

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA DE TRANSPORTES PTR 3521 – AVALIAÇÃO E REABILITAÇÃO DE PAVIMENTOS

AVALIAÇÃO ESTRUTURAL E RETROANÁLISE DE PAVIMENTOS DE CONCRETO

PROF. DR. JOSÉ TADEU BALBO

Laboratório de Mecânica de Pavimentos

AVALIAÇÃO ESTRUTURAL DE PAVIMENTOS

 A avaliação estrutural de pavimentos enseja analisar a deterioração da infraestrutura viária, contribuindo para alocação de recursos para manutenção e reabilitação de pavimentos, além de refletir a conformidade dos métodos de projeto e construtivos empregados.

- Retroanálise de parâmetros estruturais
 - Medidas de deflexões em campo
 - FWD ou Viga Benkelman
- Pavimentos de concreto
 - Módulo de elasticidade da placa de concreto (E)
 - Coeficiente de reação do subleito (k)
 - Eficiência de Transferência de Carga (LTE)

AVALIAÇÃO ESTRUTURAL DE PAVIMENTOS

Retroanálise de parâmetros estruturais

Figure 1. Impact load deflection test - deflection basin

DOI: <u>https://doi.org/10.15446/ing.investig.v</u> 34n2.42158

- Processo mais complexo do que em pavimentos asfálticos (Programas baseados na Teoria de Camadas Elásticas)
 - Placas de concreto → dimensões finitas, limitadas por descontinuidades (juntas)
 - Inexistência de programas para retroanálise automatizada como é o caso do BAKFAA para pavimentos asfálticos.
 - Processo iterativo → combinação de E e k que melhor reproduz a bacia de deflexões medida em campo

- Deflexões com FWD
 - Equipamento aplica <u>uma carga de impacto</u> à superfície do pavimento gerando ondas de aceleração verticais que se deslocam pela superfície e são captadas por <u>geofones</u> em posições pré-estabelecidas
 - Ondas duplamente integradas → <u>bacia de deflexões</u> da estrutura

Deflexões com FWD

6

- "Processo pelo qual procura-se <u>simular uma teoria condizente</u> <u>com o comportamento estrutural da estrutura</u> em questão, conhecendo-se as respostas em termos de <u>deformações ou</u> <u>tensões da estrutura real</u>, verificando para <u>quais parâmetros o</u> <u>modelo teórico</u> consegue representar, com a <u>maior fidelidade</u>, as medidas reais obtidas em campo."
- Simulação computacional do FWD em campo
 - Conhecida a geometria das placas e o carregamento, por meio de iterações procura-se estabelecer os valores de E e k para os quais a bacia de deflexões teórica melhor se aproxima da bacia de deflexões medida em campo
- Critério de parada
 - Menor soma de erros quadráticos para todos os pontos em questão

$$Erro = Mín\left[\sum (d_i^{pista} - d_i^{teórico})^2\right]$$

- Estimativa inicial dos valores de E e k ("Módulos semente")
 - Critérios apoiados na <u>Teoria de Westergaard</u>
 - FWD com centro de aplicação de carga no <u>centro da placa</u>
 - Placa infinita

$$AREA = 6 \cdot \left(1 + \frac{2d_{30}}{d_0} + \frac{2d_{60}}{d_0} + \frac{d_{90}}{d_0} \right)$$

Obs: Cálculo realizado em polegadas.

Os índices 30, 60 e 90 correspondem a 12, 24 e 36 polegadas

<u>Área da bacia de deflexões normalizada pela deflexão</u> <u>mácima sob uma carga de FWD aplicada na placa de</u> <u>diâmetro de 300 mm – Critério da AASHTO</u>

 A partir da área da bacia de deflexões determina-se o <u>raio de</u> <u>rigidez relativa da placa (?)</u>, o qual relaciona-se com E e k

<u>Fisicamente representa a distância do centro de</u> <u>aplicação da carga ao ponto de inflexão da deformada</u> <u>(inversão do momento fletor)</u>

Estimativa de E e k:

$$k = \frac{P}{8 \cdot d_0 \cdot \ell^2} \cdot \left\{ 1 + \left(\frac{1}{2\pi}\right) \cdot \left[ln\left(\frac{a}{2 \cdot \ell}\right) - 0, 67278436 \right] \cdot \left(\frac{a}{\ell}\right)^2 \right\}$$

$$\boldsymbol{E} = \frac{\boldsymbol{12} \cdot (\boldsymbol{1} - \boldsymbol{\mu}^2) \cdot \boldsymbol{k} \cdot \boldsymbol{\ell}^4}{\boldsymbol{h}^3}$$

k = coeficiente de reação do subleito (lb/in²/in)
E = módulo de elasticidade do concreto (lb/in²)
a = raio da carga circular aplicada (perfecterence)
μ = coeficiente de Poisson
h = espessura da placa
(1) Modelos com campo de aplicação limitado às
placas infinitas com carga aplicadas em seu

<u>centro</u>;

(2) Para os valores de k, as estimativas remetem

a <u>cargas estáticas</u>, enquanto o <u>FWD aplica uma</u>

 $\underbrace{\operatorname{carga\,din\widehat{a}mica}}_{i} \rightarrow \underbrace{\operatorname{os\,valores\,reais\,devem\,ser}}_{10}$

<u>superiores às estimativas</u>

- Exemplo Retroanálise PCS Programa EverFE 2.25
 - Placas de 1,80 x 1,80 com juntas serradas in loco
 - Ausência de acostamentos
 - Subleito maldrenado e de baixa resistência CBR = 3%
 - Concreto convencional fct,f = 4 MPa
 - Seção 2ª placa com 150 mm de espessura sobre camada granular mal graduada, compactada sobre uma manta geotêxtil aplicada sobre o subleito
 - Seção 2b placas de 200 mm de espessura sobre camada granular mal graduada compactada sobre uma manta geotêxtil aplicada sobre o subleito

- FWD cargas dinâmicas com 28,9 kN no primeiro golpe e 48,9 kN no segundo.
- FWD com 9 geofones → -305 mm, 0 mm (carga), 203 mm, 457 mm, 610 mm, 914 mm, 1219 mm e 1524 mm

Valores estimativos para E e k (equações slide 10)

- Etapas
 - Seleção das bacias de deflexão de campo expurgo de bacias mal delineadas
 - bacias empregadas aquelas obtidas para maior carga aplicada – evitar valores mais baixos de deflexão
 - Com base nas bacias homogêneas, selecionou-se uma bacia mais representativa desse conjunto

1,829 m	1,829 m	1,829 m	29 m
	Slab 30		1,8
	0,915	80 • KU	1,829 m

Bacias de deflexão na seção 2a após expurgo

Esquema de posicionamento de sensores 14

Definição da geometria das placas

Parametrização de juntas longitudinais e transversais

Definição da malha de elementos finitos para simulações

18

Valores de E e k retroanalisados

FWD Sensores			D1	D2	D3	D4	D5	D6	D7	D8			
FWD distância dos sensores à carga (m) 0 0.2032 0.3048 0.4572 0.6096 0.9144 1.2192							1.2192	1.524					
FWD deflexões (mm)				0.205	0.189	0.179	0.158	0.135	0.095	0.067	0.046	ΣErro² (mm²)	
Tentativa	ΔT (°C)	Placa E (MPa)	Suporte k (MPa/m)		Deflexões estimadas com EverFE								
1	0	42000	120	0.209	0.195	0.181	0.158	0.133	0.082	0.062	0.048	0.0002580	
2	0	28000	120	0.245	0.224	0.205	0.174	0.141	0.075	0.056	0.043	0.0043230	
3	0	42500	115	0.214	0.200	0.185	0.163	0.137	0.086	0.066	0.050	0.0003650	
4	0	41500	125	0.205	0.190	0.176	0.153	0.128	0.078	0.059	0.045	0.0004380	
5	1	42000	120	0.192	0.178	0.166	0.146	0.126	0.090	0.057	0.034	0.0009530	
6	1	42000	110	0.204	0.190	0.177	0.157	0.136	0.099	0.064	0.039	0.0000820	

- FWD Seção 2a Placa31
- ------ EverFE aproximação anterior
- --- EverFE aproximação final

----- FWD – Seção 2b Placa 37

0

- ------ EverFE aproximação anterior
- --- EverFE aproximação final

- Exemplo Retroanálise PCS Programa ISLAB2000
 - Placas concreto estacionamento Eng. Civil EPUSP

Diferenciais térmicos

		Inverno - 28/07/2006						Verão - 26/03/2007						
Secão	Posicão	N	lanhã		1	Tarde		1	Tarde		I	Noite		
3	,	Horário	T _{topo} (°C)	DT (°C)	Horário	T _{topo} (℃)	DT (°C)	Horário	T _{topo} (°C)	DT (°C)	Horário	T _{topo} (⁰C)	DT (°C)	
	2	9h32	20,0	3,8	13h35	27,0	7,4	12h30	25,0	0,3	19h35	25,5	0,5	
А	16	10h27	24,0	5,9	14h05	34,0	11,0	13h02	26,0	0,8	18h47	28,0	1,9	
в	5	9h54	19,5	3,6	13h47	26,0	6,9	12h35	24,5	0,0	18h20	28,5	2,2	
D	17	10h36	24,0	5,9	14h09	34,0	11,0	13h12	31,0	3,5	18h52	26,5	1,1	
c	8	10h02	20,0	4,0	13h50	32,0	10,1	12h42	41,0	12,6	18h30	32,0	7,8	
С	19	10h46	22,5	5,2	14h12	29,0	8,6	13h20	38,5	11,3	19h00	28,0	5,6	
D	11	10h10	23,0	5,5	13h58	34,0	11,1	12h50	43,0	13,7	18h34	32,5	8,0	
U	21	10h55	24,0	6,0	14h14	31,0	9,6	13h30	44,5	14,5	19h04	30,5	7,0	
E	14	10h20	27,0	7,5	14h00	34,0	11,1	12h56	45,0	14,8	18h42	33,0	8,3	
E	23	11h00	25,0	6,5	14h16	35,0	11,6	13h40	46,0	15,4	19h12	30,5	7,0	

Tabela 3.3 Diferenciais térmicos nos anos de 2006 e 2007.

Primavera/verão

 $DT += -18,83 + 0,542T_{Tmáx} + 0,37h + 4,165H_f$

Outono/inverno

 $DT += -6,543 + 0,509T_{Tmáx} + 0,0013h$

Modelagem no programa ISLAB2000

Modelagem no programa ISLAB2000

ubgrade				
 Winkler Spring Vlasov Kerr 	Subgrade k: 450 Vlasov and Kerr G: Kerr Ku:	Friction model: Friction Stiffness in stick: Friction coefficient: Max Friction:	nless 💌	
	Description:			
C Default	Batch Batch Construction Constructi Construction Construction Construction	C Exceptions		
	Edit Batch	Edit Exceptions	ОК	
				Definição do carregamento

Coeficiente de reação do subleito (k)

Modelagem no programa ISLAB2000

Informações sobre transferência de carga nas juntas

nts	
Joints in x-direction	n III Joints in y-direction
Number of joints in x-direction: 0	Number of joints in y-direction: 2
Specify LTE Specify joint parameters	 Specify LTE Specify joint parameters
LTE Deflection LTE: %	LTE Deflection LTE: 95%
Joint parameters	Joint parameters
Joint type:	Joint type:
AGG factor:	AGG factor:
Normal Stiffness:	Normal Stiffness:
Shear Stiffness:	Shear Stiffness:
Width:	Width:
Crack depth ratio:	Crack depth ratio:
Crack Location:	Crack Location:
Dowel property ID:	Dowel property ID:
Dowel location ID:	Dowel location ID:
Exceptions Edit Exceptions	Edit Dowel Properties
Batch Edit Batch	Edit Dowel Locations OK

Modelagem no programa ISLAB2000

Tela principal do programa após estrutura modelada

Zoom 100 Show Mesh Show Load Show Dowels Lager 1 Show Lave Arest
Input File ID: gendat Temperature analysis: No Max. num. of ext. iterations: 0 Batch processing: No Number of batch cases: 1 Statue Beview Stat Geometry Areas Layers Layers Layers Subgrade Joints Joints Joints Temperature Load Horizontal restrains: 0 Voids

Resultado placa A2

Modulo de	Reacão do			Deflexa	ão – Sensore	s (mm)		
elasticidade E (MPa)	Subleito k (MPa/m)	0	20	30	45	65	90	120
51.455	31,59	0,0363	0,0348	0,0332	0,0308	0,0271	0,0228	0,0183
48.757	33,63	0,0357	0,0340	0,0323	0,0302	0,0264	0,0222	0,0177
E _{tentativo} (MPa)	k _{tenzativo} (MPa/m)							
52.000	40,00	0,0400	0,0384	0,0367	0,0337	0,0293	0,0237	0,0175
	45,00	0,0374	0,0358	0,0342	0,0313	0,0270	0,0216	0,0158
53.000	50,00	0,0352	0,0337	0,0321	0,0292	0,0251	0,0199	0,0143
	55,00	0,0334	0,0319	0,0303	0,0275	0,0234	0,0185	0,0131
	60,00	0,0318	0,0303	0,0288	0,0260	0,0220	0,0172	0,0121
	40,00	0,0397	0,0381	0,0364	0,0335	0,0291	0,0236	0,0175
	45,00	0,0371	0,0355	0,0339	0,0310	0,0268	0,0215	0,0157
54.000	50,00	0,0349	0,0334	0,0318	0,0290	0,0249	0,0198	0,0143
	55,00	0,0331	0,0316	0,0301	0,0273	0,0233	0,0184	0,0131
	60,00	0,0316	0,0301	0,0285	0,0258	0,0219	0,0172	0,0121
55.000	40,00	0,0394	0,0378	0,0362	0,0333	0,0290	0,0235	0,0175
	45,00	0,0368	0,0353	0,0337	0,0308	0,0267	0,0215	0,0157
	50,00	0,0347	0,0331	0,0316	0,0288	0,0248	0,0197	0,0143
	55,00	0,0329	0,0314	0,0298	0,0271	0,0232	0,0183	0,0131
	60,00	0,0313	0,0298	0,0283	0,0257	0,0218	0,0171	0,0121
	40,00	0,0391	0,0375	0,0359	0,0331	0,0288	0,0234	0,0174
	45,00	0,0365	0,0350	0,0334	0,0306	0,0265	0,0214	0,0157
56.000	50,00	0,0344	0,0329	0,0314	0,0286	0,0246	0,0197	0,0143
	55,00	0,0326	0,0311	0,0296	0,0269	0,0231	0,0182	0,0131
	60,00	0,0311	0,0296	0,0281	0,0255	0,0217	0,0170	0,0121
	40,00	0,0388	0,0372	0,0357	0,0329	0,0287	0,0233	0,0174
	45,00	0,0362	0,0347	0,0332	0,0304	0,0264	0,0213	0,0157
57.000	50,00	0,0341	0,0327	0,0312	0,0285	0,0245	0,0196	0,0142
	55,00	0,0324	0,0309	0,0294	0,0268	0,0229	0,0182	0,0131
	60,00	0,0308	0,0294	0,0279	0,0253	0,0216	0,0170	0,0120

26

Resultado placa A2

Placa A2 - Posição 3 - carga 2 E = 57.250 MPa / k = 45 MPa/m

Exemplo – Retroanálise PCCA – ABAQUS x EverFE 2.25

Mapa Fissuras PCCA Raia Olímpica

- Exemplo Retroanálise PCCA ABAQUS x EverFE 2.25
 - FWD aplicado no ponto médio entre duas fissuras consecutivas
 - Retroanálise ABAQUS apenas dados da seção 3
 - Pré-processamento dados de entrada (geometria, materiais, carregamento, tipo de análise, malha)
 - Pós-processamento resultados (tensões, deformações, deflexões, etc.)

(a)

p74 p75

p79

p80

- Geometria
 - Seção 3 47,3 m de comprimento, 3,4 m de largura e 250 mm de espessura – elemento sólido contínuo de 20 nós
 - Modelagem barras contínuas elemento de barra

- Malha de elementos finitos
 - 5 cm para região do carregamento
 - 15 cm longitudinalmente
 - 17 cm transversalmente
 - 8 cm profundidade

	Posição dos sensores FWD											
Ponto de aplicação 66			0	20	30	45	60	90	120		Erro ²	
Tent.	k (MPa/m)	E (MPa)	12.8	12.6	11.6	11.3	10.8	10.2	9	RMSE	EITO	
1	105	35000	13.88	13.33	12.97	12.37	11.73	10.44	9.23	7.73	5.68	
2	110	37000	13.20	12.67	12.33	11.77	11.16	9.95	8.80	3.58	1.16	
3	108	40000	13.10	12.61	12.29	11.75	11.18	10.02	8.91	3.24	0.96	
4	108	42000	12.93	12.46	12.16	11.64	11.09	9.96	8.89	2.63	0.61	
5	108	42000	13.15	12.69	12.34	11.82	11.22	10.03	8.92	3.55	1.16	
6	110	42000	12.93	12.47	12.12	11.62	11.02	9.85	8.77	2.75	0.63	

	Posição dos sensores FWD											
Ponto de aplicação 76			0	20	30	45	60	90	120		Erro ²	
Tent.	k (MPa/m)	E (MPa)	15.4	15.1	13.9	13.6	12.6	11.3	9.6	RMSE	EITO	
1	100	35000	14.71	14.17	13.84	13.31	12.51	10.99	9.64	3.18	1.53	
2	98	33000	15.15	14.58	14.23	13.67	12.83	11.25	9.85	2.10	0.57	
3	99	32000	15.16	14.57	14.21	13.63	12.78	11.18	9.77	1.93	0.51	

Ponto de aplicação 76

Resultados Retroanálise EverFE

Resultados Retroanálise EverFE

Aplicação de carga tangencialmente às fissuras/juntas

- Comparação LTE PCCA curto x longo x PCS
 - PCCA longo posições com aço comum e galvanizado

LTE PCCA longo

Slab/Base restraint

PCS – Barras de transferência de car

