (iv) is made in chemical kinetics where, according to the so-
called law of mass action, the rate of molecular collisions of two substances in a given
solution is assumed to be proportional to the product of their concentrations.
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Figure 1.1.2: Predator-prey trajectories

Many “more realistic” models have been obtained from (4) by modifying the predator-free
prey growth term ax1 to include crowding effects or by allowing for saturation effects
and lags in the predators’ response to increasing prey densities. For instance, in order to
eliminate the assumption that the prey grows exponentially in the absence of predators
one could introduce a term −ex2

1 in the first equation of (4) which accounts for the effect
of crowding on the growth of the prey (see Example 1.1.1).

ẋ1 = ax1 − bx1 x2 − ex2
1 = e(a/e − x1)x1 − bx1 x2

ẋ2 = −cx2 + dx1 x2. (5)

This drastically alters the qualitative behaviour of the predator-prey system. In the ab-
sence of predators the prey now evolves according to a logistic growth model with carrying
capacity a/e. Moreover, the new system does not always have an equilibrium with positive
coordinates. In fact the equilibrium equations are

(a − bx2 − ex1)x1 = 0, (−c + dx1)x2 = 0

and these equations have a (unique) positive solution x̄ = (c/d, (da − ec)/bd) if and only
if a/e > c/d. Figure 1.1.3 illustrates the changed behaviour of the modified predator-
prey system (5). In particular, it has no non-constant periodic solutions and its only
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Figure 1.1.3: The effect of crowding

positive equilibrium point x̄ = (c/d, (ad−ec)/bd) is now asymptotically stable. It attracts
all trajectories starting at initial states close to it, but not necessarily those starting
further away, see Figure 1.1.3. In Chapter 3 we will show how the stability or instability
of an equilibrium point can be examined for a given set of parameters. Using these
results it is possible to show that the other two equilibrium points (0, 0) and (a/e, 0) are
unstable. The qualitative changes between (4) and (5) do not depend on the size of e > 0
which can be arbitrarily small. This shows that the classical predator-prey system is not
structurally stable in the sense that a perturbation of the model, however small, may
exhibit a qualitatively different behaviour.
In spite of their simplicity predator-prey systems and other models of two species are used
in a number of control applications, e.g. in the management of renewable resources or in
pest control where predators are introduced to control pests feeding on agricultural crops.
Consider for instance a predator-prey system of salmon and herring in marine fishing.
Choosing a suitable predator-prey model and adding control terms to both equations
(catch rates) one may ask what are the optimal sustainable harvesting rates given the prices
for salmon and herring, and what is the corresponding equilibrium point of the system,
i.e. the stocks of salmon and herring which allow one to realize the optimal rates. If this
optimal equilibrium point is found, The problem then arises of how the optimal equilibrium
can be attained from a given initial population of salmon and herring by applying a suitable
fishing policy. This is a controllability problem which we consider in Vol. II. In order to
be of any practical value, the optimal equilibrium must be asymptotically stable since
otherwise unavoidable small deviations of the populations from their optimal sizes may
lead to large deviations from the optimal equilibrium solution. But asymptotic stability
is not enough. It is important that this property is preserved under perturbations which
reflect the uncertainties about the model and its parameters. This is a problem of robust
stability which we will analyze in Chapter 5. ✷

1.1.1 Notes and References

Modelling in general

There are a number of introductions to dynamical systems which emphasize modelling.
In particular, we recommend the book by Luenberger (1979) [349]. Many elementary
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examples of control systems can be found in a collection of case studies by MacClamroch
(1980) [369]. Additional information about modelling and a large number of examples can
be found in textbooks on the analysis, modelling and design of dynamic systems, see for
example Ogata (1992) [397], Burton (1994) [84], Close and Frederick (1995) [105].
The reader who is interested in modelling techniques for a variety of physical systems is
referred to Wellstead (1979) [516], Shearer et al. (1967) [462], MacFarlane (1970) [355].

Population Dynamics

A comprehensive textbook discussing dynamic models in various areas of biology and the

life sciences is Murray (1993) [385], see also Edelstein-Keshet (1988) [146], Hoppensteadt

and Peskin (1992) [263]. The book by Murray also contains an extensive bibliography.

Population Dynamics is one of the core subjects of mathematical biology and was amongst

the first areas in life sciences which attracted mathematical methods. Classical references

are Malthus (1798) [358], Verhulst (1938) [506], [347], Volterra (1927) [509] [510], Kostitzin

(1934) [315] and Kolmogoroff (1936) [313]. English translations of some of their papers

and brief discussions of their work can be found in [489].

Various empirical investigations have shown a good fit between the logistic model and

the growth of actual laboratory populations, see e.g. Lotka (1924) [347] (Drosophila) and

Gause (1959) [185] (Paramecium caudatum). A detailed discussion of the Verhulst model

can be found in May (1981) [368]. The behaviour of the discrete time logistic equation

x(t + 1) = rx(t)(1 − x(t)) has been analyzed by means of cobweb diagrams in Edelstein-

Keshet (1988) [146]. The qualitative features of the model change drastically at certain

critical parameter values (bifurcation values) and for certain values of r chaotic behaviour

is observed, see Ex. 3.1.15. A discussion of this model in the context of Population Dy-

namics can be found in May (1976) [367].

The controlled Verhulst equation (3) was used by Schaefer (1954) [449] to study the

tuna fisheries of the tropical Pacific. It is probably the simplest dynamical model in

Bio-economics (an interdisciplinary field which combines Mathematics, Biology and Eco-

nomics), and has been used to study the effect of harvesting on growing populations. A

standard reference on this subject is Clark (1976) [101], see also [102]. Control aspects are

also important in bio-technology. A book on modelling bio-reactions and bio-reactors is

Nielsen and Villadsen (1994) [392].

There is a large variety of models for interacting populations and some of them can al-

ready be found in the classical references above. These models play an important role in

theoretical Ecology, see Pielou (1977) [411], May (1981) [368] and [366]. Important areas

to be analyzed are the existence and stability of equilibria, the existence and stability

of periodic solutions, their dependency on parameters, the effect of lags, the relationship

between stability and complexity, the effect of competition, age structure and migration

on growth rates, the extinction of species etc. An interesting mathematical discussion of

various two species models is given in Hirsch and Smale (1974) [258]. The problem of

robust stability or “resilience” is of particular interest in Ecology, for a discussion in the

context of “complexity versus stability”, see May (1974) [366].

Supplemented with a control term population models are also used in the management of

renewable resources, see Clark (1985) [102]. Other areas of application include Epidemi-

ology Bailey (1975) [31]), theories of evolution Hofbauer and Sigmund (1988) [259], and

pest control (rabies, weed dispersal, foot and mouth, etc.), see e.g. Evans and Pritchard

(2001) [153] and the references therein.
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1.2 Economics

In contrast to the previous examples we will now consider dynamic models which
evolve in discrete time t = 0, 1, 2, . . . . The time axis is sub-divided in periods of
equal length and x(t) denotes the value of x in the period t. Usually economic data
is not available in a continuous way, but is given as a time series accumulated over
certain periods (days, months, years,...). So discrete time models are particularly
appropriate here.

Example 1.2.1. (Cobweb model). Supply and demand of a given commodity depend
upon its price. With an increasing price p the supply S(p) increases whilst the demand
D(p) decreases. Given the supply and demand curves of a commodity its equilibrium
price will be that value p̄ which clears the market, i.e. the supply matches the demand.
Thus p̄ is the abscissa of the intersection point of the supply and the demand curves, see
Figure 1.2.1. This is a static supply and demand model for determining the price of a
single commodity in a market. It remains unclear how this equilibrium price is actually
realized by the interaction of sellers and buyers in the market place. But the model is not
unreasonable if we assume that the commodity is not stored (and will perish if it is not
sold). Let us now consider an economy where pork for example is produced for immediate

pp

D(p)

S(p)

S(p)

D(p)

(a)  stability (b)  instability

p(0)p(1) p(2)p(3) p(1) p(0)    p(2)p(3)

Figure 1.2.1: Cobweb Diagram

consumption and let us take into account the fact that the production (raising pigs) takes
time. Choosing the production time as the basic period, the supply of pigs at time t ∈ N

will depend on the price p(t − 1) valid at the time t − 1 when the decision was taken to
produce the pigs for consumption in period t. On the other hand the actual demand for
pork at time t depends on the current price p(t). Let us assume – according to the above
static model – that the price p(t) is determined in such a way that the complete supply
is sold at time t. Assuming that the demand curve is strictly decreasing and its range
contains the range of the supply function there will exist a unique value of p = p(t) for
which this happens, p(t) = D−1(S(p(t−1))). Thus, starting with an initial price p(0) = p0

the prices p(t) will develop according to the difference equation

p(t + 1) = D−1(S(p(t))), t ∈ N, p(0) = p0. (1)

Using the given supply and demand curves the solution p(·) of this initial value problem
can easily be constructed, see Figure 1.2.1. The initial price p(0) determines the supply
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S(p(0)) at period 1 via the supply curve and this supply determines the equilibrium price
p(1) which clears the market at period 1 as the unique solution p of D(p) = S(p(0)). Going
through the same cycle with p(1) instead of p(0) and continuing the process we obtain a
sequence (p(t))t∈N of prices. The corresponding time series of purchases/sales is given by
D(p(t)) = S(p(t − 1)), t ∈ N. The cobweb-like picture generated in this way led to the
naming of the model.
p̄ is an equilibrium of the above system i.e. a solution starting in p̄ will always remain
there, if and only if, it is a fixed point of the function on the RHS1 of the difference
equation. Equivalently, S(p̄) = D(p̄). So (p̄, D(p̄)) is just the intersection point of the
demand and supply curves. In the situation depicted in Figure 1.2.1(a) the prices p(t) and
purchases/sales D(p(t)) = S(p(t−1)) converge towards the equilibrium values p̄ and D(p̄)
as t → ∞ (asymptotic stability). The second picture shows that a different configuration
of the two curves can lead to a diverging spiral around the equilibrium point (instability).
This means that a small initial deviation of p(0) from p̄ will lead to ever larger oscillations
of prices and purchases/sales around their equilibrium values. Here a weakness of the
model becomes apparent since in this case prices will eventually become negative.
We now analyze the conditions under which stability and instability may occur. For this
let us suppose that the supply and demand curves are linear,

D(p) = D0 − ap, S(p) = S0 + bp

where D0 ≥ 0, a, b > 0 and S0 ∈ R are constants. Then the price p clearing the market
with supply S > 0 is determined by the equation D0 −ap = S, i.e. p = (D0 −S)/a. Hence
the difference equation (1) reads

p(t + 1) = (D0 − S0 − bp(t))/a = (D0 − S0)/a − (b/a)p(t), t ∈ N, p(0) = p0. (2)

The corresponding equilibrium price is p̄ = (D0 − S0)/(a + b). An easy calculation shows
that the deviations from the equilibrium x(t) = p(t) − p̄ satisfy the difference equation

x(t + 1) = −(b/a)x(t), t ∈ N, x(0) = p0 − p̄.

The solution of this equation is x(t) = (−b/a)tx(0) and so we have damped oscillations
(asymptotic stability) if and only if b < a i.e. the demand curve is steeper than the supply
curve. In economic terms this means that the consumers react more sensitively to changes
in the price than the suppliers. Similarly we have instability if and only if b > a. Equality
between the two parameters leads to periodic oscillations around the equilibrium.
The cobweb model assumes that the suppliers do not learn from past experience - in
making their production decision they always expect the price in the next period to be
equal to the present one. This is rather unrealistic. The following model, due to Goodwin,
assumes that price expectations which guide the production decisions are modified by past
experiences according to the rule

p̂(t) = p(t − 1) + ρ[p(t − 1) − p(t − 2)]

where ρ ∈ R is a constant. The case ρ = 0 corresponds to the cobweb model. Usually
the value of ρ is chosen between −1 and 0, in which case the price is expected to move in
the opposite direction to that of the previous period, i.e. suppliers expect oscillations in
the price. If ρ > 0 the price is expected to move in the same direction as in the previous

1RHS: right hand side, LHS: left hand side.
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period. Assuming the same linear demand and supply curves as before we are led to the
following difference equation for the price clearing the market at period t + 1

p(t + 1) = (D0 − S(p̂(t)))/a = (D0 − S0)/a − (b/a) {p(t − 1) + ρ[p(t − 1) − p(t − 2)]}.

Equivalently

p(t + 1) = (1 + ρ)(b/a) p(t − 1) − (b/a) ρp(t − 2) + (D0 − S0)/a. (3)

This is a difference equation with two time lags and hence two initial values, say p(0)
and p(1), have to be specified to start up an iterative solution process. In the next
chapter we will derive explicit formulas for the solutions of such equations. (3) has the
same equilibrium solution p(t) ≡ p̄ = (D0 − S0)/(a + b) as (1), but now it is no longer
immediately obvious how the asymptotic stability of this equilibrium depends on the
parameters (a, b, ρ) of the system. In Chapter 3 we will develop methods for analyzing
stability properties of equilibria of discrete time systems, see Ex. 3.3.16. ✷

The cobweb model is concerned with a micro-economic dynamical problem – the
price dynamics in a single product market. In contrast we will now consider a model
for the dynamics of a whole national economy. One would expect such a model to
involve an enormous number of difference equations representing the production,
pricing and consumption of a large variety of goods, incomes, saving and investment
activities, tax flows and public expenditures etc. In fact such large, “realistic” mod-
els have been built in econometrics and have been used for economic forecasting and
policy making. On the other hand highly aggregated models are used in theoretical
macro-economics in order to gain insight into basic economic mechanisms. The next
example deals with a classical model of the business cycle.

Example 1.2.2. (Samuelson-Hicks multiplier-accelerator model). We begin with
a nonlinear version of the model. The basic variables are

Y (t) the total national income (= national product) in year t

C(t) the total consumer expenditure in year t

I(t) the total (net) investment in year t

G(t) the total government expenditure in year t.

We make the following assumptions:

(i) the total national product is the sum of consumer, investment and government
expenditure,

Y (t) = C(t) + I(t) + G(t), t ∈ N, (4)

(ii) the consumer expenditure in year t + 1 depends only on the income in the previous
two years t and t − 1,

C(t + 1) = f(Y (t), Y (t − 1)), (5)

(iii) the investment in year t + 1 only depends on the increase of national income from
year t − 1 to year t,

I(t + 1) = h(Y (t) − Y (t − 1)). (6)

Substituting (6) and (5) in (4) gives

Y (t + 1) = f(Y (t), Y (t − 1)) + h(Y (t) − Y (t − 1)) + G(t + 1). (7)
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(7) is an example of a nonlinear second order difference equation. Given future government
expenditure G(t), t = 2, 3, . . . and the national income Y (0), Y (1) in the initial two years
one can solve (7) recursively to determine the future national income Y (t), t = 2, 3, . . . .
Since the government is free to determine its expenditures (within certain constraints)
G(t) represents a control variable.
Let us now suppose that Y (t) ≡ Y is some given equilibrium solution of (7) corresponding
to constant government expenditure G(t) = G, i.e.

Y = f(Y , Y ) + h(0) + G. (8)

In order to analyze the system’s behaviour close to this equilibrium solution let y(t) =
Y (t) − Y , u(t) = G(t) − G and assume that up to first order we have

f(Y + y1, Y + y2) ∼ f(Y , Y ) + c1y1 + c2y2, h(y) ∼ h(0) + ay.

The constant a is called the acceleration coefficient, c = c1 + c2 the marginal propensity
to consume and s = 1 − c the marginal propensity to save (it is always assumed that
0 < c < 1). Subtracting (8) from (7) we obtain to first order

y(t + 1) = cy(t) + k(y(t) − y(t − 1)) + u(t), k = a − c2. (9)

This is the Samuelson-Hicks multiplier-accelerator model. It describes how the deviations
y(t) = Y (t) − Y of the actual national product from an equilibrium Y evolves given
the initial deviations y(0), y(1) and the deviation u(t) = G(t) − G of the government
expenditure from the constant value G.
In the fifties considerable attention was paid to the possibility of “progressive expansion”
of an economy in the presence of constant government expenditures. For the above linear
model, this question is easily analyzed. y(t) = (1 + r)ty0 with r ∈ R, y0 �= 0 solves (9)
with u(t) ≡ 0 for all t ∈ N if and only if (1 + r)2 = c(1 + r) + k(1 + r − 1), i.e.

r2 − (k − s − 1)r + s = 0, (s = 1 − c).

This equation has a positive solution r (and hence (9) has a solution with constant growth
rate r > 0) if and only if

k − s − 1 > 0 and (k − s − 1)2 ≥ 4s, i.e. k ≥ (1 +
√

s)2.

It was concluded from this result that, even with fixed government expenditure, an accel-
eration coefficient of moderate size could produce enough investment to make a constant
growth rate of the national income possible. Although this result seems to be quite sat-
isfactory at first sight, it must be regarded with some scepticism. The linear multiplier-
accelerator model (9) is at best an appropriate model for small deviations y(t) from the
equilibrium solution Y . Therefore the solution y(t) = (1 + r)ty0 will, in the long run,
move out of the neighbourhood of the origin where the model is meaningful. Adequate
models for long term economic growth cannot be expected to be linear. Assuming the
validity of the nonlinear model the significance of the above analysis for the long term
behaviour of (7) is that the equilibrium solution Y (t) ≡ Y is unstable if the parameters of
the linearization (9) satisfy the inequality k = a−c2 ≥ (1+

√
s)2. We will illustrate this in

Chapter 3. Another question which is of obvious importance for the theory of the business
cycle is to determine those values of the parameters a, c1, c2 for which the solutions of the
linear model are oscillatory. This question can be answered by applying the formulas for
solutions derived in the next chapter or via the spectral analysis of Chapter 3. ✷
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1.2.1 Notes and References

Standard references for dynamic models in Economics are Allen (1959) [9], Gandolfo (1980)

[181]. The cobweb model can be found in these books and they also discuss models with

stocks or inventories where supply and demand may be different. Goodwin’s model which

allows for the influence of past price changes on the suppliers’ price expectations is de-

scribed in [200]. In the econometric literature there are reports on single markets of a

particular commodity where prices show an oscillatory behaviour similar to that gener-

ated by an undamped cobweb model.

The multiplier-accelerator model is discussed in most textbooks on Mathematical Eco-

nomics and Macro-economics. The model was first described by Samuelson (1939) [446]

and later elaborated by Hicks (1950) [227]. Various stabilization policies for these type of

models have been suggested and analyzed by Phillips (1954) [409]. As in classical control

engineering Phillips distinguishes between proportional, derivative and integral stabiliza-

tion policies and analyzes their effects on the national income in the presence of constant

external disturbances.
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1.3 Mechanics
In this section we describe some mathematical models of simple mechanical systems.
The modelling of such systems is based on the laws of classical mechanics and various
techniques have been developed for this over the centuries. These methods have been
corroborated by experiments and as a consequence reliable models are available
for a great number of mechanical devices. We begin by describing a modelling
technique which builds up an approximate lumped model of a mechanical system by
representing it as an interconnection of ideal translational and rotational elements
characterized by simple constitutive laws. To understand the interaction of these
elements within the system, the forces and torques generated by the connection
of one element with another must be considered. In a final subsection we briefly
describe the variational (Lagrangian or Hamiltonian) approach to modelling which is
based on energy considerations. Here the interconnecting forces and torques do not
play a role. For this approach an elegant and powerful coordinate free framework
has been developed in the general setting of symplectic manifolds, see Notes and
References. However, an exposition of this framework is beyond the scope of this
section. Instead we limit ourselves to a description of the variational method based
on local (generalized) coordinates. We emphasize that the purpose of this section
is not to give an introduction to classical mechanics, but to present some models of
technical mechanical devices and sketch a few modelling techniques.

1.3.1 Translational Mechanical Systems

The dynamic behaviour of a mechanical system is described by vectors of displace-
ments, velocities, forces and torques. A common modelling technique is to repre-
sent a mechanical system approximately as an interconnection of a finite number
of idealized elements (masses,1 springs, dampers, transformers and their rotational
counterparts). The behaviour of each element is governed by a simple law relating
the external force to the displacement, velocity or acceleration associated with the
element. This law is called the constitutive relation or equation of the element.2

Table 1.3.1 summarizes the constitutive laws for a pure mass, a linear spring and
a linear damper. In the table arrows are associated with the forces. This does not
mean that the forces are actually in these directions since the magnitude of F (t)
may be negative. For example if for the spring y12(t) > y12 then the force required
to produce the extension is in the direction shown. However if y12(t) < y12, then one
needs to compress the spring, so F (t) < 0 and the force is actually in the opposite
direction to the one shown.
For a single particle, Newton’s Second Law of Motion states that the sum of the forces
acting on the particle is equal to the time rate of change of its linear momentum.
Therefore the constitutive law of a mass element is given by d

dt
(mv(t)) = F (t). Here

1It may seem strange to some readers that mass is regarded as a constitutive element of a
mechanical system in parallel with springs and dashpots. This is, however, common practice in
the modelling of engineering systems. The reader should distinguish between the fundamental
concept of mass in theoretical mechanics and the notion of a mass element as a building block
(”pure mass”) in the modelling of a mechanical system.

2Throughout the present and the following section the predicate constitutive will only be used
in this terminological sense, see [84], [105].
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Symbol Constitutive Law Variables

1 2
M

F

v12

d

dt
(Mv(t)) = F (t)

v(t) = v12(t) velocity of mass
F (t) force applied to mass

1 2

y12

FF ky(t) = F (t)
y(t) = y12(t) − y12 net elongation

F (t) force applied to spring

1 2 FF

v12

cv(t) = F (t)
v(t) = v12(t) relative velocity of

piston
F (t) force applied to damper

Table 1.3.1: Symbols and constitutive laws of mass, spring, and damper

the velocity and acceleration must be measured with respect to an inertial reference
frame (in classical mechanics this is usually fixed at the centre of the Sun).
The constitutive law of the linear spring is given by Hooke’s law. In reality this
linear relation between force and elongation will only be approximately valid within
certain bounds on the elongation. Hence the use of a linear spring element in a
mechanical model imposes constraints on the variables involved.
Similarly for models involving a damper. A physical realization of a linear damper
is a dashpot where a piston moves through an oil-filled cylinder and there are holes
in the face of the piston through which the oil passes. If the rates of flow are kept
within certain bounds viscous damping results in a linear relation between the force
and the relative velocity of the piston with respect to the cylinder. At higher veloc-
ities such a dashpot will show nonlinear characteristics.
The spring, damper and mass in the above table are also idealized objects from an-
other point of view. Any real spring has some (albeit comparatively small) inertia
and damping. Similarly any damper has some mass and exhibits small spring effects.
We may account for the difference between the real devices and idealized objects by
lumping all inertias of a given mechanical system together in the masses, all stiffness
effects in the springs and all frictional forces in the dashpots (“lumped parameter
model”). This lumped parameter approach to modelling a mechanical system is
not limited to linear models. Nonlinear relations between stresses and deflections in
a mechanical system can be modelled by nonlinear springs, and nonlinear viscous
frictions between adjacent bodies can be modelled by nonlinear dampers.
If we describe a mechanical system as an interconnection of a finite number of
masses, springs and dampers, a model of the overall system is obtained by combin-
ing the constitutive relations of its elements with the interconnection laws governing
the interaction between them. Throughout this section we will assume that the
forces between mechanical elements obey Newton’s third law of action and reaction:
Any force of one element on another is accompanied by a reaction force on the first



1.3 Mechanics 15

element of equal magnitude and opposite direction along the line joining them, see
Table 1.3.1 where the forces on the left of the spring and damper symbols are the
reaction forces to those on the right. There are various methods of obtaining the
equations for the overall mechanical system from the constitutive relations of its
elements and the interconnection laws e.g. bond graph methods and network meth-
ods, see Section 1.4. For more detailed information about this mass-spring-damper
modelling approach, see Notes and References.
We now give a few examples of mechanical systems.

Example 1.3.1. (Trolley). Consider a trolley of mass M moving on rails under the
influence of a force βu(t) as in Figure 1.3.2. Here β is a constant which converts the control
variable u (e.g. a voltage) into a force. We neglect all frictions present in the system –

βu(t)

y(t)

M

Figure 1.3.2: Pure mass: trolley

friction between wheels and rails, friction in the wheel bearings, drag friction of the trolley
moving through the atmosphere. We also neglect the masses of the wheels and assume
that the trolley behaves like a rigid body. Finally we assume that the line of action of the
force is through the trolley’s centre of mass, parallel to the rails. So the trolley does not
rotate and, under the influence of gravity, does not loose contact with the rails. Since the
mass of the trolley is constant Newton’s second law yields the following scalar equation of
motion,

Mÿ(t) = βu(t) (1)

where y(t) is the displacement of the centre of mass of the trolley from a fixed point in
an inertial reference frame. In order to determine the motion of the system for t ≥ 0 it
is necessary to know the initial position y(0) and the initial velocity ẏ(0) of the trolley.
Moreover the exterior force βu(t) must be known as a function of time t ≥ 0. If we
consider the force as a control variable and fix a rest position at y = 0 as the set point of
the trolley, a typical control problem is to find a feedback control law u(t) = f(y(t), ẏ(t))
which brings the trolley back or approximately back to the prescribed rest position from
any given pair of initial values (y(0), ẏ(0)). If we assume that the control values are limited
by |u(t)| ≤ c, t ≥ 0 where c > 0 is a given constant, a typical optimal control problem is:
given the initial conditions (y(0), ẏ(0)), find a control u(·) : [0, t1] → [−c, c] which steers
the trolley back to the rest position (y(t1), ẏ(t1)) = (0, 0) in minimal time t1. Additionally
constraints may be imposed on the trajectory of the trolley (e.g. |y(t)| ≤ d, d > 0) and
this leads to an optimal control problem with state constraints. ✷

In the next example we consider interconnections of mechanical elements. The
harmonic oscillator is used as a highly simplified model for many technical systems.
We illustrate this by a mass-spring-damper model for an automobile suspension
system.
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Example 1.3.2. (Linear oscillator). Consider the vertical motion of a mass M sliding
in some bearing and suspended to a support by a spring as in the left hand figure in
Figure 1.3.3. Besides the exterior forces (gravity and an additional time-depending force

β

M

u(t)

k
c

y(t)

M

u(t)

k
c

y(t)

2y (t)
2

y (t)
1

M

w(t)

M
1

2y (t)
2

y (t)
1

M

w(t)

M
1

Figure 1.3.3: Mass-spring-damper systems

βu(t)) two types of interior forces act on the mass. These are modelled by a linear
spring and a linear damper with coefficients k and c, respectively. Let us determine
the equation of motion of the above mass-spring-damper system. The behaviour of the
system is completely described by the vertical position and velocity of the mass. In order
to eliminate the gravitational force we introduce the displacement y of the centre of mass
from its equilibrium position under the influence of gravity. By Newton’s second law the
sum of the forces acting on M must equal Mÿ. Note that the force exerted by the spring
and the damper on the mass is opposite to the direction of the displacement and velocity
respectively. The resulting equation of motion is

Mÿ(t) + cẏ(t) + ky(t) = βu(t). (2)

We will now construct a simple mass-spring-damper model for an automobile suspension
system. The purpose of such a suspension system is to smooth the response of the car body
to the irregular ups and downs of the road. We will only consider the vertical movements
of the car body and axles and make the non-realistic assumptions that both axles move
in the same way so that they can be lumped together and the rotational motion of the
car body can be ignored. We first assume that the road is flat. Since the car body and
the axle can move independently, we need two position variables y1 and y2. As reference
points for these positions we choose the rest positions of the car body (mass M1) and of
the axle (mass M2) over the nominal road level under the influence of gravity. The tyres
are modelled as springs with comparatively high stiffness k2 coupled in parallel with a
dashpot accounting for the energy dissipation through the tyres. The main suspension
mechanism consisting of coil springs, leaf springs and shock absorbers, is modelled in a
lumped manner by a linear spring and a linear damper connecting the axle with the car
body, see the right hand figure in Figure 1.3.3. Let w(t) be the displacement of the point
of contact between tyre and road from the nominal road level. w(t) is determined by
the profile of the road and the position of the car. The tyre spring force (in an upward
direction) corresponding to the deviation of the tyre from the nominal road level is k2w,
the corresponding frictional force is c2ẇ. Applying Newton’s second law to each of the
two masses and Newton’s third law to the interaction between the two masses we obtain
the equations of motion

M1ÿ1 + c1(ẏ1 − ẏ2) + k1(y1 − y2) = 0

M2ÿ2 + c1(ẏ2 − ẏ1) + k1(y2 − y1) + c2ẏ2 + k2y2 = c2ẇ + k2w. (3)
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Here w(t) may be considered as a perturbation and an important design objective would be
to ensure that the road conditions which the car is likely to encounter, will not generate
vibrations of the car body i.e. values of y1(t) and ẏ1(t) which are not acceptable from
the point of view of passenger comfort. If the suspension mechanism can be controlled, a
typical problem would be to design a feedback control which decouples the vertical velocity
of the car body ẏ1(t) as much as possible from the (largely unknown) perturbations w(t)
generated by the irregular road surface (disturbance attenuation problem). ✷

The previous two examples deal with translational mechanical systems whose move-
ments are restricted to one direction. Arbitrary motions of a mass in three dimen-
sional space are governed by a vector version of Newton’s second law. Here and in
the next section all vectors in R

3 or families of such vectors are written in bold face
and we use vector analysis definitions and notations as found, for example, in [362].
We assume that the positions are determined with respect to a cartesian coordinate
system which is fixed in an inertial frame. If the position vector of a particle of mass
m at time t is denoted by r(t) and F(t) is the vector sum of all individual forces
applied to the mass at time t, then

ṗ(t) = (mr̈)(t) = F(t), (4)

where p = mṙ is the linear momentum of the mass point.
Now consider a system of N particles with masses mi at positions ri, i ∈ N . The
linear momentum of such a system is by definition the sum of the linear momenta
of each particle,

p(t) =

N�

i=1

pi(t) =

N�

i=1

miṙi(t). (5)

Applying Newton’s second law to each of the particles we must distinguish between
the external forces Fe

i (t) and the interactive forces Fij(t) between the particles of
the system. Summing over all particles we obtain from (4)

ṗ(t) =

N�

i=1

mir̈i(t) =

N�

i=1

Fe
i (t) +

N�

i,j=1. i�=j

Fij(t). (6)

By Newton’s third law of action and reaction Fij(t) + Fji(t) is zero for all t and
i, j ∈ N, i �= j and so the second term on the right vanishes. Hence, if we define the
total external force and the centre of mass of the system at time t by

Fe(t) =
N�

i=1

Fe
i (t), r(t) =

N�

i=1

miri(t)

M
where M =

N�

i=1

mi (7)

equations (5) and (6) can be written in the form

p(t) = M ṙ(t) and ṗ(t) = M r̈(t) = Fe(t). (8)

In particular, the centre of mass of the system moves as if the total external force
were acting on the entire mass of the system concentrated at the centre of mass.
In order to describe a rigid body in three-dimensional space, the position of its centre
of mass and the orientation of the rigid body with respect to an inertial reference
frame must be specified. We therefore need a counterpart of Newton’s second law
for rotational motions.
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1.3.2 Mechanical Systems with Rotational Elements

Consider a fixed point O in an inertial reference frame with origin O∗. The angular
momentum H(t) of a particle of mass m about the reference point O is defined by
the vector product

H(t) = r(t) × p(t) = r(t) × mṙ(t)

where r(t) is the “moment arm”, i.e. the vector from the point O to the position of
the particle, and p(t) = mṙ(t) is the linear momentum of the mass (with respect
to the inertial reference frame). The corresponding moment of force or torque N(t)
due to the force F(t) is defined by N(t) = r(t)×F(t). As a consequence of (4) one
obtains the following relation between the net torque applied to the particle and the
rate of change of its angular momentum

Ḣ(t) =
d

dt
(r(t) × mṙ(t)) = ṙ(t) × mṙ(t) + r(t) × mr̈(t) = r(t) × F(t) = N(t). (9)

Note that the angular momentum and the torque both depend upon the point O
about which moments are taken.
Let us now consider a system of N particles with the same setup as that which
led to (8). The total angular momentum of such a system about O is obtained by
summing up the angular momenta of all the particles, i.e.

H(t) =

N�

i=1

ri(t) × miṙi(t) ,

so that by (6) and (9)

Ḣ(t) =

N�

i=1

ri(t) × mir̈i(t) =

N�

i=1

ri(t) ×
�

Fe
i (t) +

N�

j=1, j �=i

Fij(t)

�
.

Now Fij(t) = −Fji(t) by Newton’s third law, and the same law implies that the
vectors ri(t) − rj(t) and Fij(t) are linearly dependent. Hence, if

Ne(t) =
N�

i=1

ri(t) × Fe
i (t) (10)

is the total external torque, then

Ḣ(t) = Ne(t) +
N�

i=1

N�

j=i+1

(ri(t) − rj(t)) × Fij(t) = Ne(t). (11)

So the rate of change of the total angular momentum of a system of particles about
a fixed point O is equal to the sum of the moments of the external forces about O.
By (8) the total linear momentum of a system of N particles is the same as if the
entire mass were concentrated at the centre of mass and moving with it. We now
develop a counterpart of this result for the angular momentum which includes the
possibility that the point about which we take moments is moving. Let us denote
this moving point by Ot and suppose the vector from O∗ to Ot is r∗(t), the vector
from Ot to the centre of mass is r(t), the vector from the centre of mass to the i-th
particle is r�i(t) and v∗(t) = ṙ∗(t), v(t) = v∗(t) + ṙ(t), vi(t) = v(t) + ṙ�i(t) are the
velocity vectors of Ot, of the centre of mass and of the i-th particle (with respect to
the inertial frame). The angular momentum about Ot takes the form3

3In order to compactify the equations we drop the time variable t where necessary.
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H =

N�

i=1

(r + r�i) × mi(v + ṙ�i)

=
N�

i=1

r × miv +
N�

i=1

r�i × miṙ
�
i +

�
N�

i=1

mir
�
i

�
× v + r× d

dt

N�

i=1

mir
�
i.

Since
�N

i=1 mir
�
i(t) = 0 by the definition of the centre of mass (7), the last two terms

on the right hand side vanish and we obtain

H(t) = r(t) × M v(t) +
N�

i=1

r�i(t) × mi ṙ
�
i(t). (12)

Note that by the above argument H�(t) =
�N

i=1 r�i(t)×mi ṙ
�
i(t) =

�N
i=1 r�i(t)×mivi(t)

is the angular momentum of the system about the centre of mass. Thus the total
angular momentum of the system about Ot is the angular momentum of its total
mass concentrated at the centre of mass, plus the angular momentum of the system
about the centre of mass. Only if the centre of mass is at rest (i.e. v = 0) will the
angular momentum be independent of the reference point Ot and its velocity. In
this case H(t) reduces to the angular momentum taken about the centre of mass.
Differentiating H(t) −H�(t) = r(t) × M v(t) we obtain

Ḣ− Ḣ� = ṙ× Mv + r ×Mv̇ = (v − v∗) × Mv + r × Mv̇ = −v∗ × Mv + r ×Mv̇.

In particular if Ot is the moving centre of mass we have Ḣ(t) = Ḣ�(t). So in
calculating the rate of change of angular momentum of a particle system about its
centre of mass, we may treat the centre of mass as if it were at rest.
Let Fe

i (t) be the external forces, Fe(t) =
�N

i=1 Fe
i (t) the total external force and

define the total torque about the moving reference point Ot by (see (10))

Ne(t) =

N�

i=1

(r(t) + r�i(t)) × Fe
i (t).

Then, if Ne∗(t) is the total torque about O∗, we get

Ne∗(t) =
N�

i=1

(r∗(t)+r(t)+r�i(t))×Fe
i (t) = r∗(t)×Fe(t)+Ne(t) = r∗(t)×M v̇(t)+Ne(t).

since Fe(t) = M v̇(t), see (8). The total angular momentum H∗(t) about O∗ satisfies

H∗(t) =
N�

i=1

(r∗(t) + r(t) + r�i(t)) × mivi(t) = H(t) + r∗(t) × Mv(t).

Since we have Ḣ∗(t) = r∗(t) × M v̇(t) + Ne(t) by (11) we get

Ḣ = r∗ × M v̇ + Ne − ṙ∗ × Mv − r∗ × M v̇ = Ne − v∗ × Mv. (13)

In particular if Ot is the moving centre of mass we have Ḣ(t) = Ne(t). Therefore
the rate of change of the angular momentum of a particle system about its centre of
mass is the sum of the moments about the centre of mass of all the external forces,
irrespective of whether the centre of mass is moving or at rest.
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There is an angular momentum law for rigid bodies which complements Newton’s
second law. However we will not develop this for general rotational motions in
R3, since in the following examples we only consider plane rotational systems. This
means, in particular, that all the elements are rotating around axes which are parallel
to each other and all forces are restricted to the plane. This assumption greatly
simplifies the analysis. If we describe the motion of a system in an inertial reference
frame where the z axis is parallel to the axes of rotation, then all vector products
of vectors in the x, y plane are parallel to the z axis. As a consequence only the
z-coordinates of these vector products are nontrivial. Now consider any particle of
mass m rotating about an axis parallel to the z axis through a fixed point O =
(x0, y0, 0) in the x, y plane and let (x0, y0, 0) + r(t) = (x0, y0, 0) + (x(t), y(t), 0)
be the coordinates of the particle at time t. Since by assumption the distance

r(t)
 = r = (x(t)2 + y(t)2)1/2 between the particle and the point O is constant we
obtain by differentiation

x(t)ẋ(t) + y(t)ẏ(t) = 0.

Hence there exists a real number ω(t) satisfying

ṙ(t) = (ẋ(t), ẏ(t), 0) = ω(t)(−y(t), x(t), 0).

Let ω(t) = (0, 0, ω(t)), then ω is called the angular velocity of the particle about
O and we obtain ṙ(t) = ω(t) × r(t). The angular momentum of the particle about
O is r × mṙ = mr × (ω × r) = m(0, 0, ω(x2 + y2)). Hence, for plane rotations, the
equation of motion (9) is reduced to the scalar differential equation

d

dt

�
mω(t)(x(t)2 + y(t)2)

�
= mr2ω̇(t) = N(t). (14)

Here
N(t) = x(t)F2(t) − y(t)F1(t) (15)

is the z-component of the torque generated by a given force F(t) = (F1(t), F2(t), 0)
applied to the particle.
Now consider a two dimensional rigid body B ⊂ R2 rotating in the x, y plane about
a perpendicular axis through a fixed point O with angular velocity ω. Suppose that
the rigid body has mass density ρ(x, y), (x, y) ∈ B. Then for this rigid body the
angular momentum law takes the form

d

dt
(Jω)(t) = N(t) where J =

�

B

ρ(x, y)(x2 + y2)dxdy (16)

and J is the moment of inertia of the body about O. Moreover (16) also holds if O
is a moving centre of mass. For many rigid bodies with uniform mass distribution
the moments of inertia about given axes can be found in textbooks on analytic
mechanics. The centre of mass (x, y) and total mass M of a body B with mass
distribution ρ(x, y) are given by

x =
1

M

�

B

xρ(x, y)dx dy, y =
1

M

�

B

yρ(x, y)dx dy, M =

�

B

ρ(x, y)dx dy.

There is a close relationship between plane rotations and one-dimensional transla-
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Symbol Constitutive Law Variables

1 2

ω12

J

Nω

d

dt
(Jω(t)) = N(t)

ω(t) = ω12(t) angular velocity
N(t) torque applied about the axis

1 2

θ12

θ1 θ2N N

kθ(t) = N(t)

θ(t) = θ12(t) = θ2(t) − θ1(t) relative
angular displacement of torsional spring

N(t) torque applied to spring

1 2

ω12

ω1 ω2N N

c ω(t) = N(t)

ω(t) = ω12(t) = ω2(t) − ω1(t) relative
angular velocity

N(t) torque applied to damper

Table 1.3.4: Symbols and constitutive laws of rotational elements

tional motions. The rotational counterparts of displacements, velocities and forces
are angles, angular velocities and torques. The rotational counterpart of mass is, as
we have seen, the moment of inertia. Table 1.3.4 summarizes the rotational counter-
parts of masses, springs and dampers (again the directions indicated by the arrows
are arbitrary since the values of the functions may be positive or negative).
Physical devices which may be modelled as rotational springs are, for example, the
mainspring of a clock or an elastic rod joining two masses rotating about the same
axis. Rotational viscous damping occurs for example if two concentric cylinders sep-
arated by an oil film rotate with different angular velocities about a common axis.
The interconnection laws for rotational elements are strictly analogous to those for
translational systems if the interacting elements rotate about the same axis. Then
the torque exerted by one element on another is accompanied by a reaction torque
of the same magnitude but of opposite direction on the first element. This holds, in
general, but is no longer true if the elements rotate about different (albeit parallel)
axes. For instance, the contact forces by which two gears act on one another are
of equal magnitude and opposite direction, but the corresponding torques will be
different if the radii of the gears are different.
In order to decide whether a rotation in the plane is positive or negative we have
to fix an orientation of the plane (clockwise or anticlockwise)4. In the following
examples we will always specify such an orientation. A directed angle (the direction
being indicated by an arrowhead) is positive if it coincides with the given orienta-
tion of the plane, otherwise it is negative. The next example is a purely rotational

4Equivalently we could impose a direction to the axis of rotation and define the orientation of
the plane by the right hand screw law.
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mechanical system.

Example 1.3.3. (Pendulum). Consider a pendulum of length l suspended from a
fixed point O as shown in Figure 1.3.5. We first model the pendulum as a point mass m

l

m

mg

O

θ(t)

✻y

✲
x

Figure 1.3.5: Pendulum

attached to a mass-less rigid rod of length l which rotates in the plane without any friction
about O. Suppose that the directed angle from the downward vertical to the rod measured
with respect to the anti-clockwise orientation is θ. Then the motion of the pendulum is
completely described by the angle θ(t) as a function of time. Taking moments about O

we obtain from (14) the following equation of motion

ml2θ̈ = −mgl sin θ (17)

where g is the gravitational constant.
Let us now abandon the assumption that the rod is mass-less and the rotation is without
friction. Instead we assume that the pendulum is a plane rigid body of total mass m and
there is viscous rotational friction with coefficient c at the pivot. Since the horizontal
component of the gravitational force is zero, the torque about O exerted by the uniform
gravitational field on the rigid body B(t) at time t is by (15)

�

B(t)
xρ(x, y)gdx dy = mgx(t),

i.e. the torque is equal to the torque about O exerted by the gravitational force on a
particle of mass m located at the centre of mass (x(t), y(t)) of the rigid body at time t,
see Figure 1.3.6 (b) . We therefore obtain from (16) the equation of motion

d

dt
(J θ̇)(t) = −c θ̇(t) − mgx(t) = −c θ̇(t) − mgl sin θ(t) (18)

where J is the moment of inertia of the rigid body rotating about O and l is the distance
of the centre of mass from O. Note that this equation specializes to (17) if the rigid body
is a particle and no friction is present. If, for example, the pendulum consists of a slender
bar of length l and mass m uniformly distributed along the bar then the moment of inertia
about O would be J = (1/3)ml2 and l = (1/2)l.
Equations (17) and (18) are nonlinear time-invariant equations of second order. Given an
initial angle θ(0) = θ0 and an initial angular velocity θ̇(0) = θ̇0 there exist unique solutions
of (17) and (18) for all t ∈ R satisfying these initial conditions. The angle θ is treated
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here as a real variable although only its values modulo 2π matter. Both systems (17)
and (18) have the same equilibrium solutions corresponding to the pendulum being in a
vertical position (either downward or upright) with zero angular velocity: If either of the
two systems satisfies the initial conditions (θ(0), θ̇(0)) = (0, 0) or (θ(0), θ̇(0)) = (π, 0) it
will remain in this position indefinitely. However, the two equilibria exhibit very different
behaviour when the initial conditions are slightly perturbed. If the pendulum is initially
in the downward rest position a slight perturbation will only lead to small deviations from
the equilibrium (see Example 2.1.10), whereas an arbitrarily small initial perturbation
of the upper rest position will produce large deviations, because the pendulum will fall
down. Hence the first equilibrium position is stable and the other is unstable. Whilst
these statements hold for both systems considered here, there is an important difference
between them with regard to their behaviour in a neighbourhood of the stable equilibrium
point. In the presence of friction the pendulum will gradually return to the downward
equilibrium position whereas it will swing with constant amplitude about the equilibrium
in the absence of friction. To determine the stability properties of an equilibrium point
for a given system is a basic problem in control theory. Since in most applications there
are no simple analytic formulas for the solutions of the equation of motion one needs to
find a method which allows one to determine the stability or instability of an equilibrium
without solving the differential equations. Such a method has been developed by Liapunov
whose central idea was to use the energy or an energy-like real valued function for this
purpose. This method will be studied in detail in Chapter 3. ✷

The unstable upward position of a pendulum can be stabilized by a control mech-
anism which applies a torque N(t) to the pendulum depending on the deviation
θ(t) − π from the equilibrium position. A more interesting problem is to stabilize
the inverted pendulum by moving its base e.g. in a horizontal or vertical way. This
leads to a mechanical system which combines translational and rotational move-
ments.

Example 1.3.4. (Cart-pendulum system). Consider a pendulum which rotates
about a pivot which is mounted on a cart. The cart has mass M and is driven on a
horizontal rail by a force βu(t) in the same way as the trolley in Example 1.3.1. However,
here we allow for viscous friction between the cart and the rail. The centre of mass of the
pendulum lies at a distance l from the pivot and the moment of inertia of the pendulum
(modelled as a rigid body) about its centre of mass is J . We allow for viscous friction at the
pivot point. The position of the cart is measured by the horizontal displacement r of its
centre of mass from the origin of an inertial coordinate system. We assume that the centre
of mass of the cart is moving along the x-axis of this coordinate system. The position of
the pendulum is measured by the angular displacement θ of the line joining its centre of
mass with the pivot from the downward vertical (measured in an anti-clockwise direction).
Although we view the cart as a rigid body we assume that its motion is one-dimensional,
i.e. the torques generated by the totality of forces acting on the cart are in balance. This
means that we can neglect the moments about its centre of mass and treat the cart as a
point mass. To simplify the notation we assume that the pivot point coincides with the
centre of mass of the cart.
In order to obtain a model of the system we will use free-body diagrams for each element,
representing all external and interactive forces between the elements by symbols together
with arrows which define their “positive senses”, see Figure 1.3.6: The forces are positive
if they operate in the directions shown, they are negative if they operate in the opposite
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direction. For instance, if the system is at rest in the downward position, the force F2(t)
acting on the pendulum at the hinge will be directed upwards and hence it will be positive
with respect to the direction indicated in Figure 1.3.6. In general, all forces are vectors
but since the cart’s motion is restricted to one dimension we decompose the forces into
their horizontal and vertical components.

r(t)

G(t)

w1(t) w2(t)

βu(t) cṙ(t)F1(t)
M

F2(t)

m

l

F1(t)

F2(t)

mg

θ(t)

Figure 1.3.6: Free-body diagrams of cart and pendulum

The horizontal forces on the cart are the driving force βu(t), the viscous friction force
−cṙ(t) and the horizontal component of the (unknown) contact force, F1(t) at the pivot.
The vertical forces on the cart are the contact forces w1(t), w2(t) through the wheels sup-
porting the cart on the rail, the gravitational force G(t) and the vertical component of the
(unknown) contact force, F2(t) at the pivot. Since we assume that the cart is constrained
to the one-dimensional motion along the rails, the vertical forces on the cart are in balance.
The horizontal motion of the cart is governed by the equation

Mr̈(t) = βu(t) − cṙ(t) + F1(t). (19)

In order to describe the planar motion of the pendulum it is sufficient to consider the
motion of its centre of mass and its rotation about its centre of mass. If (x(t), y(t))
denotes the coordinates of the centre of mass at time t with respect to the given inertial
coordinate system, then (see (8)) the horizontal and vertical motions are determined by

mẍ(t) =m
d2

dt2
[r̈(t) + l (sin θ(t))] = −F1(t)

mÿ(t) =ml
d2

dt2
(− cos θ(t)) = −mg + F2(t).

Calculating the double derivatives we obtain

m
�
r̈(t) + lθ̈(t) cos θ(t) − lθ̇(t)2 sin θ(t)

	
= −F1(t) (20)

ml
�
θ̈(t) sin θ(t) + θ̇(t)2 cos θ(t)

	
= −mg + F2(t). (21)

Since the cart-pendulum system is described by two independent variables, r(t) and θ(t),
and since the two contact forces F1(t), F2(t) are unknown we need one more equation of
motion. It remains to determine the rotation of the pendulum about its centre of mass.
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The gravitational force does not produce any torque on the pendulum about its centre
of mass, G. So the rotation of the pendulum is determined by the torque of the force
F(t) = (−F1(t), F2(t)) about (x(t), y(t)). Now the vector from (x(t), y(t)) to the pivot
where the force F(t) is applied is given by (−l sin θ(t), l cos θ(t)) and so the torque of
the force F(t) about (x(t), y(t)) is −F2(t)l sin θ(t) + F1(t)l cos θ(t), see (15). The force of
rotational friction cP θ̇(t) acts to oppose the motion. Therefore we obtain from (16) with
O the centre of mass

J θ̈(t) = −F2(t)l sin θ(t) + F1(t)l cos θ(t) − cP θ̇(t). (22)

Using (20) and (21) to express the unknown reaction forces F1(t), F2(t) between the cart
and the pendulum and replacing F1(t), F2(t) by these expressions in (19), (22) we obtain
the following two equations which describe the dynamic behaviour of the cart-pendulum
system (we drop the time variable)

(M + m)r̈ + (ml cos θ)θ̈ + cṙ − mlθ̇2 sin θ = βu

(ml cos θ)r̈ + (J + ml2)θ̈ + cP θ̇ + mgl sin θ = 0.
(23)

Subtracting suitable multiples of these equations from each other in order to eliminate
firstly θ̈ and then r̈ one obtains the equivalent equations

M(θ)r̈ = (J + ml2)(βu − cṙ + mlθ̇2 sin θ) + ml cos θ (mgl sin θ + cP θ̇)

M(θ)θ̈ = −ml cos θ (βu − cṙ + mlθ̇2 sin θ) − (M + m)(cP θ̇ + mgl sin θ) (24)

where
M(θ) = (M + m)J + ml2M + m2l2 sin2 θ.

Setting
x1(t) = r(t), x2(t) = θ(t), x3(t) = ṙ(t), x4(t) = θ̇(t)

yields the following system of nonlinear first order differential equations for the cart pen-
dulum system

ẋ1 = x3, ẋ2 = x4

ẋ3 =
1

M(x2)

�
(J + ml2)(βu − cx3 + mlx2

4 sin x2) + ml cos x2 (mgl sin x2 + cP x4)
�

ẋ4 =
−ml cos x2

M(x2)



βu − cx3 + mlx2

4 sin x2

�
− (M + m)

M(x2)
[cP x4 + mgl sin x2] . (25)

If u(t) ≡ 0 the system will remain at rest provided that the initial velocities x3(0) =
ṙ(0), x4(0) = θ̇(0) are zero and the initial angular displacement x2(0) = θ(0) is either zero
or π. Cart pendulum systems which are required to operate close to these equilibrium
positions occur in practice. For instance, consider a loading plant (see Figure 1.3.7(a))
where a grab is suspended from a cart rolling on horizontal rails. These plants operate
around the downward position of the pendulum and are required to be close to this equi-
librium before putting down the load. On the other hand consider the balancing problem
illustrated by the inverse pendulum in Figure 1.3.7(b). Such inverse pendulum systems
are used in university laboratories for experimentation with controllers which stabilize the
system at the upward position. A more practical example of a three dimensional balancing
problem is that of the control of a rocket in an upright position in preparation for launch.
Another (not so obvious) example is that of maintaining a satellite in a prescribed orbit
(see Example 2.1.27). For the inverted pendulum shown in Figure 1.3.7(b) it is usual to
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βu(t)

r(t) θ(t)

l

M

m

(a)

r
r(t)

βu(t)

ϕ(t)
l

M

m

(b)

Figure 1.3.7: (a) Loading plant and (b) Inverted pendulum

express the equations of motion in terms of the angle5 ϕ = θ − π (the deviation of θ from
the equilibrium value π). Setting θ = π + ϕ in (24) yields

M(ϕ)r̈ = (J + ml2)(βu − cṙ − mlϕ̇2 sin ϕ) − ml cos ϕ (−mgl sin ϕ + cP ϕ̇)

M(ϕ)ϕ̈ = ml cos ϕ (βu − cṙ − mlϕ̇2 sin ϕ) − (M + m)(cP ϕ̇ − mgl sin ϕ). (26)

Let
x1(t) = r(t), x2(t) = ϕ(t), x3(t) = ṙ(t), x4(t) = ϕ̇(t)

then one obtains a system of nonlinear first order equations similar to (25), but with a
different sign pattern.

ẋ1 = x3, ẋ2 = x4

ẋ3 =
1

M(x2)

�
(J + ml2)(βu − cx3 − mlx2

4 sin x2) − ml cos x2 (−mgl sin x2 + cP x4)
�

ẋ4 =
ml cos x2

M(x2)



βu − cx3 − mlx2

4 sin x2

�
− (M + m)

M(x2)
[cP x4 − mgl sin x2] . (27)

Now assume that for the loading plant |x2(t)| = |θ(t)| and |x4(t)| = |θ̇(t)| remain suffi-
ciently small so that

sin x2(t) ≈ x2(t), cos x2(t) ≈ 1, x4(t)
2 sinx2(t) ≈ 0, sin2 x2(t) ≈ 0. (28)

Then M(x2) ≈ M0 = (M + m)J + ml2M is approximately constant and we obtain the
following approximate linear equation of motion for the loading plant (pendulum down)

ẋ = Ax + bu, (29)

where x(t) = [r(t), θ(t), ṙ(t), θ̇(t)]� and

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 a32 a33 a34

0 a42 a43 a44

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

0
0
b3

b4

⎤
⎥⎥⎦ . (30)

With constant entries

a32 = M−1
0 m2l2g, a33 = −M−1

0 (J + ml2)c, a34 = M−1
0 mlcP ,

a42 = −M−1
0 (M + m)mgl, a43 = M−1

0 mlc,

a44 = −M−1
0 (M + m)cP , b3 = M−1

0 (J + ml2)β, b4 = −M−1
0 mlβ.

(31)

5Note that the angle ϕ(t) as depicted in Figure 1.3.7 (b) is negative.
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For the inverted pendulum if |ϕ(t)| and |ϕ̇(t)| remain small, then (28) again holds but now
x2(t) = ϕ(t) and x4(t) = ϕ̇(t). The approximate linear model has matrices of the same
form as (30), however some of the matrix entries have different signs

a32 = M−1
0 m2l2g, a33 = −M−1

0 (J + ml2)c, a34 = −M−1
0 mlcP ,

a42 = M−1
0 (M + m)mgl, a43 = −M−1

0 mlc,

a44 = −M−1
0 (M + m)cP , b3 = M−1

0 (J + ml2)β, b4 = M−1
0 mlβ.

(32)

For the purpose of automatic control, sensors are required which provide continuous infor-
mation about the current state of the system. Let us consider the balancing problem for the
inverted pendulum and suppose that we can measure the current values of r(t), ϕ(t). These
measurements (“outputs”) are related to the “state” x(t) = [x1(t), x2(t), x3(t), x4(t)]

� by
the output or measurement equation

y =

�
1 0 0 0
0 1 0 0

�
x. (33)

The balancing problem consists in designing a regulator which keeps the pendulum in an
upright position at a fixed value of r, say 0. The regulator accepts the values y(t) ∈ R

2

as input values and produces the values u(t) ∈ R
1 as output values. This must be done

in such a way that the inherently unstable equilibrium xe = [0, 0, 0, 0]� becomes a stable
equilibrium of the feedback system. This stabilization problem can be solved using the
linearized equations about the equilibrium state xe. Linear models are often sufficient in
order to design stabilizing controllers even if the underlying system is nonlinear. By keep-
ing the system close to the equilibrium position the controller ensures that the linearized
model yields a good approximation of the nonlinear dynamics. This partially explains the
surprising success of linear models in feedback control.
Another control problem is best explained for the loading plant. If it is required to posi-
tion a load accurately at a certain point the question arises whether there exists a control
function u(·) which steers the system from any given initial position to the desired final
position in finite time. Additionally, it will be required that the load is at rest at the final
position. This is a controllability problem. Note that for this problem the use of a linear
model is questionable since this is a global problem and its solution requires a model which
is accurate for a wide range of values of the system’s state. ✷

1.3.3 The Variational Method

The previous example illustrates that even for an apparently simple mechanical de-
vice it is by no means trivial to find the equations of motion by analyzing the system
as an interconnection of masses, springs and dampers. The interconnection of trans-
lational and rotational elements poses particular problems. The main difficulty in
the modelling process is that the interaction between the elements must be described
by introducing “contact forces” or “forces of constraint”, which are not given a pri-
ori. They are among the unknowns of the problem and must be eliminated in order
to get the system equations. Often the interconnective constraints are quite compli-
cated and if there is a large number of them the above modelling procedure becomes
cumbersome. For such cases an alternative procedure is available which is based on
energy considerations. As a preparation we need some formulas for the energies of
translational masses, springs and dampers and their rotational counterparts which
we present in the next example. Additionally we discuss the kinetic and potential
energy of a rigid body moving in three-dimensional space.
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Example 1.3.5. The kinetic energy associated with a point mass m moving with velocity
v(t) at time t is

T (t) = (m/2) 
v(t)
2 = (m/2) 
v(t),v(t)�.
For arbitrary motions of a rigid body in three dimensional space the determination of
the kinetic energy is more complicated. First consider a rigid body composed of N point
masses mi. Let r(t) be the position of the centre of mass of the body at time t (with respect
to some inertial coordinate system) and fix a coordinate system in the body (moving with
the body) whose origin is at the centre of mass. Suppose the body is rotating about an
axis through the centre of mass with angular velocity ω(t). So ω(t) ∈ R

3 points in the
direction of the instantaneous axis of rotation of the body about its centre of mass given
by the right hand screw law. If r̃i is the (constant) coordinate vector of the point mass
mi of the rigid body with respect to the body coordinates then the position vector of this
point with respect to the inertial reference system is ri(t) = r(t) + r̃i and the velocity
vector of the point (with respect to the given inertial coordinate system) is

vi(t) = ṙi(t) = ṙ(t) + ω(t) × r̃i.

Hence the kinetic energy is

T (t) =
N�

i=1

(mi/2)
vi(t)
2 =
N�

i=1

(mi/2)
ṙ(t) + ω(t) × r̃i, ṙ(t) + ω(t) × r̃i�

= (M/2) 
ṙ(t)
2 +

�
ṙ(t),ω(t) ×

N�

i=1

mir̃i

�
+

N�

i=1

(mi/2)
ω(t) × r̃i
2,

where M =
�N

i=1 mi is the total mass. The middle term in the above expression is zero
since r̃i is the vector from the centre of mass to the i-th point mass. The last term is a
quadratic form in ω(t), so we may write

T (t) = (M/2) 
ṙ(t)
2 + (1/2) 
ω(t),Jω(t)�,

where J = J� ∈ R
3×3 is called the moment of inertia matrix of the rigid body. This

analysis can be extended to continuous distributions and hence the above formula for the
kinetic energy holds for arbitrary rigid bodies. So the kinetic energy of a rigid body is
the kinetic energy obtained if all the mass of the body were concentrated at the centre of
mass, plus the kinetic energy of its motion about the centre of mass.
We now consider potential energy. The potential energy stored in a translational or rota-
tional spring displaced from its equilibrium state is equal to the work done to achieve this
displacement. If the spring is translational and linear its potential energy at a displace-
ment y is given by (k/2) y2. Similarly the potential energy of a linear torsional spring
(where the torque is kθ) at an angular displacement θ is (k/2) θ2. Note that an ideal
spring does not have kinetic energy since its mass is zero.
The potential energy of any point mass is defined relative to a given conservative field of
force to which it is subjected, e.g. the gravitational field of the Earth. If F : R

3 → R
3 is

a conservative field of force then the work done by moving a point mass from a ∈ R
3 to

b ∈ R
3 only depends upon the points a,b ∈ R

3 and not on the path along which the mass
has been moved. Fixing a reference point O the potential energy of a particle positioned
at a point P is, by definition, equal to the work needed in order to move the particle
within the force field from O to P . The potential energy of a system of N point masses at
positions r1, . . . , rN is simply the sum of the individual potential energies. Approximating
a rigid body of mass M by a system of point masses we see that at an altitude h above
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the Earth (h not too large) its potential energy with respect to the gravitational field of
the Earth is approximately Mgh. Note that the potential energy of a body relative to a
conservative force field is only determined up to a constant depending on the reference
point. For any system of point masses moving in a conservative field, if no energy dissi-
pation occurs, then the sum of the kinetic and potential energies is constant in time.
Usually, dissipation of energy occurs because kinetic energy is transformed to thermal
energy by friction. Frictional forces have to be overcome whenever bodies in contact have
a relative velocity. A pure dissipator (damper) is an idealized object in which there is no
kinetic or potential energy storage. However there is a dissipation of energy, for example
the power absorbed at time t by a linear translational damper (where the force is cv)
is cv(t)2. Similarly the power absorbed by a linear rotational damper (where the torque
is cω) is cω(t)2. More generally, suppose that there is a system of N particles moving
with velocities vi(t) ∈ R

3, i ∈ N and that the particles are subjected to frictional forces
which depend linearly on the velocities, Fi(t) = ci vi(t), then the total energy dissipated
is

�N
i=1 ci
vi(t)
2. ✷

The variational method has been developed in the context of classical mechanics
by, amongst many, Lagrange and Hamilton. We will not explain the derivation of
the method here, nor discuss it in detail, but just sketch the essential steps to be
followed. For a careful mathematical treatment, see Notes and References.
As the previous examples illustrate, the position vectors ri(t) of the point masses
of a mechanical system are usually not free to vary independently of each other.
The constraints which limit their movements may be classified in various ways.
If they can be expressed by equations of the form f(r1, . . . , rN , t) = 0 they are
called holonomic. A typical example is given by a rigid body where all the distances
between its mass points are constant in time. Another example is given by a particle
which moves along a curve (a bead sliding on a wire) or on a surface. Nonholonomic
constraints are obtained if not only position but also velocity coordinates enter the
constraint equation or if the constraint takes the form of an inequality (for example,
gas molecules within a container). We will only consider holonomic constraints. All
the constraints in our mechanical examples are of this type.
Now suppose that a system of N particles is given, together with a number of
holonomic constraints of the form

fj(r1, . . . , rN , t) = 0, j ∈ m (34)

where ri ∈ R3 denotes the position of the i-th particle and the fj are real-valued
smooth functions on (R3)N × R. The set M(t) of all possible configurations of the
system at time t, i.e. the set of all the vectors r = (r1, . . . , rN) ∈ (R3)N satisfying
the constraints f1(r, t) = 0, . . . , fm(r, t) = 0, is called the configuration space of
the constrained mechanical system at time t. Let us fix the time t for a moment
and consider the configuration space M(t). If the gradients of the functions fj(·, t)
are linearly independent at every point in M(t), the configuration space (at time t)
carries the structure of an �-dimensional differentiable manifold where � = 3N −m.6

This implies that M(t) is provided with a finite or countable collection of charts, so
that every point is represented in at least one chart. A chart is an open set U in R�

6In this case the constrained mechanical system is said to be a system with � degrees of freedom.
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with a diffeomorphic mapping φ from U onto some open subset V = φ(U) of M(t)
which we write in the following way.

φ : q �→ r(q, t)=(r1(q, t), . . . , rN(q, t)) where ri(q, t) = ri(q1, . . . , q�, t), q ∈ U. (35)

The coordinates qj, j ∈ � of the vector q are called the generalized coordinates of
the configuration r = r(q, t) (at time t). They yield a parametrization of the open
subset V = φ(U) of the configuration space. The inverse mapping φ−1 : V → U
maps every configuration r ∈ V onto its generalized coordinate vector q(r, t) (at
time t). Note that the coordinates of the generalized coordinate vector q ∈ U can
be varied independently (provided q remains in the open set U) whereas the coor-
dinates of a position vector r = (r1, . . . , rN) ∈ V cannot be varied independently
without violating some of the holonomic constraints (34) (at time t). In practice the
generalized coordinates are usually obtained by applying the implicit function the-
orem to the constraint equations. This technique is sometimes called “elimination
of the dependent coordinates”. The position vectors r(q, t) corresponding to the
generalized coordinate vectors q ∈ U at time t automatically satisfy the constraints.
The advantage of “getting rid of the constraints” by introducing the generalized
coordinates is, however, not obtained without any cost. Firstly, the generalized co-
ordinates describe, in general, only a part of the configuration space. Secondly, they
need not have an immediate physical interpretation similar to the original position
variables. And often they cannot be related to single elements of the system but are
mathematical constructions for the description of the system as a whole.
Now suppose for a moment that the constraints (34) do not depend upon t (an as-
sumption which is often satisfied in applications) so that the configuration manifold
M(t) = M, the charts (U, φ) and the corresponding open subsets V = φ(U) of M are
independent of time. Then, as the system moves, the position vector r(t) describes
a curve in the configuration manifold M. If r(t) belongs to the scope V of some
chart (U, φ) for t ∈ [t1, t2], the motion of the system during this time interval can
alternatively be described in terms of the position vectors ri(t), i ∈ N (satisfying
the constraints) or in terms of the generalized coordinates qj(t), j ∈ �.
We will now briefly point out how velocities, forces, kinetic and potential energies
are expressed in terms of the generalized coordinates. With every family of velocity
vectors vi = ṙi = d

dt
ri, i ∈ N which is consistent with the given constraints there

is an associated generalized velocity vector q̇ = d
dt

q(r, t) = (q̇j)j∈� which can be
determined by solving the system of 3N linear equations

vi = ṙi =

��

j=1

∂ri

∂qj
q̇j +

∂ri

∂t
, i ∈ N. (36)

Similarly, for any family of external forces fi = (fi,1, fi,2, fi,3) ∈ R
3, i ∈ N applied to

the i-th particle at time t there is an associated vector (F1, . . . , F�) ∈ R� called the
generalized force at time t defined by

Fj =
N�

i=1

�
fi,

∂ri

∂qj

�

R3

=
N�

i=1

�
fi,1

∂xi(q, t)

∂qj
+ fi,2

∂yi(q, t)

∂qj
+ fi,3

∂zi(q, t)

∂qj

�
, j ∈ �.

where ri(q, t) = (xi(q, t), yi(q, t), zi(q, t)). If the i-th particle of the system has mass
mi and is moving with velocity vi, the associated kinetic energy of the system is
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T =
�N

i=1(mi/2)
vi
2. By means of (36) the kinetic energy can be expressed in
terms of the generalized coordinates and velocities,

T (q, q̇, t) =

N�

i=1

(mi/2)
vi(q, t)
2 =

N�

i=1

(mi/2)

�����

��

j=1

∂ri

∂qj
(q, t)q̇j +

∂ri

∂t
(q, t)

�����

2

.

We see therefore that if the constraints are independent of time, then T is a ho-
mogeneous quadratic form in the generalized velocities. Now assume for a moment
that the mechanical system is conservative, i.e. there exists a real valued function
W(r1, . . . , rN , t) such that the force fi applied to the i-th particle is given by the
i-th partial gradient of W (i.e. with respect to the coordinates xi, yi, zi of ri)

fi(r1, . . . , rN , t) = −∇iW(r1, .., rN , t).

In this case the generalized force is precisely the negative gradient of W viewed as
a function of the generalized coordinates:

Fj(q, t)=

N�

i=1

�
fi,

∂ri

∂qj

�
(q, t)=−

N�

i=1

�
∇iW(r1, . . . , rN , t),

∂ri(q)

∂qj

�
(q, t)=−∂W(q, t)

∂qj

where W(q, t) = W(q1, . . . , q�, t) := W(r1(q, t), . . . , rN(q, t), t) is called the general-
ized potential energy.
In 1788 Lagrange published in Paris his celebrated Mécanique Analytique [325] in
which he set out a method for determining the equations of a mechanical system
from a knowledge of the kinetic and potential energies. His ideas were developed
further by Boltzmann in 1802 and Hamel in 1804 and the form in which we state the
equations are essentially due to them, although they are widely referred to as La-
grange’s equations. Lagrange [325] introduced what is now known as a Lagrangian:

L(q, q̇, t) = T (q, q̇, t) −W(q, t). (37)

Then Lagrange’s equations of motion take the form

d

dt

�
∂L

∂q̇j
(q(t), q̇(t), t)

�
− ∂L

∂qj
(q(t), q̇(t), t) = 0, j = 1, . . . , �. (38)

In practice most mechanical systems are not conservative, since, they either have
significant internal frictions, or external forces are applied which are not derived
from a potential. If Fj are the generalized forces which are not taken into account
by the potential energy and D(q̇) = D(q̇1, . . . , q̇�) is the total energy dissipated by
linear dissipators (e.g. dampers), then the equations of motion take the form

d

dt

�
∂L

∂q̇j

(q(t), q̇(t), t)

�
− ∂L

∂qj

(q(t), q̇(t), t)+
1

2

∂D
∂q̇j

(q̇(t))=Fj(q(t), t), j = 1, .., �. (39)

Note that if the generalized external forces Fj do not depend on the generalized
coordinates q they can easily be accounted for by modifying the potential energy

W ❀ W −
��

j=1

Fjqj . (40)
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By suitably modifying the Lagrangian it is also possible to include other generalized
forces in Lagrange’s equations (38), see Notes and References.
If, for a given mechanical system, generalized coordinates can be found, Lagrange’s
method is a very convenient way to eliminate the forces of constraint from the equa-
tions of motion. By this elimination the modelling procedure is greatly simplified.
In fact, in order to model a complicated multi-body mechanical system by the free-
body diagram approach illustrated in the previous examples, many vector forces and
velocities must be handled, whereas whenever a Lagrangian formulation is applica-
ble there is – in principle – a straight forward procedure for deriving the equations
of motion. One “only” has to write three scalar functions T , W, D in generalized
coordinates (which may not be so easy), form L, determine the generalized forces
and substitute in (39). Sometimes, of course, one would like to know the contact
forces and then it is necessary to resort to free-body diagrams. However, assuming
Lagrange’s equations have been solved for the generalized coordinates qi(t) as func-
tions of time t and consequently the vector functions ri(·) are known, the equations
for the contact forces obtained via free-body diagrams can often be easily resolved.

Remark 1.3.6. Lagrange’s equations have the following interesting interpretation. Con-
sider any given trajectory r(t) of a conservative mechanical system in configuration space
from time t0 to time t1 and suppose that the trajectory remains inside the scope of a chart
so that it can equivalently be described by a curve t → q(t) = (q1(t), . . . , q�(t)), t ∈ [t0, t1]
in R

� (satisfying r(t) = r(q(t), t)). Hamilton’s Principle says: The motion of a conservative
system from time t0 to time t1 is such that the action integral

I(z(·)) =

� t1

t0

L(z(t), ż(t), t) dt

is an extremum for the actual path of motion q(·) amongst all other curves z(·) : [t0, t1] →
R

� connecting q(t0) with q(t1). There are global, coordinate free formulations of this
principle which avoid the restriction to parts of the configuration manifold parametrized
by a chart, see e.g. [1], [18].
It is shown in the calculus of variations that Lagrange’s equations are exactly the necessary
and sufficient conditions for the functional

I : {z(·) ∈ C1([t0, t1], R
�); z(t0) = q(t0), z(t1) = q(t1)} → R

to have an extremum at z(·) = q(·). In 1766 Lagrange joined Euler as a court mathemati-
cian in Berlin under the patronage of Frederick the Great. Euler also developed necessary
and sufficient conditions which are equivalent to those of Lagrange and it is usual, at least
in the field of the calculus of variations, to refer to the equations as the Euler-Lagrange
equations. The variational approach is of great importance since variational principles can
be used in many fields of physics to express the equations of motion. This makes it pos-
sible to transfer the Lagrangian method to other fields and uncover structural analogies
between them. ✷

Before we consider some examples we briefly outline the Hamiltonian approach to
classical mechanics which yields another method for deriving the equations of motion
of a conservative mechanical system. The result is a transformation of Lagrange’s
equations (38) which are second order into an equivalent system of Hamiltonian
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equations which are first order. This is accomplished by applying a Legendre trans-
formation to the Lagrangian, see Notes and References. For arbitrary given q, t this
transforms L(q, q̇, t) viewed as a function of q̇ into a function of the new variable p
where q̇ and p are related via the formula p = ∂L/∂q̇ ,

H(q, p, t) = 
p, q̇ (q, p, t)� − L(q, q̇ (q, p, t), t), (q, p, t) ∈ R
� × R

� × R. (41)

Here the function q̇ = q̇(q, p, t) is defined implicitly by the equation

p =
∂L

∂q̇
(q, q̇, t) (42)

which is assumed to have a unique solution q̇ for every (q, p, t) ∈ R� × R� × R. H
is called the Hamiltonian and p = (p1, p2, . . . , p�) the generalized momentum of the
conservative mechanical system. Now the total differential of the Hamiltonian

dH =
∂H

∂p
dp +

∂H

∂q
dq +

∂H

∂t
dt

is equal to the total differential of 
p, q̇� − L(q, q̇, t),

dH = 
q̇, dp� + 
p, dq̇� −
�

∂L

∂q
, dq

�
−

�
∂L

∂q̇
, dq̇

�
− ∂L

∂t
dt.

where 
·, ·� denotes the usual inner product in R�. The second and fourth terms
cancel because of (42), hence

∂H

∂p
= q̇,

∂H

∂q
= −∂L

∂q
,

∂H

∂t
= −∂L

∂t
.

Applying Lagrange’s equations (38) we obtain Hamilton’s equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (43)

We now illustrate the Lagrangian and Hamiltonian approaches by deriving the equa-
tions of motion for the cart-pendulum system studied in Example 1.3.4.

Example 1.3.7. (Cart-pendulum system). In order to derive the equations of motion
for the cart-pendulum system via Lagrange’s equations we must determine the kinetic
energy T , the potential energy W and the dissipated energy D of this system in terms of
its generalized coordinates r, θ and the corresponding velocities ṙ, θ̇. The kinetic energy
T of the system is the sum of the kinetic energies of the cart and of the pendulum, and
the latter is the sum of the kinetic energy of the centre of mass plus the energy of the
pendulum rotating about its centre of mass, see Figure 1.3.6. Hence

T = (M/2) ṙ2 + (m/2)

��
d

dt
(r + l sin θ)

�2

+

�
d

dt
l cos θ

�2
�

+ (J/2) θ̇2

= (M/2) ṙ2 + (J/2) θ̇2 + (m/2)
�
(ṙ + lθ̇ cos θ)2 + (−lθ̇ sin θ)2

	
.

The potential energy, W is the same as that of a single mass m located at the centre of
mass of the pendulum in a gravitational field, i.e −mgl cos θ (modulo an additive constant).
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Since the time varying external force βu(t) does not depend on the generalized coordinates,
we can take it into account by modifying the potential energy as in (40).

W = −mgl cos θ − βur.

D is the sum of the dissipated energies due to viscous friction cṙ between cart and rails
and due to viscous friction cP θ̇ at the pivot,

D = cṙ2 + cP θ̇2.

The generalized Lagrange equations (39) in terms of the generalized coordinates and as-
sociated velocities r, θ, ṙ, θ̇ are

d

dt

�
∂T
∂ṙ

�
− ∂T

∂r
+

∂W
∂r

+
1

2

∂D
∂ṙ

=0

d

dt

�
∂T
∂θ̇

�
− ∂T

∂θ
+

∂W
∂θ

+
1

2

∂D
∂θ̇

=0.
Or

d

dt

�
Mṙ + m(ṙ + lθ̇ cos θ)

	
+ cṙ = βu

d

dt

�
J θ̇ + m(ṙ + lθ̇ cos θ)l cos θ + ml2θ̇(sin θ)2

	

+ m(ṙ + lθ̇ cos θ)lθ̇ sin θ − ml2θ̇2 sin θ cos θ + mgl sin θ + cP θ̇ = 0.

A simple calculation yields the nonlinear differential equations

(M + m)r̈ + mlθ̈ cos θ − mlθ̇2 sin θ + cṙ = βu

(J + ml2)θ̈ + mr̈l cos θ + mgl sin θ + cP θ̇ = 0.

Thus the Lagrangian approach leads to the same equations of motion as the approach via
free-body diagrams in Example 1.3.4, see (23).
Assuming that frictions can be neglected and the pendulum behaves like a point mass
connected to a light rod of length l (i.e. c = cP = J = 0), the nonlinear equations of
motion reduce to

(M + m)r̈ + mlθ̈ cos θ − mlθ̇2 sin θ = βu (44)

lθ̈ + g sin θ + r̈ cos θ = 0. (45)

Setting x1 = r, x2 = θ, x3 = ṙ, x4 = θ̇ (resp. x1 = r, x2 = ϕ, x3 = ṙ, x4 = ϕ̇, see
Example 1.3.4) the linearized models of the loading plant and the inverted pendulum,
respectively, reduce to

ẋ = Ax + bu, (46)

where (see (31), (32))

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 a32 0 0
0 a42 0 0

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

0
0
b3

b4

⎤
⎥⎥⎦ ,

a32 = mg/M, a42 = ∓(M + m)g/(Ml),
b3 = β/M, b4 = ∓β/(Ml).

Let us now consider Hamilton’s equations for the frictionless case. By (42), the generalized
momentum has components

p1 =
∂L

∂ṙ
= (M + m)ṙ + ml cos θ θ̇ (47)

p2 =
∂L

∂θ̇
= ml(ṙ cos θ + lθ̇). (48)
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Hence

ṙ = (ml2p1 − ml cos θ p2)/(ml2(M + m sin2 θ)) (49)

θ̇ = (−ml cos θ p1 + (M + m)p2)/(ml2(M + m sin2 θ)). (50)

So by (41) the Hamiltonian is

H(r, θ, p1, p2) = (ml2p2
1 − 2ml cos θ p1p2 + (M + m)p2

2)/(2ml2(M + m sin2 θ))

−mgl cos θ − βru.

Hamilton’s equations are, therefore, (49), (50) augmented with

ṗ1 = −∂H

∂r
=βu

ṗ2 = −∂H

∂θ
= − p1p2 sin θ/(l(M + m sin2 θ)) − mgl sin θ

+ (ml2p2
1 − 2ml cos θ p1p2 + (M + m)p2

2) sin θ cos θ/(l2(M + m sin2 θ)2).

(51)

The linearization of equations (49), (50), (51) yields

˙̃x = Ãx̃ + b̃u, (52)

where x̃ = [r, θ, p1, p2]
�, b̃ = [0, 0, β, 0]� and Ã is the matrix

Ã =

⎡
⎢⎢⎣

0 0 ã13 ã14

0 0 ã23 ã24

0 0 0 0
0 ã42 0 0

⎤
⎥⎥⎦ ,

ã13 = 1/M, ã14 = ã23 = −1/(Ml),
ã24 = (M + m)/(mMl2), ã42 = −mgl.

Equations (46) and (52) for the loading plant are two different mathematical models of
the linearized system which are related by the transformations

x̃ = Tx, Ã = TAT−1, b̃ = Tb,

where

T =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 t33 t34
0 0 t43 t44

⎤
⎥⎥⎦ , t33 = M + m, t34 = t43 = ml, t44 = ml2.

Such systems are called similar and we will discuss this concept in Section 2.4. ✷

We conclude this section by using Lagrange’s equations to derive the equations of
motion of an inverted double pendulum.

Example 1.3.8. (Inverted double pendulum). Consider a double pendulum which
is mounted on a cart as illustrated in Figure 1.3.8. In a similar way to Example 1.3.4 we
assume that the motion of the system is restricted to the vertical plane, the cart is moving
on a horizontal rail with viscous friction and the two pendulums behave like rigid bodies
with viscous friction at the pivots. Let mi, li, Ji, ci (i = 1, 2) denote the mass, the distance
between the centre of gravity and the lower hinge, the moment of inertia about the centre
of mass and the friction coefficient for the lower (i = 1) and the upper (i = 2) pendulums.
L is the total length of the lower pendulum and M, c0 denote the mass and the friction
coefficient of the cart. As generalized coordinates we choose the distance r of the cart
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M

θ2(t)

l1

l2

r(t)

βu(t)

θ1(t) ✲

Figure 1.3.8: Double pendulum

from an inertial reference position, and the angles θi, i = 1, 2 of the two pendulums to
the vertical, with clockwise orientation. We apply the method of Lagrange in order to find
the equations of motion of the system. The potential energy of the system is equal to the
sum of the potential energies of the masses mi located at the centres of mass of the two
pendulums, together with an adjustment for the external force. In terms of the chosen
generalized coordinates it is given by

W = m1gl1 cos θ1 + m2g(L cos θ1 + l2 cos θ2) − βur. (53)

The energy dissipated by the translational viscous friction between cart and rails and the
rotational friction at the two hinges is given by

D = c0ṙ
2 + c1θ̇

2
1 + c2(θ̇2 − θ̇1)

2. (54)

The kinetic energy is the sum of the kinetic energies of the cart plus the kinetic energies
of the two pendulums:

T0 = (M/2) ṙ2

T1 = (J1/2) θ̇2
1 + (m1/2)

��
d

dt
(r + l1 sin θ1)

�2

+

�
d

dt
(l1 cos θ1)

�2
�

T2 = (J2/2) θ̇2
2 + (m2/2)

��
d

dt
(r + L sin θ1 + l2 sin θ2)

�2

+

�
d

dt
(L cos θ1 + l2 cos θ2)

�2
�

.

A simple calculation yields the total kinetic energy of the system

T = (M/2) ṙ2 + (J1/2) θ̇2
1 + (J2/2) θ̇2

2 + (m1/2)
�
ṙ2 + 2l1ṙθ̇1 cos θ1 + l21θ̇

2
1

 
+

(m2/2)
�
ṙ2 + L2θ̇2

1 + l22 θ̇
2
2 + 2ṙ

�
Lθ̇1 cos θ1 + l2θ̇2 cos θ2

	
+ 2Ll2θ̇1θ̇2 cos(θ1 − θ2)

 
. (55)
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Using (53), (54) and (55) we write down Lagrange’s equations and obtain by elementary
calculations the following equations of motion

d

dt

�
∂T
∂ṙ

�
− ∂T

∂r
+

∂W
∂r

+
1

2

∂D
∂ṙ

= 0,

(M + m1 + m2)r̈ + [(m1l1 + m2L) cos θ1]θ̈1 + (m2l2 cos θ2)θ̈2

− (m1l1 + m2L)θ̇2
1 sin θ1 − (m2l2 sin θ2)θ̇

2
2 + c0ṙ = βu.

d

dt

�
∂T
∂θ̇1

�
− ∂T

∂θ1
+

∂W
∂θ1

+
1

2

∂D
∂θ̇1

= 0,

[(m1l1 + m2L) cos θ1]r̈ + (m1l
2
1 + m2L

2 + J1)θ̈1 + [m2Ll2 cos(θ1 − θ2)]θ̈2

+ m2Ll2θ̇
2
2 sin(θ1 − θ2) − (m1l1 + m2L)g sin θ1 + c1θ̇1 + c2(θ̇1 − θ̇2) = 0.

d

dt

�
∂T
∂θ̇2

�
− ∂T

∂θ2
+

∂W
∂θ2

+
1

2

∂D
∂θ̇2

= 0,

(m2l2 cos θ1)r̈ + [m2Ll2 cos(θ1 − θ2)]θ̈1 + (m2l
2
2 + J2)θ̈2+

− m2Ll2θ̇
2
1 sin(θ1 − θ2) − m2gl2 sin θ2 + c2(θ̇2 − θ̇1) = 0.

Introducing the vector z = [r, θ1, θ2]
� ∈ R

3, the equations of motion can be written in the
following concise form

K1z̈ = K2ż + K3 + k4u

where

K1 =

⎡
⎢⎣

m1 + m2 + M (m1l1 + m2L) cos θ1 m2l2 cos θ2

(m1l1 + m2L) cos θ1 J1 + m1l
2
1 + m2L

2 m2l2L cos(θ1 − θ2)

m2l2 cos θ2 m2l2L cos(θ1 − θ2) J2 + m2l
2
2

⎤
⎥⎦

K2 =

⎡
⎢⎢⎣

−c0 (m1l1 + m2L)θ̇1 sin θ1 m2l2θ̇2 sin θ2

0 −c1 − c2 −m2l2Lθ̇2 sin(θ1 − θ2) + c2

0 m2l2Lθ̇1 sin(θ1 − θ2) + c2 −c2

⎤
⎥⎥⎦

K3 =

⎡
⎢⎣

0

(m1l1 + m2L)g sin θ1

m2l2g sin θ2

⎤
⎥⎦ , k4 =

⎡
⎣

β

0
0

⎤
⎦ .

An equivalent system of first order equation is obtained by setting x =

�
z

ż

�
∈ R

6

ẋ =

�
ż

K−1
1 (K2ż + K3 + k4u)

�
. (56)

Is it possible to stabilize the double pendulum in the upright position? Most readers will
find it difficult to decide this question relying only on their physical intuition. In Vol. II
we show that if the deviations from the upright position are small it is possible to find
a control which restores this position in finite time. Then we prove that this implies the
existence of a regulator which makes the upright position a stable equilibrium point of the
feedback system. This regulator accepts as input values r(t), ṙ(t), θ1(t), θ̇1(t), θ2(t), θ̇2(t)
and so sensors must determine these values for all t ≥ 0. Since sensors are expensive one
is interested in reducing the number. In particular the question arises whether or not
it is possible to design a regulator which accepts as values, say r(t), θ1(t). This means
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that within the regulator it is necessary to reconstruct the angle θ2(t) and the velocities
ṙ(t), θ̇1(t), θ̇2(t) from the measurements r(t), θ1(t). This is a typical observability problem,
see Vol. II. ✷

1.3.4 Notes and References

Many books on modelling and dynamics contain chapters on the modelling of mechani-
cal systems, see Ogata (1992) [397], Burton (1994) [84], Close and Frederick (1995) [105].
More realistic automobile suspension systems separating, for example, the motions of the
front and the rear axles (see Example 1.3.2) can be found in [84] and [103]. In the presence
of rotational friction at the hinge Antman (1998) [15] has shown that the derivation of
the equations of motion of a compound pendulum may be flawed by the assumption that
the reactive force at the hinge acts along the pendulum. Modelling the cart-pendulum
system of Example 1.3.4 is discussed in more detail in Clark (1995) [103]. Ackermann
(1977) [2] has analyzed the feedback control of the linearized loading plant. The inverted
pendulum has been a favourite example for the illustration of modern control methods in
textbooks since the sixties, see Elgerd (1967) [150]. The balancing problem was solved by
various methods on the basis of the linearized model. However, the swinging up problem,
i.e. moving the system from the downward to the upright rest position and keeping it
there, requires the use of the nonlinear model. This problem has been studied in Mori
et al. (1976) [382]. The stabilization of double and multiple pendulum systems has been
investigated in Furuta et al. (1980) [177], Maletinsky et al. (1982) [357] and Kwakernaak
and Westdijk (1995) [323].
An excellent introduction to Newtonian mechanics is contained in the first volume of the
Feynman Lectures on Physics (1975) [161]. Brief introductions to Lagrangian and Hamil-
tonian modelling techniques from an engineering point of view are given in MacFarlane
(1970) [355], Wellstead (1979) [516], Burton (1994) [84]. More information concerning
variational principles, Lagrangian and Hamiltonian mechanics, can be found in standard
textbooks on classical mechanics, Whittaker (1970) [520], Gantmacher (1975) [184], Lan-
dau and Lifshitz (1976) [329], Goldstein (1980) [194], Chorlton (1983), [99]. Lagrange’s
Mécanique Analytique is now available in English [325]. It is shown in [194] that by in-
troducing velocity dependent potentials it is possible, under certain conditions, to include
non-conservative generalized forces in Lagrange’s equations (38). In particular the Lorentz
force (4.12), which in general is not conservative, satisfies these conditions.
The Hamiltonian formulation was proposed by Hamilton in a British Association Report
in 1834, although in part it had been anticipated by Lagrange and Poisson in 1809/1810.
The Legendre transformation maps functions on a vector space to functions on the dual
space: Let f(x) be a convex function of x ∈ R

n, then the Legendre transform is the
function g : R

n∗ → R defined by

g(y) = F (y, x(y)) = max
x

F (y, x), F (y, x) = 
y, x� − f(x), y = ∂f/∂x.

Details can be found in most references on mathematical physics, see e.g. Courant and

Hilbert (1953) [112]. Modern advanced mathematical treatments of classical mechanics

are given in Arnold (1978) [18], Abraham and Marsden (1978) [1] and Marsden and Ratiu

(1999) [361]. These standard references develop the mathematical framework for a co-

ordinate free treatment of the configuration space in the general setting of (symplectic)

manifolds. [1] and [361] also contain many instructive historical remarks and comments

on the literature.
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1.4 Electromagnetism and Electrical Systems

This section is divided into two subsections. In the first we give a brief review
of some of the historical developments of electromagnetism and describe the basic
building blocks of circuits. Then in the second we show how to obtain the equations
governing the current flows in networks of circuits.

1.4.1 Maxwell’s Equations and the Elements of Electrical
Circuits

Some of the most outstanding discoveries of the 19th century were connected with
electricity and magnetism and their interaction. As a reference we quote Richard
Feynman (1975) [161]: “From a long view of the history of mankind–seen from, say,
ten thousand years from now–there can be little doubt that the most significant
event of the 19th century will be judged as Maxwell’s discovery of the laws of elec-
trodynamics”. In this subsection we recall some of the electromagnetic experiments
that were carried out and indicate how the conclusions drawn from them can be
formulated in a mathematical way, i.e. can be cast in the form of equations. We
then use these equations in a number of different examples to obtain mathematical
models of various electrical circuits and systems.

Maxwell’s Equations

If a piece of amber is rubbed with a cloth and then the amber and cloth are separated
they are found to attract each other. Such forces are called electrical forces and
the amber and cloth are said to be electrified or charged with electricity. In 1729
Gray [201] discovered that some materials could convey electricity from one place
to another. He carried out an experiment with a glass rod connected by a hemp
cord of length 400 feet to an ivory ball and was able to electrify the ball by rubbing
the glass tube. Further experiments were carried out by Desaguliers (1739) [128]
who introduced the word conductors for those materials which transport electricity
easily. Cavendish (1776) [93] anticipated Ohm’s law, although much of his work
was not published until 100 years later in a collection of his papers put together by
Maxwell (1879) [365]. In 1821 Ampère put forward a workable definition of current
and invented a galvanometer to measure it. He thought of voltage as the cause and
current as the effect and although he knew that there was a relationship between
them, he did not realize that, across a resistor, they are directly proportional. This
discovery was made by Ohm (1826) [398]. He used as a source a thermoelectric
battery with strips of copper and bismuth joined at their two ends. He kept one
point of contact in boiling water and the other in ice and thereby obtained a stable
current in an external circuit C which he connected across the two points of contact.
Working with this rather deficient apparatus, Ohm performed a series of carefully
devised experiments which established, for this circuit, the law of conduction (now
known as Ohm’s law):

If I is the current in the circuit, C and V the voltage drop between the
two points of contact, then V = IR, where R is a constant called the
resistance which varies with the wire which is used to close the circuit,
but does not depend on V or I.



40 1. Mathematical Models

That electric charges exert forces on each other with a magnitude inversely propor-
tional to the square of the distance between them was suspected early in the 18th
century. Benjamin Franklin (1755) [106] carried out experiments to determine this
law and Robison (1769) observed experimentally that the force was proportional
to r−2.06 where r is the distance between the charges. Although, as in the case of
Cavendish (who gave the law as between r−1.98 and r−2.02), the results were not
available universally and were published posthumously in 1822. Unaware of their
results Coulomb (1785) [124] carried out completely different experiments and put
forward the inverse square law and now the discovery is usually attributed to him.
In 1936 Plimpton and Lawton [414] showed, experimentally, that the force deviated
from an inverse square law by less than two parts in one billion.
Coulomb’s experiments led to the formulation:

If a charge of magnitude q is placed at the origin O ∈ R
3, then the force

on a positive unit charge at a point r is proportional to qr−2r̂, where
r̂ = r/
r
 and r = 
r
. Moreover the force is one of attraction if q < 0
and repulsion if q > 0.

Hence if we denote this electrical force at the point r by E(r) and write the constant
of proportionality in the form (4π
0)

−1, we have

E(r) =
qr̂

4π
0r2
= − grad Φ(r), where Φ : R

3 \ {O} → R, Φ(r) =
q

4π
0r
. (1)

Φ(r) is called the electrostatic potential at the point r and the constant of propor-
tionality 
0 the permittivity of free space.
The mapping r → E(r) = q (4π
0r

2)−1 r̂ defines a vector field on R3 \ {O} which
assigns to each r ∈ R3 \ {O} the electrical force exerted on a positive unit charge at
that point1. This vector field is called the electric field of the charge q placed at O.
In the following most of the vector fields we consider will depend upon time.
There are two important quantities associated with a vector field which are used to
describe the results of electromagnetic experiments, namely the flux and the circu-
lation. These terms have their origins in fluid dynamics where the “flux of velocity”
through a surface is the net amount of fluid going through the surface per unit time
and the “circulation” around some loop is the net rotational motion around it. More
generally for any vector field F the flux of F through a bounded oriented piecewise
smooth surface S is defined by the surface integral2

Flux of F through the surface S =

�

S


F,n� dS,

where n is the unit normal defining the orientation of S and 
·, ·� is the standard
inner product on R3. The circulation of F around an orientated piecewise smooth
closed curve C is

Circulation of F around the curve C =

!

C


F, t� ds,

1More generally, a vector field on some region D ⊂ R3 is a map F : D → R3 that assigns to
each point r in its domain a vector F(r).

2In this section we often suppress the dependency of a vector field on space and time to simplify
notation. Where necessary, we use either r or x as a space variable.
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where t is the unit tangent to the curve. For the definition of the above integrals, see
[362]. The line integral of a conservative electric field E along an arbitrary piecewise
smooth curve C connecting A ∈ R3 to B ∈ R3, VAB =

"
C

E, t� ds, is called the

voltage (or potential difference) between the points A and B. We sometimes talk of
the voltage of a point and by this we mean the difference in the potential of that
point and the potential of an arbitrary established reference point called the ground
state.
Now suppose that S is an orientated piecewise smooth closed surface in R3. Then
it can be shown that the flux of the electric field E (given by (1)) through S is

�

S


E,n� dS =
qω

4π
0

where ω = 4π if O is inside S and ω = 0 if O is outside S.
Let us now consider a continuous distribution of charge with volume charge density
ρ(x) in a bounded region Ω ⊂ R3 and suppose that S encloses Ω, then the electric
field E generated by this charge satisfies

�

S


E ,n� dS =
1


0

�

Ω

ρ(x) dx =
Q


0
, (2)

where Q is the total charge on Ω and dx is the Lebesgue measure in R3. By the
divergence theorem

�

S


E ,n� dS =

�

Ω

divE dx and so

�

Ω

(div E− ρ/
0) dx = 0.

Since this holds for any closed surface S it follows that divE = ρ/
0. If additionally
we suppose the electric field is derived from a potential Φ, then

divE = ρ/
0 and we have Poisson’s equation �Φ = −ρ/
0, (3)

where � is the Laplacian defined (in Cartesian coordinates) by

� =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

. (4)

In the case of free space where ρ = 0, divE = 0 and Φ satisfies the Laplace equation
�Φ = 0.
An awareness of the existence of magnetized materials can be traced back to the
Greeks who were familiar with loadstone and its power to attract iron. Indeed the
term magnet came into use because loadstone pieces were found near the ancient
Greek city called Magnesia3. Experiments with magnetic materials were of a much
older vintage than those with electricity and the first application of magnetism, the
compass, was used in Europe at the end of the twelfth century. Newton in Principia
speculated that the law of force between two magnetic poles was proportional to the
inverse cube of the distance between them, and Michell (1750) [373] was the first to
give the correct law as being an inverse square. Thus if there is a magnetic pole of

3Plato in the dialogue Ion gives Socrates the words “impelling you like the power in the stone
Euripides called the magnet....This stone does not simply attract iron rings, just by themselves; it
also imparts to the rings a force enabling them to do the same thing as the stone itself”.
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strength m at the origin O, the force on a magnetic pole of positive unit strength
at a point r is proportional to mr−2r̂. Hence if we denote this magnetic force at the
point r by B(r), we have

B(r) =
mr̂

4πµ−1
0 r2

= − gradΨ(r), Ψ(r) =
m

4πµ−1
0 r

. (5)

Ψ(r) is called the magnetostatic potential at the point r and the constant of pro-
portionality µ0 the permeability of free space. The vector field B : r → B(r) on the
domain D = R3 \ {O} is called the magnetic field of the pole of strength m at O.
The equations in (5) have the same form as those given in (1) and hence one can
develop a theory of magnetostatics in parallel with that of electrostatics, see [151].
However there is an important difference. Whereas positive and negative electric
charges can exist separately from each other, magnetic poles cannot. In any volume
(no matter how small) the density of North poles is always the same as the density
of South poles. So the net volume density must be zero and in analogy with the
electric case the corresponding equations to (3) are

div B = 0 and �Ψ = 0. (6)

Now we leave the static case and consider the dynamic case where charges move and
hence generate electric currents. In 1820 Oersted conducted some experiments which
showed that a magnetic field can be generated by an electric current flowing in a
wire. Faraday (1821) [159] also discovered this and the precise relation as enunciated
by Ampère takes the form:

The circulation of a magnetic field in a non-magnetic medium around
a closed path is equal to µ0 times the total current flowing through a
surface bounded by the path.

Suppose that at a point P with position vector r the volume charge density of
electrons is ρ(r) and their velocity4 is v(r), then j(r) = ρ(r)v(r) is defined to be the
current density at the point r. So if S is an orientated piecewise smooth surface and
I is the total current through S, we have

I =

�

S

ρ 
v ,n� dS =

�

S


j ,n� dS.

Hence if C is a closed orientated piecewise smooth curve Ampère’s law takes the
form !

C


B , t� ds = µ0I = µ0

�

S


j ,n� dS,

where the the surface S is such that ∂S = C. By Stokes’ Theorem!

C


B , t� ds =

�

S


curlB ,n� dS and so

�

S


curlB − µ0j ,n� dS = 0.

And since this holds for any surface S, we have

curlB = µ0j. (7)

This is the differential form of Ampère’s law. Note that since div curl = 0, the above
equation implies div j = 0 which we will see later is not in general true.
Another major advance was made in 1831 when Faraday [159] discovered, experi-
mentally, that a current was induced in a conducting loop when the magnetic field
changed. Faraday found that:

4Strictly speaking, v(r) is the average velocity of the electrons in a small volume containing P .
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The circulation of the electric field vector around a closed path is equal
to the rate of decrease of the magnetic flux flowing through a surface
bounded by the path.

The mathematical articulation of this law, now known as Faraday’s law was first
given by Maxwell.

V :=

!

C


E , t� ds = − d

dt

�

S


B ,n� dS, (8)

where C and S are as above with ∂S = C. The circulation V of the electric field
E around C is called the induced voltage. Using Stokes’ Theorem, the differential
form of Faraday’s law is

curlE = −∂B

∂t
. (9)

Maxwell, when only 24, set out to put Faraday’s experimental work on a firm math-
ematical footing. The work, including a correction of Ampère’s law (7) (which
allowed for the possibility that div j �= 0), culminated in his paper “A dynamical
theory of the electromagnetic field” published in (1865) [363]. If ρ is the volume
charge density of electrons and v their velocity, then given an orientated piecewise
smooth closed surface S enclosing a volume Ω, conservation requires that the flux
of electrons through S must be balanced by their rate of decrease in Ω, i.e.�

S


ρv ,n� dS = − d

dt

�

Ω

ρ dx.

By the divergence theorem we get

∂ρ

∂t
+ div (ρv) = 0.

This equation is called the continuity equation. Using the first equation in (3) and
the fact that j = ρv yields

div

�
ε0

∂E

∂t
+ j

�
= 0.

We have seen that (7) implies div j = 0 which, in general, contradicts this equation.
Maxwell saw that if, however, µ0j was replaced with µ0(ε0

∂E

∂t
+ j) in (7), then there

would be no contradiction. Therefore his equations consist of the first equations of
(3) and (6) together with (9) and the adjustment to (7). Hence they take the form

divE = ρ/
0,

curlE = −∂B

∂t
,

divB = 0,

curlB = µ0

�
ε0

∂E

∂t
+ j

�
. (10)

Maxwell’s hypotheses, together with confirmation of the correction term were sub-
stantiated experimentally by Hertz (1885) eight years after Maxwell’s death.
There is a different version of Faraday’s law for the case where the magnetic field
B is constant in time but the wire circuit C is moving with a velocity v. Then the
induced voltage, V, is given by
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V =

!

C


v × B , t� ds. (11)

One can interpret the induced voltage V as being caused by an electric field E� =
v ×B, so that V =

#
C

E� , t� ds. This suggests that if a charge of magnitude q is

moving with velocity v in both an electrostatic field E and a magnetic field B, the
total force on it, F, will be q(E + E�), i.e.

F = q(E + v × B). (12)

This is known as Lorentz’s force law and its validity has been unquestionably estab-
lished by experiments.

The Elements of Electric Circuits

In electrical engineering an important role is played by circuits in which power in the
form of currents and fields is channelled by slender conductors (wires) connecting
discrete elements. To understand the fine detail of the behaviour of these elements
it is necessary to solve Maxwell’s partial differential equations. Fortunately most
elements are amenable to an adequately accurate, approximate treatment which sim-
plifies the situation enormously. This is called the lumped parameter approximation
and we now illustrate this with a number of examples.

Example 1.4.1. (Resistor). Consider a conductor made of homogeneous material in
the form of a cylinder of length � and cross section area S. It is assumed that the current
density j and the electric field E within the conducting material are both constant and in
the direction of the axis of the cylinder, ẑ. A more general version of Ohm’s law is j = σE,
where σ is called the conductivity of the material, see Notes and References. The voltage
V between the ends of the cylinder and the total current I are

V =

� �

0

E , ẑ� ds = 
E
�, I =

�

S

j ,n� dS = 
j
S.

Now since 
j
 = σ
E
, we have V =



�
σS

�
I = RI, where R =



�

σS

�
is the resistance. For

example the resistance of a silver wire of length 1.265 m with a circular cross section of
radius .048 cm is .0281 ohms.
Joule (1841) [281] reasoned, and then confirmed experimentally, that the energy dissipated
as heat when a current I flows in a metallic conductor of resistance R is RI2. ✷

Example 1.4.2. (Capacitor). Consider two parallel plates charged with constant
charges of equal magnitude but opposite sign. If the distance between the plates is small
compared with the size of the plates, the charge will reside almost entirely on the inner
surfaces of the plates, the electric field will be zero in the interior of the plates and
away from the edges of the plates the electric field between the plates is approximately
normal to them. Hence in this region between the plates the potential will only change
in a direction x1 perpendicular to the plates. So Poisson’s equation for the potential in
Cartesian coordinates reduces to Φx1x1 = 0, where ( )x1 = ∂

∂x1
. The solution of this

equation has the form Φ(x1) = αx1 + β, where α and β are constants. Suppose the plates
are at x1 = a and x1 = b and the potentials are constant on each plate and are Φ(a) = Va

and Φ(b) = Vb, then

Φ(x1) =
(Vb − Va)x1 + bVa − aVb

b − a
.
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Now consider a closed cylindrical surface S where the axis of the cylinder is in the x1

direction and the plane ends of area A are at x1 = a− ε and x1 = a + ε with ε << b − a.
If q is the constant surface density of charge (positive on the one at x1 = a and negative
on the other), then the charge enclosed in S is qA. Hence by (2)

qA/�0 =

�

S

E ,n� dS = −

�

S1


grad Φ ,n� dS =
Va − Vb

b − a

�

S1

dS =
(Va − Vb)A

b − a
,

where S1 is the plane surface at x1 = a + ε. Thus

Va − Vb = Q/C, C =
A�0

b − a

where Q is the total charge on the plate at x1 = a. So the potential (or voltage) change
across the plates is proportional to the charge. The proportionality constant C is called
the capacitance and such a configuration is called a capacitor or condenser. The above
result neglects fringing of the electric field at the edges of the plates, for a more accurate
expression for the capacitance see Notes and References.
Now let us consider the electric energy stored in the capacitor. The capacitor is charged
by connecting the plates in a circuit with a battery which has the effect of transferring
charge from one plate to the other. If a small charge dQ is brought from a position x1 = b

where the potential is Φ(b) = Vb to a position x1 = a where potential is Φ(a) = Va, then
the work done is dW = (Va − Vb)dQ. Hence dW = (Q/C)dQ and so the the total work
done in charging the capacitor is W = Q2/(2C), where ±Q are the final charges on the
plates. ✷

Example 1.4.3. (Inductor). Consider a coil consisting of n turns of wire which are
tightly wound on a toroidal frame of rectangular cross section and permeability µ0. The
inner and outer radii of the frame are r1 and r2, respectively, the height of the frame is h

and there is a current of magnitude I(t), t ≥ 0 in the conducting wire.
Suppose that cylindrical coordinates are such that the z-axis is the axis of symmetry

❄
❄

❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄
❄

❄

✻
✻ ✻ ✻ ✻ ✻

✻ ✸

■
Cr

r1

❯

✾

r2

r

Figure 1.4.1: Toroidal inductor

and the frame is located between r = r1 and r = r2. Let Cr be a circular path within
the toroidal frame of radius r with r1 < r < r2, We assume axial symmetry so that the
magnetic field B = B(r, z, t) only depends on r, z and t. By Ampère’s law applied to the
surface of the disk bounded by Cr, we have

µ0 n I(t) =

!

Cr


B , t� ds

where t is the unit tangent to Cr. If B2 is the magnitude of the magnetic field in the
direction t, then
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!

Cr


B , t� ds =

� 2π

0
B2(r, z, t) ds = 2π rB2(r, z, t).

So B2(r, z, t) = µ0(2π r)−1nI(t). Since the coil is tightly wound around the toroidal frame,
every loop approximately traces out the perimeter of a surface which is a rectangular cross
section of the frame. Let us apply Faraday’s law to one such surface S. Then the normal
to this surface n = t. So if V(t) is the induced voltage

V(t) = − d

dt

�

S

B ,n� dS = − d

dt

� h

0

� r2

r1

B2(r, z, t)drdz = −µ0n

2π

dI

dt
(t)

� h

0

� r2

r1

r−1drdz

= −µ0nh

2π
ln (r2/r1)

dI

dt
(t).

Since there are n such coils, if V is the total voltage dropped, we have

V (t) = Lİ(t), L =
µ0n

2h

2π
ln (r2/r1).

The constant L is called the inductance and such a configuration is called an inductor.
Now let us consider the magnetic energy stored in the inductor. Each charge in the wire
is receiving energy at a rate 
E ,v� where E is the force on it and v is its velocity. So that
if ρ is the density of charge per unit length the rate of doing work on the coil is

dW

dt
=

!

coil

E ,v�ρ ds =

!

coil

E , j� ds = I

!

coil

E , t� ds = V I = LI

dI

dt
,

by (8). So we see that the energy required to build up the current I in the inductor is
W = (L/2)I2. ✷

Symbol Constitutive Law Variables

1 2

L

V1 − V2 = Lİ
voltage change across an inductor of

inductance L with a current I

1 2

C

V1 − V2 = Q/C
voltage change across a capacitor of
capacitance C with a charge Q on

one plate and −Q on the other

1 2

R

V1 − V2 = IR
voltage change across a resistor of

resistance R with a current I

Table 1.4.2: Symbols and constitutive laws of a resistor, capacitor and inductor

Inductors, capacitors and resistors are the classical elements of electric circuits.
Their symbols and constitutive laws are shown in Table 1.4.2. They are, respectively,
the counterparts of masses, springs and dampers in mechanical systems. This corre-
spondence is shown in Table 1.4.3 where M, k, c are the mass, spring constants and
damping coefficient respectively, F is force, y displacement, v velocity and T ,W,D
are the kinetic energy of the mass, the potential energy of the spring and the energy
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mass inductor spring capacitor damper resistor

M L k 1/C c R

F V1 − V2 F V1 − V2 F V1 − V2

v I y Q v I

F = Mv̇ V1 − V2 = Lİ F = ky V1 − V2 = Q/C F = cv V1 − V2 = IR

T =(M/2)v2 W =(L/2)I2 W=(k/2)y2 W =Q2/(2C) D=cv2 W =RI2

Table 1.4.3: Table of corresponding quantities

dissipated by the damper. For example in the first column mass corresponds to
inductance, the force on the mass corresponds to the voltage change across the in-
ductor and the velocity of the mass corresponds to the current in the inductor. The
last two rows gives the corresponding constitutive laws and energies of the elements.
The correspondence given in Table 1.4.3 is called the Force-Voltage analogy. There
is also a Force-Current analogy, see [397]. These analogies suggest that the varia-
tional method described for mechanical systems in the previous section can also be
applied to electrical systems, and indeed this is the case, see Notes and References
and the following example.

Example 1.4.4. (Linear RLC circuit). Consider the circuit driven by a voltage
source e(t) as in Figure 1.4.4. The corresponding mechanical system is given on the left
hand side of Figure 1.3.3. A systematic way of determining the laws of motion for the
circuit will be explained in the next subsection. There we will see that by Kirchhoff’s

L

C

✻I

R

e
+

−

Figure 1.4.4: RLC circuit

voltage law the sum of the voltages around the closed circuit is zero. To be more precise
if the current is in the direction indicated in Figure 1.4.4, then there will be a drop in
the voltage across each of the elements. And Kirchhoff’s law states that the total voltage
drop across these elements must be balanced by that supplied by the voltage source. So
if the voltage across the resistor, capacitor and inductor at time t are VR(t), VC(t), VL(t),
respectively, we have

e(t) − VR(t) − VC(t) − VL(t) = 0, t ≥ 0.

But if the current around the circuit at time t is I(t) and the charge on the capacitor is
Q(t), then

VR(t) = I(t)R, VC(t) = Q(t)/C, VL(t) = Lİ(t), I(t) = Q̇(t), t ≥ 0.
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Hence
e(t) = LQ̈(t) + RQ̇(t) + Q(t)/C, t ≥ 0.

If T = (L/2)Q̇2 is the magnetic energy of the inductor, W = Q2/(2C) the electric energy of
the capacitor, D = RQ̇2 the energy dissipated by the resistor, F (t) = e(t) and L = T −W,
then the above equation can be obtained directly via the variational method by writing
down Lagrange’s equation (3.39).

d

dt

�
∂L

∂Q̇
(Q(t), Q̇(t))

�
− ∂L

∂Q
(Q(t), Q̇(t)) +

1

2

∂D
∂Q̇

(Q̇(t)) = F (t).

Setting x1 = Q, x2 = Q̇, we can re-write the equation of motion as a system of first order
equations, namely

�
ẋ1

ẋ2

�
=

�
0 1

−1/LC −R/L

� �
x1

x2

�
+

�
0

1/L

�
e.

Suppose we are interested in determining the charge on the capacitor. It is difficult to
measure the charge directly, so we may ask whether or not it is possible to determine
the charge by measuring the current I = Q̇ = x2. Setting y = x2 = [0 1]x, this is an
observability problem: given the observation y(·) and the input e(·) on some time interval,
is it possible to determine the state x(·)? ✷

In the following example we illustrate how the Lorentz force law (12) can be used
to describe the interaction between electromagnetic forces and mechanical motion.

Example 1.4.5. (Loudspeaker). A loudspeaker is an electromechanical system in
which the mechanical part is a loudspeaker diaphragm. Electromagnetic forces are used
to make the diaphragm move and the consequent motion generates sound which is then
transmitted through the air to the ear. Basically a signal from a tape, record, or disk
generates an input voltage e(t) in a circuit. Part of this circuit is in the form of a coil
within a fixed permanent magnet. The motion of the electric charges in the coil interacts
with the magnetic field generated by the magnet to produce a Lorentz force as given by
(12). Since the speaker diaphragm is rigidly attached to the coil this force on the coil causes
the diaphragm to move. The whole idea is that the diaphragm motion which produces
the sound should be proportional to the original input signal. An idealized model is given
in Figure 1.4.5.
The magnet is cylindrical with an inner solid cylindrical core which is the South pole and
an outer concentric cylindrical shell which is the the North pole. It is assumed that this
configuration results in a radial magnetic field in the air gap between the North and South
poles directed to the axis of the magnet. In the figure the magnet is shown as dotted
rectangles with small dots. The diaphragm is on the right of the figure and is shown as a
rectangle with small circles, whereas the coil, which is rigidly connected to the diaphragm,
is situated in the air gap between the North and South poles and is represented by small
black circles inside other circles. It consists of n turns of wire each of which is at a distance
a from the axis of the magnet. The motion of the diaphragm is modelled as an oscillator
with mass m, damping c and stiffness k whereas the electric circuit is modelled as one
which contains a resistor with resistance R and an inductor with inductance L. Suppose
(r, θ, z) are cylindrical coordinates where the z-axis is along the central axis of the magnet
directed from the magnet to the diaphragm. It is assumed that the diaphragm and coil
are constrained so that only motion in the z direction is allowed. Then if F (t) is the
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Figure 1.4.6: Magnet-coil geometry

component of the Lorentz force on the coil in this direction, since the coil and diaphragm
are rigidly connected, the mechanical equation of motion of the diaphragm is

mz̈(t) + cż(t) + kz(t) = F (t).

And if V (t) is the voltage induced as a consequence of the motion of the coil in the magnetic
field, then just as in Example 1.4.4, one obtains the following equation of motion for the
current I(t) in the circuit

Lİ(t) + RI(t) = e(t) + V (t).

In order to complete the picture we find expressions for the terms F (t) and V (t). The
magnitude of the magnetic field B at r = a is denoted by B and it is assumed to be
independent of z, θ and t. If at a point in the coil parametrized by an angle θ, θ ∈ [0, 2nπ)
there is a charge q(t, θ) which has a velocity v(t, θ) the Lorentz force on it is qv × B.
The velocity v has a component v1 in the direction of the z-axis, but since v1 × B is
perpendicular to the z-axis it will not make any contribution to F (t). The other component
of the charge’s velocity is due to the movement of the charge around the coil. If its
magnitude at (t, θ) is v2(t, θ), then the magnitude of the Lorentz force F2 in the direction
of the z-axis is

F2(t, θ) = q(t, θ)v2(t, θ)B.



50 1. Mathematical Models

Hence
d

dθ
F2(t, θ) = B

d

dθ
(q(t, θ)v2(t, θ)) = aBI(t).

So the total force in the direction of the z-axis is F (t) = 2nπaBI(t). We see therefore that
our mathematical model for the motion of the diaphragm is that of an oscillator driven
by a force proportional to the current I(t) in the coil.
The induced voltage V (t) in the circuit is due to the motion of the coil in the z direction.
In order to determine it we apply Faraday’s law (11) with C being one loop of the coil in
the magnet. If t is the unit tangent to C, we have

V =

!

C

v1 × B , t� ds = −aBż

� 2π

0
dθ = −2πaBż.

And since the coil consists of n turns of wire the total induced voltage is given by V (t) =
−2nπaBż(t). Setting x1 = z, x2 = ż, x3 = I, we obtain the following state space system

⎡
⎣

ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣

0 1 0
−k/m −c/m 2nπaB/m

0 −2nπaB/L −R/L

⎤
⎦

⎡
⎣

x1

x2

x3

⎤
⎦ +

⎡
⎣

0
0
1

⎤
⎦ e.

Suppose y(t) = x1(t) = z(t), then the design problem is that of choosing some or all of
the parameters k, c, L,R, n, a,B so that y(t) approximates the input e(t) for all t ≥ 0. ✷

1.4.2 Electrical Networks

In this subsection we give a brief account of how graph theoretical methods are
used to obtain models of interconnected electrical systems. We will only consider
electrical networks consisting of voltage sources, current sources, resistors, inductors
and capacitors. For the modelling of more general networks and more detail of
network methods, see Notes and References.
Determining the differential equations which govern a complicated network can be
quite difficult. Nowadays it is common to use computer aided modelling procedures.
These are based on a graph theoretical representation of the electrical network.
Before describing the details we recall some basic facts from graph theory.
A directed graph G = (V, E, ϕ) consists of a finite vertex set V , a finite edge set E
and an incidence map

ϕ : E → V 2, e → ϕ(e) = (ϕ1(e), ϕ2(e)).

If ϕ(e) = (v1, v2), then one calls v1 the initial vertex and v2 the terminal vertex of
the edge e. Equivalently, edge e is said to be directed from v1 to v2. For a vertex
v ∈ V it is useful to define the sets of edges with initial and terminal vertex v ∈ V ,
viz.

E(v, ·) = ϕ−1
1 (v) = {e ∈ E; ϕ1(e) = v}

E(·, v) = ϕ−1
2 (v) = {e ∈ E; ϕ2(e) = v}. (13)

The cardinalities of these sets are called the out-degree, dout(v), and in-degree, din(v),
of v, respectively. Then d(v) = dout(v)+din(v) is the total number of edges incident
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on v and is called the degree of v.
A path of length r ≥ 1 is a sequence e = (e1, e2, ..., er) ∈ Er with the property

ϕ1(ei+1) = ϕ2(ei) =: vki
, 1 ≤ i ≤ r − 1.

vk0 := ϕ1(e1) is called the initial vertex and vkr := ϕ2(er) is called the terminal
vertex. So one may equally think of e as a path from vk0 to vkr . An elementary
path is one in which vk1, ..., vkr are distinct and a cycle is an elementary path with
vk0 = vkr . The directed graph G is said to be strongly connected 5 if for any two
distinct vertices v, v� ∈ V there exists a path from v to v�.
In our application to networks we do not always want the direction associated with
an edge to play a role. A succinct way of achieving this with the above set up is to
define for every edge e ∈ E an additional edge −e which is directed from the termi-
nal vertex of e to the initial vertex of e. Let −E denote the set of these additional
edges. Then E ∩−E = ∅. ϕ is extended to an incident map ϕ̃ on Ẽ = E ∪̇ −E by
setting ϕ̃(−e) = (ϕ2(e), ϕ1(e)) for e ∈ E. This results in the graph G̃ = (V, Ẽ, ϕ̃).
A graph G� = (V �, E �, ϕ�) is called a subgraph of G = (V, E, ϕ) if V � ⊂ V , E � ⊂ E and
ϕ� = ϕ |E�. A spanning subgraph of G = (V, E, ϕ) is a subgraph G� = (V, E �, ϕ |E�)
with the same vertex set as G. It is a proper spanning subgraph of G if E � �= E.
Finally a cut-set C of G is a set of edges in E such that if all the edges c,−c with
c ∈ C are removed from the graph G̃, the resulting graph decomposes into two
strongly connected graphs (one of these may consist of a single vertex).
For the graph G̃ we need the concept of a subgraph which inherits the “undirected”
structure of G̃. We say that G� ⊂ G̃ is a symmetric subgraph if it is a subgraph
whose edge set E � has the following property: e ∈ E � ⇔ −e ∈ E � for all e ∈ E. A
tree in G̃ is a minimal symmetric strongly connected subgraph of G̃ (or equivalently,
a symmetric strongly connected subgraph without non-trivial cycles). One can show
that a symmetric subgraph of G̃ is a tree with n vertices if and only if it has 2(n−1)
edges. Moreover, if one adds one edge ẽ ∈ Ẽ to a tree this creates exactly one cycle.
A spanning tree in G̃ is a spanning subgraph which is a tree in G̃. One can show
that G̃ always contains a spanning tree if it is strongly connected.
Now suppose that G̃ is strongly connected. Given a spanning tree T of G̃, any cycle
obtained by adding to T an edge of the graph G̃ which is not an edge of the tree is
called a fundamental cycle of G̃ (with respect to the given spanning tree).
In electrical networks there are no self-loops, i.e. there are no edges with the prop-
erty that ϕ1(e) = ϕ2(e). The constitutive laws of the elements in the network are
assumed to be the ones given in Table 1.4.2 and the resistances, capacitances and
inductances of the connecting wires are neglected. A directed graph of the network
is defined by replacing every element (resistor, inductor, capacitor, voltage and cur-
rent sources) by an edge and the junction points of the wires (where the elements are
connected together) by a vertex. Let E be the corresponding set of edges (network
elements) and V the set of vertices (junction points). If a network element e joins
the junction points v and v�, we may choose the direction of the edge e arbitrarily

5The directed graph G is called connected if the extended graph G̃ is strongly connected. Note
that a directed graph consisting of just two vertices and one edge between them, is connected but
not strongly connected.
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by setting either ϕ(e) := (v, v�) or ϕ(e) := (v�, v). The incidence map ϕ : E → V 2 is
defined by choosing one of these two possibilities for each edge e ∈ E. With these
specifications we obtain a directed graph G = (V, E, ϕ) representing the electrical
network. Associated with each edge e ∈ E are two time-varying weighting functions
Ie(·), Ve(·) : [0,∞) → R; the current and voltage across the element which is rep-
resented by the edge. The direction of each edge is taken as reference direction for
the current and the voltage drop. This is not a restriction, since negative values of
Ie and Ve are allowed. However it does mean that Ie and Ve have the same sign.
Since we also consider the graph G̃ we have to associate with each edge −e ∈ −E a
current and voltage and it is natural to set I−e = −Ie and V−e = −Ve, respectively.
In assembling an electrical network by interconnecting various elements there are
constraints on the currents and voltages given by Kirchhoff laws. The current law
can be expressed in terms of the graph G whereas we need the extended graph G̃ in
order to state the voltage law.

Kirchhoff ’s current law states that the net current flow in and out of every vertex
at the time t is zero, i.e.

�

e∈E(·,v)

Ie(t) −
�

e∈E(v,·)
Ie(t) = 0, t ≥ 0, v ∈ V. (14)

Here E(v, ·) and E(·, v) are defined by (13).
Since the current in the edge −e ∈ −E is by definition −Ie we could also have
expressed the current law for the graph G̃ with the result that the LHS of (14)
would have doubled.

Kirchhoff ’s voltage law states that the total voltage drop around every cycle in
G̃ must be zero, i.e. if e = (e1, e2, ..., er) is a cycle in Ẽ, then

r�

j=1

Vej
(t) = 0, t ≥ 0. (15)

Suppose Kirchhoff’s current law is written down for each vertex of G and we are
given a cut-set for this graph. If we sum up the equations for all the vertices in
either of the two subgraphs of G defined by the cut-set, only those currents entering
or leaving the subgraph remain since the others cancel. So for the currents in the
edges of the cut-set we have:

Cut-set condition: The sum of the currents entering one of the two subgraphs of G
defined by a cut-set must equal the sum of the currents leaving it.

This version of Kirchhoff’s current law is applied to each cut-set in E. Then Kirch-
hoff’s voltage law is applied to each cycle in G̃. The resulting equations together
with the constitutive laws of the elements are used to obtain a dynamical model for
the electrical network. However there is a certain amount of redundancy if Kirch-
hoff’s laws are applied to every cut-set and every cycle, in the sense that some of the
equations are linearly dependent. Moreover it is not clear which variables should
be eliminated and which ones retained in order to get a dynamical system model.
Engineers have devised methods for overcoming these problems by means of a judi-
cious choice of cut-sets, cycles and state space variables, see Notes and References.
They recommend the following:
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(C1) Select a spanning tree of the graph G̃ so that it contains all resistors, no
current sources, and has as many capacitors and as few inductors as possible.
In general these last two aims may be contradictory and a compromise must
be made. For each edge in e ∈ E of the tree, find a cut-set6 (a subset of E)
which contains the edge but no other edge in E of the spanning tree. Then for
each such cut-set write down the equation determined by the corresponding
cut-set condition.

(C2) For every fundamental cycle obtained by adding to the spanning tree any edge
of G̃ write down Kirchhoff’s voltage law (15).

(C3) For every edge of the graph write down the constitutive law of the correspond-
ing element of the network.

(C4) Choose the charges on the capacitors and the currents through inductors which
appear in the equations obtained by (C1), (C2) and (C3) as state space vari-
ables and eliminate all the others.

Example 1.4.6. Consider the network shown in Figure 1.4.7. The vertices of the asso-

R6

+
−

I7

u

I6

L4
I3

C3

R1

I1
I2

L2

R5

I5I4

Figure 1.4.7: RLC Network

ciated graph correspond to the junction points marked with a • in Figure 1.4.8 and the
edges correspond to the network elements (1 capacitor, 2 inductors, 3 resistances and a
voltage source). Directions for the edges are chosen arbitrarily and the choice we have
made is shown in the directed graph on the left of Figure 1.4.8. The extended graph G̃ is
obtained from G by eliminating the arrowheads on the edges in G. Thus every line segment
in the right hand graph of Figure 1.4.8 stands for a pair of edges {ei,−ei} of G̃. There are
many spanning trees of the graph G̃, e.g. {±e1,±e3,±e5,±e6}, {±e3,±e5,±e6,±e7}, and
{±e6,±e7,±e4,±e3}. Guided by (C1) we choose to work with {±e1,±e3,±e5,±e6} since

6The cut-set is uniquely determined. It consists of e together with all those edges in E which
connect a vertex of one of the subgraphs with a vertex of the other.
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±e5

±e2

±e7 ±e6

Figure 1.4.8: Directed graph G and spanning tree of G̃

it contains all resistors, the capacitor and no inductor. This tree is drawn with continuous
edges in the right hand figure of Figure 1.4.8 whereas all other edges of the graph are
dashed. The cut-set containing edge e3, is {e3, e2, e4, e7} and by the cut-set condition,

I2 + I3 + I4 = I7. (16)

The cut-set containing edge e1 is {e1, e4, e7}, so

I1 + I4 = I7, (17)

The cut-set containing edge e5 is {e5, e2, e7}, so

I5 + I2 = I7. (18)

Finally the cut-set containing edge e6 is {e6, e7}, so

I6 = I7. (19)

Guided by (C2) we have to find the fundamental cycles in G̃ associated with the spanning
tree {±e1,±e3,±e5,±e6}. These are (−e2, e3, e5) and the reverse cycle (e2,−e5,−e3),
(−e4, e1, e3) and the reverse cycle (e4,−e3,−e1), (e1, e3, e5, e6, e7) and the reverse cycle
(−e1,−e7,−e6,−e5,−e3). Applying Kirchhoff’s voltage law to these cycles we have

−V2 + V5 + V3 = 0, (20)

−V4 + V3 + V1 = 0, (21)

V1 + V3 + V5 + V6 = u. (22)

The equations (16)-(19) and (20)-(22) are augmented with the constitutive laws

V1 = I1R1, V2 = Lİ2, V3 = Q3/C3, V4 = Lİ4, V5 = I5R5, V6 = I6R6. (23)

We now follow (C4) and choose I2, Q3, I4 as state variables and eliminate all the other
variables in (16)–(23). To this end, from (16)–(19) we have

⎡
⎣

I1

I5

I6

⎤
⎦ =

⎡
⎣

1 1 0
0 1 1
1 1 1

⎤
⎦

⎡
⎣

I2

I3

I4

⎤
⎦
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and substituting in (20)–(22) and using the expressions for V1, V5, V6 in (23) yields
⎡
⎣
1 −R5 0
0 −R1 1
0 R 0

⎤
⎦

⎡
⎣

V2

I3

V4

⎤
⎦ =

⎡
⎣

0 1 R5

R1 1 0
−(R1 + R6) −1 −(R5 + R6)

⎤
⎦

⎡
⎣

I2

V3

I4

⎤
⎦ +

⎡
⎣

0
0
1

⎤
⎦ u ,

where R = R1 + R5 + R6. But
⎡
⎣

1 −R5 0
0 −R1 1
0 R 0

⎤
⎦
−1

= R−1

⎡
⎣

R 0 R5

0 0 1
0 R R1

⎤
⎦

and hence

R

⎡
⎣

V2

I3

V4

⎤
⎦ =

⎡
⎣
−R5(R1 + R6) (R1 + R6) R1R5

−(R1 + R6) −1 −(R5 + R6)
R1R5 R5 + R6 −R1(R5 + R6)

⎤
⎦

⎡
⎣

I2

V3

I4

⎤
⎦ +

⎡
⎣
R5

1
R1

⎤
⎦ u .

Then using (23) and I3 = Q̇3 we get

R

⎡
⎣

İ2

Q̇3

İ4

⎤
⎦ =

⎡
⎣
−R5(R1 + R6)/L2 (R1 + R6)/L2C3 R1R5/L2

−(R1 + R6) −1/C3 −(R5 + R6)
R1R5/L4 (R5 + R6)/L4C3 −R1(R5 + R6)/L4

⎤
⎦

⎡
⎣

I2

Q3

I4

⎤
⎦ +

⎡
⎣
R5

1
R1

⎤
⎦u .

This is the dynamical model for the given RLC network obtained by following the guide-
lines (C1)-(C4). Note that

⎡
⎣

I2

Q3

I4

⎤
⎦ =

⎡
⎣

0 −1 1
−R1C3 −R5C3 −R6C3

−1 0 1

⎤
⎦

⎡
⎣
I1

I5

I6

⎤
⎦ +

⎡
⎣

0
C3

0

⎤
⎦ u .

Using this transformation we could also write down differential equations for I1, I5, I6 in
violation of the guidelines. In this case both u and its derivative u̇ will appear on the RHS.
We will later restrict our analysis to dynamical models which do not contain derivatives of
input variables. So without further modification the dynamical model in terms of I1, I5, I6

will not fit this specification. ✷

1.4.3 Notes and References

A classical reference on electromagnetic theory is the book of Elliott (1966) which has been

republished as an IEEE reprint, see [151]. Its main features are the historical material

in each chapter and the development, via special relativity, of a complete electromagnetic

theory. We also recommend the Lecture Notes on Physics by Feynman (1975) [161].

The more general version of Ohm’s law and the effect of the fringing of the electric field

on the capacitor considered in Example 1.4.2 can be found in [151]. A good book on

vector fields developed through its application to engineering is Shercliff (1977) [463]. As

an elementary mathematical introduction to Vector Analysis we recommend the textbook

of Marsden and Tromba (1996) [362]. For a discussion of the modelling of electrical and

electromechanical systems, see Ogata (1992) [397], Burton (1994) [84], Close and Frederick

(1995) [105] and for references on electrical circuits see e.g. Johnson et al. (1992) [278]

and Wellstead (1979) [516]. A comprehensive account of graph theory is contained in Thu-

lasiraman and Swamy (1992) [495]. A concise description of how to use graph theoretical

tools for the modelling of electrical networks can be found in Zerz (2000) [545], see also

[278] and [516].
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1.5 Digital Systems

In recent years, due mainly to the simultaneous dramatic improvement and reduction
in cost of digital hardware, digital systems have become all pervasive in technology.
They form a class of dynamical systems with quite distinctive features and there-
fore special engineering and mathematical disciplines have been developed for their
analysis and design: “Theory of Switching Networks”, “Automata Theory”, “Logic
Design”, see Notes and References. Although these areas are not subjects of this
book, it is appropriate to discuss some examples and special features of digital sys-
tems since they are not only an important class of dynamical systems in themselves
but are also increasingly used in the control and measurement of analog signals and
systems. Indeed many analog devices in signal processing, filtering and control have
been replaced by digital counterparts which are often cheaper, more robust and more
reliable.
The essential difference between analog and digital systems is that in the former
ones input, output and internal state variables take on a continuous range of values
whereas in the latter ones there are only a finite number of input, output and state
values. Most digital systems are binary, i.e. their input, output and state variables
take only two different values, “on” and “off”. Physically these values may be en-
coded by different voltages (e.g. 5 volts versus 0 volts), by the flow or non-flow of an
electrical current or by magnetic polarization (North and South). Mathematically
the “on” and “off” values are usually represented by 1 and 0, the elements of the
simplest nontrivial Boolean algebra B = {0, 1} or, alternatively, the binary field
Z2 = Z/(2).
Because of its binary components a digital system is often viewed as a network of
switches which operates in discrete time t ∈ N or Z. There are two basic classes.

• Combinational switching networks are those whose current outputs depend
only on the current inputs. Dynamical systems with this property are called
memoryless, they transform the inputs directly into outputs without interme-
diate storage of energy or information. Physically, the output changes a short
time after the input changes, but this short time delay is neglected in the
mathematical description of the digital system. By convention the “current”
input at time t ∈ Z, u(t), determines the “current” output, y(t).1 If such a
combinational network has m input and p output channels its behaviour is
completely described by a function F mapping the 2m possible input vectors
u(t) ∈ Bm into the corresponding output vectors y(t) = F (u(t)) ∈ Bp.

• Sequential switching networks or finite state machines are those digital systems
whose current outputs depend not only on the current inputs but also on the
sequence of previous inputs. Such systems (for example a digital clock or a
computer) contain memory elements in which information about the history
of previous inputs is stored. The (binary) contents of all its, say n, memory
elements form together a binary vector x ∈ Bn which is called the state of

1Alternatively, one could redefine the time dependence of the output function in such a way
that the present input u(t) determines the next output y(t+1). In fact, this alternative convention
is usually chosen in the mathematical description of sequential networks, see Example 1.5.2.
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the system. The current state and the current input together determine the
current output and the next state of the system. The behaviour of a sequential
switching network is therefore described by two maps, which determine the
current output and the next state as functions of the current input and the
current state of the system. This is in contrast with combinational switching
networks where there is no need to introduce the notion of state.

Before describing some elementary building blocks of these two types of digital
systems we illustrate the difference between combinational and sequential switching
networks by two examples.

Example 1.5.1. (Half and full adder). Suppose we want to add two binary digits
A and B. A combinational switching network which performs this addition is called a half
adder. It accepts two binary digits A and B (bits) as inputs and produces two binary
digits as outputs, the “sum” S = A · (1 − B) + (1 − A) · B in Z2 (i.e. A + B mod 2) and
the “carry” C = A · B. The binary number CS formed by the two outputs is the dyadic
representation of the sum of A and B in Z, A + B = C21 + S20.

✲

✲

✲

✲

B

A

S

C
H A

A B C S

0 0 0 0
1 0 0 1
0 1 0 1
1 1 1 0

Figure 1.5.1: Block diagram and input-output table of half adder

When two binary numbers are added digit by digit, a third input must be considered,
the carry-in from the next lower position. This yields the full adder. By a combination
of half and full adders one can construct memoryless digital systems for the addition of
arbitrary binary numbers of limited length. For instance, one can construct a machine for
computing the sum of two binary numbers of 4 digits each by connecting in series one half
adder and three full adders.

✲

✲

✲
✲

✲
B

A

Cin
S

Cout
F A

A B Cin Cout S

0 0 0 0 0
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
1 1 0 1 0
1 0 1 1 0
0 1 1 1 0
1 1 1 1 1

Figure 1.5.2: Block diagram and input-output table of full adder

In the above descriptions of the half and the full adder, time does not play a role since
these digital systems are both memoryless and time–invariant. The current output y(t) =
(Cout, S) is completely determined by the current input u(t) = (A,B) (resp. u(t) =
(A,B,Cin)); it does not depend upon the previous inputs (the system has no memory).
Moreover, identical input vectors always determine the same output vector (independent
of the time t at which they are applied), the input-output relationship does not change
with time, it is time–invariant. ✷
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Example 1.5.2. (Parity check machine). Whenever digital systems are used in
computing or communication it is necessary to convert numbers and letters into strings
of 1’s and 0’s. A map F : U → B

p which maps a finite input alphabet (set of characters)
U injectively into the set B

p of p-bit strings (code words) is called a block code of size p.
An arbitrary string of p bits may or may not be a code word for the code F . An encoding
device can be described as a memoryless time–invariant digital system which accepts inputs
u from the finite input alphabet U and transforms these into outputs y = F (u) ∈ B

p. A
widely used alpha-numerical code is the ASCII code. This is a seven-bit code for the 10
decimal numbers, the 26 lower-case and 26 upper-case characters of the English language
and a large number of special characters, such as “+”, “)”, “%” etc. With seven bits it is
possible to encode at most 27 characters.
When information is encoded and transmitted some bits may be changed due to electrical
noise or other transient failures. The change of a single bit can be detected by adding
one bit to each code word in such a way that after this addition each valid code word has
an even number of 1’s, e.g. the ASCII code word for a is 1100001. This word has odd
parity and so a 1 would be prefixed to the code word in order to achieve even parity. Thus
the enlarged code word permitting error detection would be 11100001. If now one bit is
changed in the code word, say by a transmission failure, the error would be detected by
examining the parity of the transmitted word.2 This can be done by a parity checker, a
device which responds to a finite binary sequence (u(0), u(1), . . . , u(t)) with the output
y(t + 1) = 0 (in the next time unit) if the number of 1’s in the sequence is even (no
error), and with a 1 if not (error). The next output of a parity checker clearly depends
not only on the current but also on the past inputs. If the number of ones in the past
input sequence (u(0), u(1), . . . , u(t − 1)) is even the next output y(t + 1) is equal to the
current input u(t). If, however, the number of ones in the past input sequence is odd, the
next output is the complement of the current input, y(t + 1) = u(t) = 1−u(t). These two
cases lead to the idea of constructing a parity checker as a machine with two states, Even
and Odd, which “remember” the parity of the past output sequence and are encoded by 0
and 1. The state transition of the parity checker under the influence of the present input
is represented by its state transition graph and is explicitly described in the “next state
table”, see Figure 1.5.3.

00

1

1

Even

Reset

Odd
0 1

Current State Input Next State Output
0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

Figure 1.5.3: State transition graph and next state table of a parity checker

The system equations of the parity checking machine are

x(t + 1) = x(t) + u(t), t ∈ N, x(0) = 0

y(t) = x(t)

2Note that if two bits are simultaneously changed in a code word this will not be discovered by a
parity checker. However, the occurrence of a double error is much less probable than the occurrence
of a single error (p2 instead of p if p is the probability of a single error, assuming independence of
the transmission errors).
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where u(t), x(t), y(t) ∈ Z2 denote the current input, state and output, and x(t + 1) ∈ Z2

is the next state. (The addition on the RHS of the first equation is taken in the binary
field Z2). In order that this machine can be used for detecting errors in code words, a
reset mechanism is needed which allows one to reset the state of the machine to 0 after
the examination of each code word. ✷

1.5.1 Combinational Switching Networks

In this brief subsection we describe some of the elementary building blocks of combi-
national networks, the logic gates, and illustrate how simple arithmetic units, like the
half and the full adder, can be built from these gates. We also explain by means of
an example how the digital input–output behaviour of a gate can be approximately
realized by a continuous nonlinearity.

Example 1.5.3. (Logic gates and half adder). A logic gate is an electronic device
with two (or more) binary inputs and one binary output which performs simple logical
operations. Its input–output behaviour can be described by a truth table or in terms of
the three basic Boolean operations ∧,∨ and complementation. The three logic gates AND,
OR, NOT which perform these operations are described in the following table together
with a NOR gate which is a cascade connection of an OR-gate and the “inverter” NOT.

yu

y = u [= 1 − u]

NOT

u y = u

0 1
1 0

yu1
u2

y = u1 ∧ u2 [= u1 · u2]

AND

u1 u2 y = u1 ∧ u2

0 0 0
0 1 0
1 0 0
1 1 1

yu1
u2

y = u1 ∨ u2 [= 1 − (1 − u1) · (1 − u2)]

OR

u1 u2 y = u1 ∨ u2

0 0 0
0 1 1
1 0 1
1 1 1

yu1
u2

y = u1 ∨ u2 [= (1 − u1) · (1 − u2)]

NOR

u1 u2 y = u1 ∨ u2

0 0 1
0 1 0
1 0 0
1 1 0

Table 1.5.4: Logic Gates

The table shows the standard symbols of these gates, their truth tables and the expression
of their outputs in terms of their inputs (in the Boolean algebra B). Note that these gates
can also be described by arithmetic expressions in the binary field Z2, but while the AND
gate corresponds to multiplication the OR gate does not correspond to addition in Z2

(although ∨ is often replaced by + in textbooks on logic design). The four gates NOT,
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AND, OR, NOR correspond, respectively, to the following four operations in Z2: X → X =
1−X (complementation), (X,Y ) → X ·Y (multiplication), (X,Y ) → 1− (1−X) · (1−Y )
and (X,Y ) → (1 − X) · (1 − Y ).
These gates can be combined to produce digital networks which perform more complicated
logic or arithmetic functions. As an example we show in Figure 1.5.5 the realization of a

A

B
S (sum)

C (carry)

Figure 1.5.5: Realization of a half adder

half adder by a network of gates. The half adder is the simplest arithmetic circuit. The
full adder (see Example 1.5.1) can be constructed from two half adders and an OR gate.

HA 1

HA 2

C2

S2

S1

C1
A

B

Cin

Cout

S

Figure 1.5.6: Realization of a full adder

Half and full adders are simple examples of composite systems i.e. systems composed of
a number of interconnected subsystems. Very complex systems can be built in this way.
In fact any function F : Z

m
2 → Z2 or, equivalently, any logical/Boolean operation can be

realized by the three gates NOT, AND, OR3. ✷

Usually a given Boolean operation can be realized by an interconnection of gates in
many different ways. A basic problem in logic design is that of “minimal realization”:
Realize a given Boolean function by a network in which there is a minimum

• number of gates,

• number of gate inputs–this determines the amount of wiring within the net-
work,

• number of cascaded levels of gates (i.e. the number of gates in the largest path
from any input to any output). This number determines the overall time delay
between inputs and outputs of the network.

Usually the above numbers cannot be minimized simultaneously so one must find a
suitable compromise. Problems of minimal realization also arise in systems theory
when one wants to realize a given input-output behaviour by a continuous or dis-
crete time linear system with a minimal number of state variables, see Vol. II.
Before going on to discuss the notion of a sequential network (finite state machine)

3For a variety of reasons, NAND and NOR gates (i.e. the inverted AND and OR gates) are
preferred in practice to AND and OR gates for realizing logic circuits.
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it is useful to comment on some important points related to the physical realization
of both kinds of switching networks (combinational and sequential). The physi-
cal components of a digital system are constructed from electronic building blocks
(resistors, diodes, transistors) – in other words a digital system is built with analog
building blocks operating in continuous time with real valued input, output and state
coordinates. Natura non facit saltus. So the physical quantities within the system
(voltages, currents) when they move from one of their two values to the other, will
vary over a continuous range of transitional values. One must, therefore, distinguish
between the digital system as a mathematical model and its physical realization by
an electronic circuit. A precise modelling of the latter would be based on ordinary or
partial differential equations with a continuous time domain, and these differential
equations would describe not only the transition from the current steady state of the
circuit to the next one but the whole continuous trajectories of its state and output
vectors. In the above, what has been written about digital systems is concerned
with their ideal mathematical behaviour and does not exactly apply to their phys-
ical realization. In the following example we illustrate how a simple digital system
can be approximately realized by an analog device.

Example 1.5.4. (Inverter circuit). The logic inverter NOT is a digital system whose
inputs and outputs are binary digits. It transforms the input 0 into the output 1 and the
input 1 into the output 0. However, the circuit which realizes this ideal digital behaviour
operates over electrical voltages rather than digits. It accepts arbitrary input voltages
in the range of say, 0 to 5 volts and produces output voltages over the same range.
The essential property which makes it a good realization of the logic inverter is that
it transforms voltages which are “not too far” from 0 volts into voltages very close to +5
volts (representing a logical 1) and voltages which are “not too far” from +5 volts into
voltages very close to 0 volts (representing a logical 0). A typical input-output behaviour of

1

2

3

4

5

1 2 3 4 5

y

u0

Figure 1.5.7: Input-output behaviour of an inverter circuit

such a circuit is shown in Figure 1.5.7. Here an input in the range of 0 to 2 volts produces
an output of approximately 5 volts and an input in the range of 3 to 5 volts produces an
output of approximately 0 volts. Thus we may say that the circuit “interprets” an input
in the range of 0 to 2 volts as an input 0 producing an output 1 and if the input is in the
range of 3 to 5 volts it interprets it as an input 1 and produces the output 0. So minor
fluctuations in voltage levels are not misinterpreted by the circuit and have practically no
influence on its output. A similar nonlinear behaviour which produces only two different
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output values in response to a relatively wide range of inputs values is also exhibited by
other building blocks of digital systems. ✷

Remark 1.5.5. In general, due to unavoidable variations in the manufacturing process
the input–output behaviour of an electrical device will differ from its prescribed perfor-
mance. Furthermore, every interconnection of electrical components is subject to noise
and signal degradation along the wires. Hence it is important that the components of a
switching network are sufficiently tolerant with respect to input variations. The tolerance
of a digital device to deviations of the input signal from the reference voltages is called
its noise margin. A good noise margin of the components is fundamental for the accuracy
and reliability of a digital system. Cascaded digital circuits with a good noise margin
(such as the above inverter) can correct signal degradations. ✷

1.5.2 Sequential Switching Networks

Sequential networks are required if data is to be stored in a network for future use.
In this subsection we describe how data can be stored by latches and flip–flops and
we discuss the use of clocks in order to synchronize the network elements and thereby
enhance the reliability of the network. We outline the main steps in the design of a
finite state machine and illustrate this by constructing a three bit counter.
In the next example we describe some basic memory elements of sequential networks.

Example 1.5.6. (R–S latch and J–K latch). Broadly speaking a digital system
consists of a memory part that stores past data and a combinational part by which new
outputs are generated from the stored data and the current inputs. The basic memory
elements of a digital system are constructed by feedback interconnection between a (small)
number of gates. The most primitive memory devices are latches, these are circuits which
“latch” onto one bit (0 or 1) and remember it. As an example we consider the R–S latch
which is obtained by feedback coupling of two NOR gates. It follows immediately from
the definition that a NOR gate acts as an inverter if one of the inputs is set to 0. If one
of the inputs is set to 1 its output is always 0. Now consider the cross–coupled NOR

✲

✲

✲

✲
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Figure 1.5.8: R–S latch: block diagram and realization by feedback of NOR gates

gates as depicted in Figure 1.5.8. It is required that the outputs of the two NOR gates
have complementary values Q and Q, respectively. The output Q of the lower NOR gate
Q is said to be the state of the latch. If Q = 1 it is said to be in the set state and if
Q = 0 it is said to be in the reset or clear state. Suppose that both inputs R and S are
set to zero. Since each of the two NOR gates acts as inverter to the signal received from
the other, the output values and hence the state remain unchanged (i.e. are stored) as
long as both inputs are kept to zero. If R = 0 and S = 1 then the state (output of the
lower NOR gate) is set to 1 whereas the output of the upper NOR gate is set to 0. If
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R = 1 and S = 0 then Q is reset to 0. Therefore S is called the set input and R the
reset input. What happens if both inputs are set to 1, i.e. if the latch is simultaneously
set and cleared? In that case the outputs of both NOR gates would necessarily take the
value 0 so that the complementarity assumption of the two outputs would be violated.
Moreover, if afterwards both inputs were to be simultaneously changed from 1 to 0 at
time t the resulting (next) state and output value Q(t + τ) would become unpredictable.
If the upper gate switches first, its output Q would switch to 1 and so the next state
would be set to Q(t + τ) = 0. If the lower gate switches first, then its output would

u1(t) u2(t) x(t) x(t + τ) Comment
0 0 0 0 HOLD

0 0 1 1
1 0 0 1 SET

1 0 1 1
0 1 0 0 RESET

0 1 1 0
1 1 0 ? NOT ALLOWED

1 1 1 ?

Table 1.5.9: Next state table of the R–S latch

switch to Q(t + τ) = 1 whilst Q would switch to 0. Thus the next state Q(t + τ) of the
latch would depend upon which gate happens to be faster. Such a situation is referred
to as a race condition. This unpleasant phenomenon is excluded if the two outputs never
have the same value and this is secured if the input pair (u1, u2) = (1, 1) is not allowed.
For admissible input pairs the behaviour of the R–S latch is described by the output map
(y1, y2) = (x, 1−x) and the next state map x(t+ τ) = (1−x(t))u1(t)+x(t)(1−u2(t)), see
the next state Table 1.5.9. Here τ is the propagation delay of the R–S latch, i.e. the time
lag before the new steady state (output) is achieved in response to a change in the inputs.
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✲
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Figure 1.5.10: J–K Latch: Block diagram and circuit

In order to avoid the possibility of inadmissible inputs, the R–S latch can be connected
with two additional AND gates as in Figure 1.5.10. By feeding back the outputs in the
described manner it is guaranteed that the inputs R and S to the R–S latch are never
simultaneously 1. The resulting circuit is called a J-K latch and is represented by the
block diagram shown on the left in Figure 1.5.10. In addition to avoiding the forbidden
input combination (R,S) = (1, 1) at the internal R-S latch the configuration shows a
new capability, toggling. If J = K = 1 then the current state Q(t) = 0 will toggle to
Q(t + τ) = 1 and the current state Q(t) = 1 will toggle to Q(t + τ) = 0. Thus all possible
input combinations lead to useful functions for the J-K latch: hold, reset, set, and toggle,
see the next state Table 1.5.11. The behaviour of a J–K latch is described by the output
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u1(t) u2(t) x(t) x(t + τ) Comment
0 0 0 0 HOLD

0 0 1 1
1 0 0 1 SET

1 0 1 1
0 1 0 0 RESET

0 1 1 0
1 1 0 1 TOGGLE

1 1 1 0

Table 1.5.11: J–K Latch: Next state table

function (y1, y2) = (x, 1 − x) and the next state equation

x(t + τ) = (1 − x(t))u1(t) + x(t)(1 − u2(t)) x ∈ Z2, u ∈ Z
2
2 . (1)

Note, however, that this equation is not to be understood in discrete time. Both the
R–S and the J–K latches are asynchronous (or unclocked), i.e. they may change their
state and outputs at any time in response to changes in the inputs.4 This leads to a
problem which becomes evident when these memory elements are realized by a circuit. For
an asynchronous circuit to work properly, the inputs must be (approximately) constant
for a sufficiently long time to allow the circuit to reach the corresponding next steady
state. Moreover, only one external input should be effective (different from zero) at any
given time. The reason for this is that if the two inputs u1(t) = u2(t) = 1 for a time
interval longer than the propagation delay through the latch, the outputs will toggle an
unknown number of times, determined by the length of the interval and the time lag with
which a change in the output signal travels, via the feedback loop, through the circuit
back to the output. The phenomenon of “oscillating outputs” caused by identical inputs
u1(t) = u2(t) = 1 is illustrated in the timing diagram shown in Figure 1.5.12. So, although

t

J

K

Q

Figure 1.5.12: Timing behaviour of the J–K latch

all input combinations are allowable for the J–K latch, the problem of forbidden inputs
reappears in a different form when the memory element is actually realized by a circuit.
The input combination u1(t) = u2(t) = 1 causes the J–K latch to produce oscillating
outputs in continuous time. ✷

We have seen in Example 1.5.4 that high reliability can be achieved in spite of
unavoidable signal degradation and noise within a network if the network elements

4This is why we have denoted the next state by x(t + τ) in the above next state tables.
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produce signals with only a finite number of steady state/output values (“quanti-
zation of signal values”). In order that only these values (representing 0 and 1)
determine the behaviour of the network and that the transitional signal values have
no effect, time must be discretized as well (“quantization of time”). This is per-
formed by synchronizing the functioning of the network elements. A periodic signal
(clock) is distributed throughout the circuit in order to ensure that all memory ele-
ments change state and output at approximately the same instant. The clock usually
generates a square-wave pulse train. By adding for example the clock signal to the
inputs of a J–K latch as in Figure 1.5.13 the output and state of this latch will be
updated only if the clock is asserted (takes its upper value). When the clock is low,
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✲
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Figure 1.5.13: Clocked J–K Latch: Block diagram and circuit

the steering AND gates are disabled, and the output of the latch remains unaffected
by the data inputs J and K. Such a method of synchronization is called level trig-
gering, and level triggered storage devices are called clocked latches. If the inputs to
the network elements do not change during the time when the clock is high and the
corresponding steady state and output values are reached within one clock cycle the
level triggered network behaves approximately like a digital system. However, level
triggering cannot always handle asynchronous inputs, i.e. inputs which are chang-
ing whilst the clock is high. This may lead to racing problems and unpredictable
outputs.
Flip–flops differ from latches in that their outputs change only with respect to the

0 1 2 3 4 5 6 7

L

F

Ck

u

Figure 1.5.14: Time behaviour of a positive edge-triggered flip-flop (F) and a clocked
latch (L)

clock whereas clocked latches change output if their inputs change (and the clock is
high). Edge–triggered flip–flops respond to a rising or falling edge of the clock signal.
This is of a very short duration so that racing and oscillating outputs are avoided.
A positive (negative) edge–triggered flip–flop samples its inputs on the low–to–high
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(resp. high-to-low) transition of the clock and, after a short propagation delay, pro-
duces the next state corresponding to the current input and the current state. After
this the input may change but the flip–flop will not respond until the next signal
from the clock. This is in contrast to the behaviour of a clocked latch as illustrated
in Figure 1.5.14. We see that the outputs differ if the input changes when the clock
is high. This difference is particularly noticeable between the times 5 and 6 where
the clocked latch responds to the decreasing input, but the output of the flip-flop
remains at 1.
For reliable operation of flip–flops, the inputs must be “stable” (approximately con-
stant) for a time interval from a setup time before, to a hold time after the clocking
event, see Figure 1.5.15. Proper operation of the circuit requires that the steady

t

Ck

u

Tsu Th

Figure 1.5.15: Setup Tsu and hold Th times

state value changes only once per clock cycle. In order to guarantee that the correct
next state is achieved in spite of varying propagation delays of the input signals the
period of the clock should be longer than the worst case propagation delay through
the combinational network. If a network is designed in such a way that these con-
straints are respected, the resulting circuit behaves like a discrete time finite state
machine. A careful timing methodology is fundamental for designing reliable se-
quential networks.
Different types of edge-triggered flip-flops can be created by an interconnection of
latches, i.e. by an interconnection of feedback coupled gates. An edge-triggered J–K
flip–flop for example, which is one of the most versatile and reliable flip–flops, can
be built from 8–10 gates using suitable interconnections and feedback couplings.
We do not go into details and refer the interested reader to the literature, see Notes
and References. Edge triggered flip–flops are represented by block diagrams with a
triangle in front of the clock input, see Figure 1.5.16.
In order to illustrate how the above memory elements are used to build a sequential
network we conclude this section with an example of a finite state machine design.
The main steps in such a design process are listed below.

1. Abstract representation of the machine. Identify the inputs, outputs,
and introduce internal states of the machine which permit an easy description
of the desired input–output behaviour. Draw a state diagram, i.e. a graph
with vertices representing the states and directed arcs which represent the
possible transitions from one state to the next one under the influence of the
available inputs. Additionally, a next state table can be established. Describe
the outputs associated with given input and state combinations.

2. State minimization. Sometimes the first step results in a description that
has a number of redundant states. These states can be eliminated without
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affecting the input–output behaviour of the finite state machine. A reduction
in the number of states usually reduces the number of logic gates and flip-flops
which are needed for the realization of the finite state machine5. There are
formal procedures and computational algorithms for state minimization, see
Notes and References.

3. Choice of flip–flops for implementing the states.

4. Implementation of the finite state machine. Realize the next state
and output mappings by a combinational network connecting inputs, states
and outputs.

As an illustration, let us design a synchronous binary counter. Counters are used in
many digital systems (e.g. in digital clocks) to count events. They are amongst the
simplest possible finite state machines. They typically have only one input (e.g. a
square wave signal–the clock) and their outputs are identical with their current state.
Their state transition graph consists of a single cycle joining the finitely many binary
numbers through which the counter runs successively on each clock pulse.

Example 1.5.7. (Three bit counter). We construct a synchronous modulo-8 counter
which is driven by a clock. Following the above procedure we begin with an abstract
description of the digital system (Step 1). The clock is the only input to the counter.
There are three binary output channels corresponding to the three bits Q1, Q2, Q3 which
are needed to represent the numbers 0, . . . , 7 in the dyadic system. We introduce 8 different
states of the counter corresponding to the eight different output combinations and encode
the states by the output combination they generate. On each clock pulse the counter
advances successively through its 8 states in the following cycle

000 → 001 → 010 → 011 → 100 → 101 → 110 → 111 → 000.

In this simple case we may omit the state transition table. The output vector correspond-
ing to the current state x(t) = Q3Q2Q1 is (Q1, Q2, Q3). If we want the present output
of the counter to be a function of the present state alone, the number of states we have
introduced is clearly minimal and we may skip Step 2.
To store the three binary digits Q3, Q2, Q1 three flip–flops are needed. From the state
transition graph we see that the digit Q1 toggles at every clock pulse, the digit Q2 toggles
on every second clock pulse and the digit Q3 on every fourth clock pulse. This suggests
that a toggle flip–flop (T flip–flop) may be most suitable for the implementation of the
counter. The T flip–flop has a single input that causes the stored state to remain un-
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Figure 1.5.16: Edge-triggered T Flip–Flop: Block diagram and construction from an

edge-triggered J–K flip–flop

5To realize a machine with n states at least m flip–flops are needed where 2m−1 < n ≤ 2m.
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changed if the input is zero and to be complemented when the input is asserted (u = 1).
A toggle flip–flop can be constructed from a J–K flip–flop by tying its two inputs together
(see Figure 1.5.16). If the input is 0, both J and K are 0 and the flip–flop holds its state; if
the input is 1, both J and K are 1 and the flip–flop complements its state, see Table 1.5.11.
The state transition of the positive edge triggered T flip–flop takes place on the rising clock
edge after the toggle input is set (u = 1).
In the final step (Step 4) we express each bit of the next–state6 x(t + 1) = Q+

3 Q+
2 Q+

1

Clock

1 T Q1

Q1

T Q2

Q2

Q1
Q2 T Q3 Q3

Q3

Figure 1.5.17: Three-bit counter circuit

as a combinational logic function of the current state bits and the clock signal. In this
simple case the combinational logic for each of the three flip–flops can easily be determined
by examining the state transition graph. The flip–flop storing Q1 toggles on each clock
pulse, the flip–flop storing Q2 toggles at a clock pulse whenever Q1 is asserted (Q1 = 1)
and the flip–flop storing Q3 toggles at a clock pulse whenever Q2 and Q3 are asserted
(Q1 = Q2 = 1). This leads to the circuit shown in Figure 1.5.17. ✷

Another simple and important class of sequential networks are shift registers, which
play a key role in many finite state machines and communication systems. A simple
example of a four bit shift register will be described in Example 2.1.7. For examples
of more complicated finite state machines we refer to the literature, see Notes and
References.

1.5.3 Notes and References

The realization of Boolean functions by combinational switching networks is based on

Boolean algebra and discussed in all textbooks on switching theory and logic design. Im-

portant historical references are Boole (1849) [66] and Huntington (1904) [271].

Shannon (1938) [459] was the first to show how Boolean algebra could be applied to digital

design. The digital designer wishes to realize a given Boolean function with the minimum

number of gates and wires in order to reduce the size, power dissipation and cost of a

digital circuit. There are many techniques (and CAD tools) for achieving minimal realiza-

tions of a given Boolean function, see Katz (1994) [296], Fabricius (1992) [154], Wakerley

(1990) [513] and Roth (1985) [437].

The fundamental building blocks of sequential switching networks, latches and flip-flops

6That is the state in the next clock cycle.
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are extensively discussed in most textbooks on digital systems, see the above references.

The same holds for registers, memories and counters which can be built from such building

blocks, see Example 2.1.7. A more complicated issue is the design of finite state machines

for control and decision-making logic in digital systems. The central problem is the re-

alization of a prescribed input-output behaviour by a finite state machine with minimal

number of states (minimal realization) and efficient state encoding. Good references are

Roth (1985) [437], Green (1986) [202], Prosser and Winkel (1987) [422] and Katz (1994)

[296]. The latter is especially recommended since it contains many case studies (and two

chapters describing how digital design techniques are applied to stored program comput-

ers).

The capabilities and behaviours of finite state machines are the subject of Automata

Theory which had a strong influence on the early development of mathematical systems

theory. Automata Theory studies finite machines as mathematical models of switching

and encoding networks in abstraction from specific hardware realizations. For references

and further comments on Automata Theory see the Notes and References in Section 2.1.

In using discrete time domains for modelling digital systems one should not overlook the

fact that these systems are implemented by electronic circuits in continuous time. The

resulting timing and synchronization problems are of fundamental importance in the prac-

tical design of digital systems. Detailed discussions of these issues can be found in Katz

(1994) [296], see also Mead and Conway (1980) [370].
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1.6 Heat Transfer

Heat transfer is the term used for the exchange of thermal energy. Here we only
consider the transfer accomplished by conduction in a solid body and ignore con-
vection and radiation effects. Nowadays it is usual to think of thermal energy or
heat as the kinetic energy of the elementary particles of a solid, liquid or gas. The
energy levels are a function of temperature with hot regions corresponding to high
levels of energy. If a solid is a good electrical conductor there will be a large num-
ber of electrons which move freely through the lattice and thermal conduction is a
consequence of this motion. In impure metals or in disordered alloys there is also
a transfer of energy via lattice vibrations which may be comparable in magnitude
to the electronic contribution. For gases the main mechanism is the exchange of
kinetic energy from fast moving molecules to slow moving ones caused by collisions
amongst themselves. In all cases (including liquids where a variety of mechanisms
may be present) there is a flow of energy from regions of high temperature to ones
of low temperature.
Given some initial temperature profile within a compact body B ⊂ R3, our objective
is to describe the evolution of the profile in time. We will use the law of conservation
of energy to obtain the corresponding differential equations. Let V ⊂ B ⊂ R

3 be
an arbitrary fixed, open, connected set with closure in the interior of the body B.
We assume that its boundary S is orientated and piecewise smooth. If there are no
sources of heat in V the conservation law states that:

The rate of change of the thermal energy in V with respect to time is
equal to the net flow of energy across the surface S of V .

We will now translate this law into mathematical formulas and make the statement
more precise. Let e(x, t) be the specific thermal energy (i.e. the energy per unit
mass) at position x = (x1, x2, x3) ∈ R3 and time t. We assume that the density
ρ = ρ(x) of the solid body is independent of time and temperature, then the total
thermal energy in V is �

V

ρ(x)e(x, t)dx

where dx denotes the Lebesgue measure in R3. Assuming that all the functions are
continuously differentiable, the time rate of change of the thermal energy in V is

d

dt

�

V

ρ(x)e(x, t) dx =

�

V

ρ(x)et(x, t)dx, et(x, t) =
∂e

∂t
(x, t).

Let q : B × R → R3 be the time-dependent vector field which describes the flow of
thermal energy in the body B. The vector q(x, t) is called the heat flux vector at
x ∈ B at time t. Let n(x) denote the unit outward normal to the surface S at the
point x ∈ S. By the conservation law,�

V

ρ(x) et(x, t) dx = −
�

S


q(x, t),n(x)� dS(x).

Applying the divergence theorem to the surface integral over S we obtain
�

V

(ρ(x) et(x, t) + divq(x, t)) dx = 0.
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Since the open set V is arbitrary, we have

ρ(x) et(x, t) = −div q(x, t), x ∈ int B, t ∈ R. (1)

In order to get an equation for the temperature Θ = Θ(x, t), additional information
of an empirical nature is required. For many materials the function e is linear in the
temperature Θ over quite large temperature ranges. That is e = c Θ, where c = c(x)
is time–invariant and is called the specific heat at x ∈ int B (the amount of heat
absorbed by the body at the point x per unit mass per unit rise in temperature).
Now the heat energy flows from hot to cold, so the heat flow in any direction d ∈ R3

will be negative (i.e. 
d,q� < 0) if the temperature is rising in that direction
(i.e. 
d, gradΘ � > 0), and conversely, if 
d, gradΘ � < 0 then 
d,q� > 0. As a
consequence there will exist a positive scalar function k such that q = −k gradΘ.
k is called the conductivity and in general will vary with the medium itself, the
position in the medium, the temperature and time. However if the temperature
variations are not large, a first approximation which agrees with experiments is to
assume that, for a given medium, k = k(x) is only a function of position. This
relationship was postulated by Fourier in 1822 and is now known as Fourier’s Law.
With these assumptions (1) becomes

c(x)ρ(x) Θt(x, t) = div (k(x) gradΘ(x, t)) , (x, t) ∈ int B × (0,∞). (2)

This is the general three-dimensional heat equation. If k does not depend on position,
then one obtains the classical form of the heat conduction equation

Θt(x, t) = α(x)�Θ(x, t) (3)

where α(x) = (c(x)ρ(x))−1k is called the thermometric conductivity and � denotes
the Laplacian. In order to solve it, an initial temperature distribution must be
stipulated and boundary conditions must be specified which describe the way the
body interacts with its surroundings. We illustrate this in the following example.

Example 1.6.1. Consider a metal rod heated in a furnace. The rod is assumed to be a
cylinder of uniform cross sectional radius a which is heated by jets along its length. The
heat from the jets affects the temperature distribution at the surface of the rod which in
turn results in changes of the temperature within the rod. Suppose (r,φ, z) are cylindrical
polar coordinates with the z-axis along the axis of the cylinder. We will assume that the
heat supplied by the jets at point z along the rod and time t is the same for all values of φ

and is given by v(z, t). We will also assume the thermometric conductivity α is constant
throughout the rod and the initial temperature distribution at time t = 0 is independent
of φ. So it is reasonable to seek solutions Θ of (3) which have axial symmetry (i.e. are
independent of φ), in which case (3) takes the form

Θt(r, z, t) = α�Θ(r, z, t) = αΘzz(r, z, t) + αr−1(rΘr(r, z, t))r . (4)

Let
Θ(z, t) = (πa2)−1

� 2π

0

� a

0
Θ(r, z, t) r dr dφ = 2a−2

� a

0
Θ(r, z, t) r dr

be the average cross sectional area temperature, then integrating (4) over the cross section
at z we get

Θt(z, t) = αΘzz(z, t) + 2αa−2 [rΘr(r, z, t)]a0 = αΘzz(z, t) + 2αa−1Θr(a, z, t).
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But v(z, t) = −kΘr(a, z, t) and hence

Θt(z, t) = αΘzz(z, t) + βv(z, t),

where β = −2α(ak)−1. Let us further assume that the distribution b(·) of the jets along
the rod is fixed, but the magnitude can be varied in time by a control u, so that v(z, t) =
b(z)u(t), then

Θt(z, t) = αΘzz(z, t) + βb(z)u(t) (5)

Suppose the temperature at each end of the rod is kept at a constant value C, and the
initial value of Θ at z ∈ [0, �] is Θ0(z), so that

Θ(0, t) = Θ(�, t) = C, t ≥ 0, Θ(z, 0) = Θ0(z), z ∈ [0, �], (6)

where � is the length of the rod. Note that if the initial temperature profile is constant with
Θ0(z) ≡ C, then the corresponding solution of (5) and (6) with u(t) = 0, t ≥ 0 is given
by the equilibrium solution Θ0(z, t) = C, z ∈ [0, �], t ≥ 0. For any given solution Θ(z, t)
of the partial differential equation (5) let us denote by θ(z, t) the deviation of Θ(z, t) from
the equilibrium solution, i.e.

Θ(z, t) = θ(z, t) + C, Θ0(z) = θ0(z) + C, (z, t) ∈ [0, �] × R+ .

Then we obtain from (5) and (6) the one-dimensional controlled heat equation

θt(z, t) = αθzz(z, t) + βb(z)u(t)

θ(0, t) = θ(�, t) = 0, θ(z, 0) = θ0(z), (z, t) ∈ [0, �] × R+.
(7)

Finally suppose we sense the temperature at a given point z1 ∈ (0, �). In reality the sensor
measures a weighted average of the temperature at nearby points. Let us assume that the
measurement Y (t) can be expressed in terms of the average temperature Θ(z, t) in the

form Y (t) = πa2
" �
0 c(z)Θ(z, t)dz, where the support of the continuous density c(·) is a

small interval around z1. If we denote by y(t) the deviation of Y (t) from the steady state

output Y0(t) = Cπa2
" �
0 c(z) dz (corresponding to the equilibrium solution Θ0(z, t) = C),

then

y(t) = πa2

� �

0
c(z) θ(z, t) dz, t ≥ 0. (8)

Equations (7) and (8) represent a single input single output system. The state of this
system at each time t is given by the temperature profile θ(·, t) which is an infinite dimen-
sional object varying in a function space. Such systems are called infinite dimensional.
In applications the above model may be used to determine control laws which drive an
initial temperature distribution to some desired final distribution in a given time interval
(a controllability problem), see Subsection 2.2.4. Another possible application is to use the
model to obtain an estimate of the whole temperature profile θ(·, t) from the knowledge
of the input and output functions u(·), y(·) on a given time interval [0, T ], T > 0 (an
observability problem). ✷

1.6.1 Notes and References

J. B. Fourier’s treatise on heat, “Théorie Analytique de la Chaleur”, was published in 1822

and an English translation can be found in [171]. There are, of course, whole sections of

libraries devoted to heat transfer. One book on the subject is Ozisik (1993) [401]. A similar

statement is true for books on partial differential equations. We quote Sobolev (1964) [469]

because some of the material in this section was based on it and because of the influence

that Sobolev has had on the mathematical development. A standard reference for the

control theory of infinite dimensional systems is Curtain and Zwart (1995) [116].


